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Abstract: Building structure information is essential for achieving various indoor location-based services (ILBSs).
Our approach integrates a large amount of pedestrian trajectories acquired by pedestrian dead reckoning (PDR) for gen-
erating a pedestrian network structure. To generate highly accurate pedestrian network structures, the accuracy of each
trajectory must be improved. In this paper, we propose a method to improve the accuracy of indoor PDR trajectories
by using many such trajectories. First, we select reliable trajectories based on the stability of the sensing data. Next by
analyzing the trend of the step lengths, we correct the length of the trajectories. Finally, with same-route trajectories,
we generate average trajectories for each route. We experimentally used HASC-IPSC and found that our proposed
method improved the accuracy of the trajectories. The cumulative error rate of the original pedestrian trajectories was
0.1111 m/s. After adapting our proposed method, the rate improved to 0.0622 m/s.
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1. Introduction

As location estimation techniques continue to evolve, various
indoor location-based services (ILBSs) are being deployed. GPS
and wireless LAN methods are generally used to acquire position
information outdoors. Unfortunately, an indoor GPS cannot be
used in many cases. Therefore, a method is required that stably
acquires the position information of various buildings.

One indoor location estimation technique that has been shown
to be effective is pedestrian dead reckoning (PDR). In this tech-
nique, we use the values of various sensors incorporated in a ter-
minal such as a smartphone to estimate the walking and traveling
directions of the person holding the smartphone and their move-
ments with respect to a starting point [1], [2], [3]. One merit of
PDR is that new infrastructure equipment does not have to be in-
stalled, and it is not limited to available places.

Building structure information is essential for various ILBSs.
However, since building structure information is not necessar-
ily available for every building at present, research is estimat-
ing the information of building structure using the sensing data
from walking in the buildings themselves [4], [5], [6], [7], [8]. To
generate highly accurate building structure information, we must
accurately estimate each pedestrian trajectory.

Based on the above background, we are integrating a large
amount of pedestrian trajectories obtained by PDR to generate a
pedestrian network structure that expresses a route where pedes-
trians pass and the basis of route calculation. We assume a crowd-
sensing approach for collecting pedestrian trajectories. We ac-
quired daily activity sensing data from the smartphones of volun-
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tary users in a specific building. After collecting them, the pedes-
trian trajectories are estimated based on PDR technology. Then
the pedestrian network structure is automatically integrated using
a large number of trajectories (Fig. 1).

We previously proposed a 3D pedestrian trajectory estimation
method that uses walking sensing data [9]. In this study, we accu-
mulated error of about 1 m in ten-second measurements. Accu-
racy can be estimated in room units if the sensing is within about
40 seconds. However, the accuracy of the estimated pedestrian
trajectory must be improved for generating building structure in-
formation where ILBS is used.

In this paper, we propose a method that improves the accu-
racy of indoor PDR trajectories using a large number of them.
We assume that we know whether the sensing data from each
pedestrian reflects walking on the same route. This correspon-
dence can be obtained by manually labeling the crowd-sensing
or route-matching methods using the similarity of the trajectory
shapes and the observed Wi-Fi signals while walking [10]. First,
we selected reliable trajectories based on the stability of the sens-
ing data. The reliability of the data is high if the sensor’s value
is relatively stable and the pedestrian’s movement is reasonable.
Therefore, we selected the most reliable pedestrian trajectory for
each identical route and averaged the pedestrian trajectories based
on this most reliable trajectory. The next stage is correcting the
step lengths. Since accurately estimating them is difficult in PDR
trajectories, the estimated walking distance tends to be biased.
We examined the deviation of the walking distance from many
pedestrian trajectories to improve the accuracy of the PDR trajec-
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Fig. 1 Generation of pedestrian network structure by integration of multiple
pedestrian trajectories.

tory. Finally with same-route trajectories, we generated average
trajectories for each route and assume that the living spaces in-
side offices are our data collection environment. These processes
obtained accurate pedestrian trajectories in our experiments.

2. Related Research

Several methods have generated the structural information of
buildings. Current methods are already using existing floor maps,
CAD data, or newly collected building data. However, costs are
accrued, including the preparation of sensing equipment, sens-
ing requests, and so on. Therefore, several research studies are
estimating the information of building structures using walking
sensing data from the buildings themselves [4], [5], [6], [7], [8].
We also adopted such an approach because crowd-sensing tech-
nology can collect such data from buildings.

To generate accurate building structure information, we must
accurately estimate each pedestrian trajectory. Pedestrian trajec-
tories by general PDR are estimated based on the information of
step counts, step lengths, and walking direction. This information
can be detected using various sensors, such as accelerometers, an-
gular velocity sensors, and balometers. We previously proposed
a 3D pedestrian trajectory estimation method that uses walking
sensing data [9] (Fig. 2). In that study, we accumulated error of
about 1 m in 10-second measurements. An accurate estimation
in room units can be achieved if the sensing is within about 40
seconds. However, for achieving ILBS, we must improve the ac-
curacy of the estimated pedestrian trajectories.

The estimation accuracy of the pedestrian trajectories is influ-
enced by the sensor’s stability while collecting walking sensing
data with PDR. We introduced the concept of a stable-walking
zone and performed reliable data detection in our previous re-
search [9]. A stable-walking zone is a section where walking
without turning or meandering can be stably sensed for longer
than a certain period of time. Much of the movement is de-
tected as a stable-walking zone when the movement is rational
and the sensor’s motion is stable because most buildings consist
of straight corridors. Therefore, data are detected with high reli-
ability based on the ratio of the stable-walking zone. We experi-
mentally evaluated the accuracy of estimated pedestrian trajecto-
ries and found they were higher when using data with high relia-
bility. For this reason, we believe that the selection of a pedestrian
trajectory based on the stability of the sensing data effectively im-
proves the estimation accuracy of pedestrian trajectories.

Fig. 2 Estimated pedestrian trajectory [9].

One problem is that the walking distance tends to be biased
in its estimation in PDR because the bias estimation of the step
length depends greatly on sensors and user profiles. A general
calculation method of the step length is gauged using fixed val-
ues such as the height of the pedestrian or the amplitude of accel-
eration sensors [11], [12]. The walking distance in PDR can be
obtained by multiplying the step length by the step count. There-
fore, the total walking distance tends to be greatly biased because
of the differences in each step length. This problem can be solved
if the pedestrian step length is obtained by careful calibration be-
forehand. However, this task is very laborious due to its crowd-
sensing. Since we thought that investigating the step lengths with
a great quantity of walking data of pedestrians might solve these
problems, we investigated the bias of the walking distances from
a large amount of walking data by multiple pedestrians. We be-
lieve that the correction of the step lengths based on that bias will
improve the accuracy of the PDR trajectories.

One approach improves trajectory accuracy by averaging mul-
tiple identical characters and figures. Niino et al. improved the
accuracy by averaging multiple trajectories [13]. In that study,
multiple users handwrote the same Japanese characters and fig-
ures. Then multiple identical trajectories were balanced to cre-
ate average characters. Their evaluation experiments determined
which trajectory was more beautiful: the handwritten character or
the averaged character. The trajectory of the average characters
was deemed more beautiful than the handwritten characters. We
assume that the living spaces inside offices are the data collection
environment. Therefore, it is possible to collect walking data of
people’s identical route to the same departments. Based on this
reason, we expected to improve the accuracy by averaging the
trajectories using many people who walk on the same route.

3. Method to Improve Accuracy of Indoor
PDR Trajectories Using Many Trajectories

In this section, we propose a method that improves the accu-
racy of indoor PDR trajectories using three approaches. First, we
select reliable trajectories based on the stability of the sensing
data. Next, we analyze the trends of the step lengths and cor-
rect them. Finally with the same-route trajectories, we generate
an average trajectory for each route. In the proposal method, we
only utilize general building structure knowledge (e.g.: corridor
is straight, corridors are always parallel or have vertical relation-
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ships with each other) and building information that is easy to
acquire and commonly applied to buildings (e.g.: step length of
stair section). Although correspondence labeling is currently a
manual task, a partial matching estimation method of the walking
trajectories [10] should alternate the tasks in the future.

Here, the term “route” means a path in terms of the building
structure that consists of stairs and corridors on the map. The
term “trajectory” denotes an estimated path by PDR.

3.1 Selection of Reliable Trajectories Based on Stability of
Sensing Data

In this section, we describe the selection process before the
correction of the walking trajectories. Here the processing only
selects a trajectory that seems highly reliable from among a large
number of estimated walking trajectories without correcting each
one. Therefore the section process is just pre-processing.

Since we believe that more accurate pedestrian trajectories can
be obtained by correction based on accurate trajectories, we deter-
mined which trajectory to correct from multiple pedestrian trajec-
tories. The accuracy of the estimated pedestrian trajectories may
be different even in those pedestrian trajectories taking the same
route because the accuracy of the estimated trajectory depends
on the sensor operation’s stability. For example, Fig. 3 shows the
PDR trajectories in which two pedestrians walk straight down the
center of the same route. However, since the trajectories of the
section where walking straight ahead are crooked due to sensor
failure, the pedestrian trajectories can be estimated with high ac-
curacy when the sensor operation is stable and the data reliability
is high.

We focus on a straight-line route in this study. Our main tar-
get is normal buildings that consist of straight corridors. When
the pedestrian orientation changes slowly, it is hard to distinguish
between the drift of angular velocity sensors and walking down a
wavy corridor. Drift is an essential problem of PDR. The slight
offset of the angular velocity causes drift because the value con-
tinues to accumulate. The slight offset varies with the terminal’s
heat. Therefore, since the orientation may be crooked even if a
pedestrian walks directly ahead, distinguishing between a change
in the orientation due to drift or walking on a wavy route is diffi-
cult. Consequently, we focus on straight-line routes.

We assume that highly accurate estimation is possible for
pedestrian trajectories with high data reliability. In a previous
study [9], we set the thresholds for data reliability. The accuracy
of the pedestrian trajectories only improved when we used reli-
able route data, suggesting the effectiveness of the selection of
reliable trajectories based on the data’s reliability.

The reliability of the estimated pedestrian trajectory for each
identical route can be calculated by the ratio of the stable-walking
zone [9], which is a section of stable linear walking for a certain
period of time.

Here, we regard that reasonable/natural pedestrian movement
is walking linearly stably along corridor. Also, general building
consists of straight corridors. Therefore, when a person walks
reasonably in general building, most of the movement should be
linear walking. Then, we regard the ratio of stable-walking zone
as the reliability of the trajectory. The reliability is combination

Fig. 3 Trajectory’s bend when walking straight on same route.

Fig. 4 Selection of pedestrian trajectory based on data reliability.

of the factor of reasonability of pedestrian movement and stabil-
ity of the sensors. The highest reliable trajectories for each route
are corrected (Fig. 4).

Specific processing is shown below. Corresponding pseudo-
code is shown in Algorithm 1. First, let the set of all the walking
trajectories be T = [t1

1, t
1
2..., t

i
mi
, ..., tn

mn
]. Here a route is assumed

to exist from 1 to n. Also, we set the number of walking trajecto-
ries obtained by PDR by walking route i to mi. ti

j represents the
j-th walking trajectory of route i.

Assuming that the total length of walking trajectory ti
j is

lwhole(ti
j) and the length of the stable-sensing zone is lstable(ti

j), re-
liability of trajectory ti

j can be calculated as lstable(ti
j)/lwhole(ti

j).
For each route i, we selected path ti with the highest reliabil-
ity of stable-sensing zones among the trajectories from ti

1 to ti
mi

.
Hereafter, a walking trajectory set, which only consists of the
most reliable estimated trajectories for each route, is denoted as
Treliable = [t1, ..., tn]. We gradually refine walking trajectory set
Treliable in the following sections.

3.2 Correction of Trajectory Length by Analyzing Trends of
Step Length

Since estimating the exact step length on PDR trajectories is
difficult, walking distance tends to be easily biased. Therefore,
we improved the accuracy of the PDR trajectories correcting the
step lengths based on the walking distance’s deviation. In a 3D
pedestrian trajectory estimation method [9], the walking distance
of the estimated pedestrian trajectory was deemed to be larger
than the route’s correct answer data. In a previous method [1]
that calculated the walking distance, the step length was set to
0.46 times the height. The movement distances were obtained
based on the number of steps and their lengths. If we apply these
methods, the estimated distance is not necessarily distributed
around the correct value. Therefore, we must correct the trajec-
tory length. Here we assumed that crowd-sensing can collect a
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Fig. 5 Calculation of scale of step lengths.

large amount of walking sensing data whose correct distance is
known. Since the HASC-IPSC data contains the correct distance
value about the length of the walking trajectory, they are used to
correct the distance estimation.

Furthermore, since the step length (due to ascending and de-
scending stairs) is often shorter than the step length during nor-
mal times, building knowledge was introduced and the step length
when ascending and descending stairs was fixed to 0.3 m [14].
In our previous method [9], the stairs section was detected based
on barometer values and the step length in the stairs section was
set to 0.3 m. In many cases, since the height and length of each
stair is constant within a building, collecting such building knowl-
edge may prove inadequated for each building. Therefore, we in-
troduce stair length and height as building knowledge that falls
within a reasonable range. We investigated the bias of the walk-
ing distance (other than the stairs section) using a large amount
of walking data from multiple pedestrians and corrected the step
lengths from the investigated values.

Next we compared the correct answer data of the route with
the cumulative walking distance of the estimated pedestrian tra-
jectories other than the stairs section and calculated the ratio as a
scale of the step length (Fig. 5). A change in height is seen in the
Z-axis coordinate of the coordinate data of the 3D pedestrian tra-
jectories. We extracted the part that is outside of the stairs section
of the estimated trajectory and the corresponding correct route.
We then calculated the length of the trajectory and the correct
route other than the stairs section. We compared the length of the
estimated trajectory and the correct route, and calculated the step
length’s scale from the result.

Next we calculated the scale of the step lengths with respect to
all the trajectories and checked the scale’s frequency distribution.
The results are shown in Fig. 6 and Table 1. We used 424 bits
of walking data of 3D pedestrian trajectories estimated by our
method [9] with the HASC-IPSC [16] indoor pedestrian sensing
corpus. Fig. 6 (a) shows the distribution of the scales of all the
estimated pedestrian trajectories T . Fig. 6 (b) shows the distribu-
tion of the scales that were selected as the most reliable trajecto-
ries among all identical routes Treliable. Since this distribution’s
shape has a normal distribution, the step length is corrected us-
ing the scale’s average value. Based on the data’s reliability, it is

Fig. 6 Frequency distribution of scales of step length.

Table 1 Result of frequency distribution of scale.

All estimated
pedestrian trajectories

Selected estimated
pedestrian trajectories

Total amount of data 424 109
Maximum value 1.756 1.756
Minimum value 0.635 0.704

Standard deviation 0.145 0.143
Average value 1.070 1.108

Fig. 7 Correction of step lengths.

corrected using the average value of the scale of the most reliable
trajectories among each identical route.

Next we corrected the step length using the calculated aver-
age of the scale. We corrected the X and Y coordinates of the
coordinate data (other than the stairs section) and enlarged or re-
duced the pedestrian trajectories using the step length’s scale. We
shifted the coordinates of the stairs section and followed up on it
after it was enlarged or reduced. These processes were repeated
until the end coordinates of the trajectory.

The following is the procedure for correcting the distance esti-
mation error of the estimated walking trajectory (Fig. 7). A cor-
responding pseudo-code is shown in Algorithm 2. For walking
trajectory t, partial trajectory o (meaning other) other than the
stairs, and partial trajectory s (meaning stair) of the stair section
appear alternately. If there are k stair sections, the sequence of
walking trajectory t can be expressed as (o1 → s1 → o2 → s2 →
...sk → ok+1). Here we assume that the trajectory does not start or
end at the stairs.

The series of walking trajectories is followed sequentially, and
the partial trajectories other than the stairs are scaled based on
the values obtained in Table 1. Here let ci be the partial trajectory
currently being focused on. If ci is a partial trajectory other than
the stairs, the following scaling process is applied. Here we set
the scaling factor to a. Since Table 1 shows that the estimated
trajectory is estimated to be 1.108 times longer than the correct
trajectory, the scale of each partial trajectory is a = 1/1.108, and
the walking trajectory is scaled down using scaling factor a.
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Plane components of all coordinates (x, y, z) are converted to
(a · x, a · y, z) by scale a. The trajectory after scaling processing
is replaced by ci. The scaling process is only for plane compo-
nents of the trajectory. When partial trajectories other than the
stairs are scaled, the sequences of the partial trajectories become
discontinuous. Therefore, ci is shifted in parallel so that the end
coordinates of previous partial trajectory ci−1 and the start coor-
dinate of partial trajectory ci just overlap. The trajectory after
parallel translation is replaced by ci. The parallel shift process is
applied to both of partial trajectories of the stair section and other
than stairs.

The trajectory obtained by this processing for original walk-
ing trajectory t is expressed as t′. This process is performed for
each element of all estimated walking trajectories T and Treliable.
Each walking trajectory set after the process is expressed as T ′

and T ′reliable.

3.3 Generation of Average Trajectories
One problem is that the drift error gradually accumulates from

the start of sensing in the PDR. Such drift reflects the value of
the angular velocity sensor self-fluctuates over time even when
the terminal is stationary. In addition, this value changes ran-
domly depending on the type of angular velocity sensor and the
terminal’s heat. Therefore, we obtained an average value, as is
done with the central limit theorem [17], by a comparison with a
large amount of walking data. The required number of samples is
generally 30 or more when using the central limit theorem. This
study had about 3 to 7 samples per route. Therefore, the number
of samples is inadequate for the central limit theorem. However,
we expect that averaging the contribution will improve the accu-
racy even though the number of samples is insufficient.

We automatically detected a stable-walking zone from the esti-
mated pedestrian trajectories. Here, stable-walking zone means
an interval in which the angular velocity is within 20 degrees
of change lasts for 3 seconds or more [9]. Also, we manually
labeled the correspondence of each stable-walking zone on the
same straight-line route in the multiple pedestrian trajectories of
identical routes. Although correspondence labeling is currently a
manual task, a partial matching estimation method of the walk-
ing trajectories using the similarity of the trajectory shapes and
the observed Wi-Fi signals while walking [10] could alternate the
tasks in the future. Our comparison focused on one linear route
from all of the pedestrian trajectories using the labeling result of
the correspondence relation.

The correction of a pedestrian trajectory using multiple pedes-
trian trajectories of identical routes is defined as the generation
of average trajectories. We corrected the estimated pedestrian
trajectories using the correspondence relation of stable-walking
zones.

Next we explain the procedure of the averaging process. A
corresponding pseudo-code is shown in Algorithm 3. A set of
walking trajectories with route ID of i in T ′ is expressed as
T ′i = [t′i1 , t

′i
2 , ..., t

′i
mi

]. The trajectories contained in T ′i are aver-
aged by the procedure described below. We assume that each
walking trajectory of T ′i includes multiple stable-sensing zones,
and stable-sensing zones walking on the same linear route are

Fig. 8 Selection of median stable-walking zone.

Fig. 9 Expansion/Contraction process.

associated with each other. Associated stable-sensing zones are
parallel relationship each other. Also, stable-sensing zones are
always along the X or Y axis due to appliying general building
knowledge [9].

As a preparatory step before processing, for each element of
walking trajectory T ′i = [t′i1 , t

′i
2 , ..., t

′i
mi

], a reference point is iden-
tified to memorize the completion point of the averaging process.
Let ct be a reference point in trajectory t. The initial value of the
reference point is the starting point of trajectory t.

We also define function get partial tra jectories(t, j), which
requires walking trajectory t and the number of the stable-sensing
zones j as arguments. The following are the return values: tstable,
which is a partial trajectory of the j-th stable-sensing zone of
walking trajectory t, tprev, which is a partial trajectory from refer-
ence point ct to the start point of the j-th stable-sensing zone, and
tnext, which is a partial trajectory from the end point of the j-th
stable-sensing zone.

The process of averaging based on the first stable-sensing zone
is explained using Fig. 8 and Fig. 9. In Fig. 8, for each walking
trajectory of t1, t2, t3, the reference point is expressed as a yellow
circle, and the first stable-sensing zone is expressed as a red line.

Here, these stable-sensing zones are along Y axis. Therefore,
we find by median value of X axis of each stable-sensing zones.
In the example, the median value is 2.5 and the trajectory is t2.
When stable-sensing zones are along X axis, we find by me-
dian value of Y axis of each stable-sensing zones. Consequently,
stable-sensing zone of t2 is regarded as median stable-sensing
zone tmedian.

Next, we calculated vertical distance d between reference point
ct and line segment tstable of the stable-sensing zone. Also, we cal-
culated vertical distance dmedian between reference point ct and
line segment tmedian of the stable-sensing zone. Then, expan-
sion/contraction factor a is calculated as dmedian/d.

Based on proper expansion/contraction factor a, the tprev of
each trajectory is expanded/contracted in the perpendicular di-
rection of ct and tstable. Let t′prev be the partial trajectory after
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expansion and contraction.
Next, a parallel shift is performed so that the partial trajectory

after the expansion/contraction and the subsequent partial trajec-
tory are connected continuously. tstable is shifted so that the start
point of tstable is the same as the end point of t′prev. Let t′stable be the
trajectory after the parallel shift. Also, tnext is shifted so that the
start point of tnext is the same as the end point of t′stable. Let t′next be
the trajectory after the parallel shift. Trajectory t is replaced with
the averaged trajectory represented by t′prev, t′stable, t′next obtained
by the above process.

Finally, the reference points are updated. In the processing up
to this point, averaging was done for the interval from t′prev to
t′stable. Therefore, reference point ct is updated to the coordinates
of the end point of t′stable. This completes the process that focused
on the first stable-sensing zone. Then next stable-sensing zone is
focused on for the averaging process.

Assuming that the number of associated stable-sensing zones
of route i is oi, the above averaging processing is sequentially
processed by tracing the IDs of the stable-sensing zones from 1
to oi. Let t′′ be a trajectory obtained by averaging t′, where the
set of the averages of the walking trajectories with route ID of
i is T ′′i = [t′′i1 , t

′′i
2 , ..., t

′′i
mi

]. Among these elements, walking tra-
jectory t′′i with the largest ratio of stable-sensing zones is added
as an element of final estimated walking trajectory T ′′reliable. The
set of walking trajectories that are finally obtained is expressed as
T ′′reliable = [t′′1, ..., t′′n].

We adopted a median for correcting trajectories. If we use
mean value, then one outlier has a large effect on the mean value.
Median is robust for outliers rather than mean value. The formula
for calculating the median changes was based on the number of
correspondence relations. For odd numbers, we used the median.
With even numbers, we used the average values of the two middle
numbers.

Processing separated the coordinate data up to the start coor-
dinate of the stable-walking zone and the subsequent coordinate
data because the influence of correcting the large error of part
of the trajectory should not affect the entire trajectory. Pedes-
trian activities in the building consist of such actions as walking
straight, climbing up and down stairs, and turning left and right.
Although PDR captures these actions to estimate a trajectory, the
estimation accuracy may vary greatly depending on the type of
action. For example, our PDR algorithm [9] has a characteris-
tic where the estimation error of the moving distance increases
when the direction largely changes in a short time like half-turn
stairs. If the scaling for correcting the error of the trajectory of the
half-turn stairs is applied to the entire trajectory, a part of the tra-
jectory other than the half-turn stairs is also deformed. Therefore,
the trajectory correction is limited to a narrow range.

4. Evaluation Experiments

4.1 Configuration
We experimentally evaluated the improved accuracy of our

proposed method with coordinate data from the 3D pedestrian
trajectories estimated by our previously proposed method [9] with
the HASC-IPSC [16] indoor pedestrian sensing corpus. The data
used this time include the walking data of 109 routes. In addition,

Fig. 10 Correction of pedestrian trajectory.

it also included 424 bits of walking data from multiple pedestri-
ans who walked on each route. The baseline trajectory set is T

(Section 3.1). We applied the proposed method to these data. The
selection of the reliable trajectories based on the stability of the
sensing data is defined as Approach A. Trajectory set Treliable

generated in Section 3.1 is the dataset of Approach A. The cor-
rection of the trajectory length by analyzing the trends of the step
length is defined as Approach B. Trajectory set T ′reliable gener-
ated in Section 3.2 is the dataset of Approach B. The generation
of the average trajectories is defined as Approach C. Trajectory
set T ′′reliable generated in Section 3.3 is the dataset of Approach C.
Fig. 10 shows part of the pedestrian trajectories, the estimated
pedestrian trajectories, and the highly accurate pedestrian trajec-
tories for this evaluation experiment.

We investigated the relationship between the elapsed time and
the estimated position error to evaluate the accuracy of the esti-
mated pedestrian trajectories [18]. The amount of change in the
relative position in PDR was obtained by the change in the move-
ment disntance, the orientation, and the height. Investigation by
distance can evaluate the moving distance and height. However,
since fairly evaluating the orientation is impossible, a previous
study used time for its evaluations. So we adopted this evalua-
tion method. The results are shown in Figs. 11, 12, 13, and 14.
These scatter plots are the Euclidean distance plots of the esti-
mated errors of the positions based on comparing the coordinates
of each pedestrian trajectory estimated every second with the cor-
rect coordinates (Fig. 15). If the value of Y is lower, it shows bet-

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 11 Accuracy of estimated pedestrian trajectory (Baseline).

Fig. 12 Accuracy of estimated pedestrian trajectory (Approach A).

Fig. 13 Accuracy of estimated pedestrian trajectory (Approaches A and B).

Fig. 14 Accuracy of estimated pedestrian trajectory (Approaches A, B, and
C).

ter performance. We also identified a regression line that passes
through the point of the origin and obtained the straight line’s
slope to calculate the cumulative error rate. The accuracy of the
estimated pedestrian trajectories has improved if the slope of the
straight line is small.

The target accuracy was set to 0.0278 m/s as the accuracy used
for indoor navigation that is one of the most promising ILBSs.
This target accuracy is the accuracy when the allowable error is

Fig. 15 Position estimated error.

considered to be 5 m assuming the travel time in the building to be
about 180 seconds. The reason for setting the allowable error to
be 5 m this time is because the accuracy of “available for naviga-
tion and so on as location information” in the reference document
is within 10 m [19]. Also, we thought that the allowable error
during navigation needs to be further improved when considering
the accuracy used for indoor navigation. Therefore, the allow-
able error was set to about 5 m. In guidance display targeting
pedestrians, the movement speed of pedestrians is generally set
at 80 m/min [20]. Furthermore, Lamberg’s research [21] clarified
that the movement speed decreased by about 30% when pedes-
trians were using smartphones. From these points, it is consid-
ered that the movement speed during indoor navigation is about
56 m/min. Therefore, the travel time is about 5 seconds even if
there is a position error of about 5 m. So we regarded it as allow-
able as an error.

4.2 Evaluation Results
We evaluated four types of estimated data and compared their

accuracy with our target accuracy. For the first kind of data,
we used the data of all the routes provided by our previous re-
search [9] and defined the estimated accuracy when using all the
route data as the baseline. The cumulative error rate of the base-
line was 0.1111 m/s (Fig. 11).

As the second kind of data, we used the data to which Ap-
proach A was applied to the baseline. The estimation accuracy of
the pedestrian trajectories is influenced by the sensor’s stability
during the data collection with PDR. We calculated the reliability
of the estimated trajectory by Approach A and obtained the most
accurate pedestrian trajectory among the multiple pedestrian tra-
jectories of identical routes. The cumulative error rate at this time
was 0.0837 m/s (Fig. 12).

As the third kind of data, we used the data to which Approaches
A and B were applied to the baseline. One problem is that the
walking distance tends to be biased in the walking distance esti-
mation in PDR. To solve for it, we investigated the step length
tendency using a large amount of indoor pedestrian trajectories
and modified the walking distance based on Approach B to cor-
rect the walking distance. The cumulative error rate at this time
was 0.0669 m/s (Fig. 13).

As the fourth kind of data, we used the data to which Ap-
proaches A, B and C are applied to the baseline. A problem is
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Fig. 16 List of accuracy of estimated pedestrian trajectory.

that the drift error gradually accumulates from the start of sensing
in the PDR. This value also changes randomly depending on the
type of angular velocity sensor and the device’s heat. We thought
that the drift would be averaged by Approach C like in the cen-
tral limit theorem. In Approach C, the trajectory was corrected to
align the positional relationship between the stable-walking zone
of walking on the same straight-line route. We corrected the posi-
tional relationship of the straight-line route using multiple pedes-
trian trajectories of identical routes. The cumulative error rate
was 0.0622 m/s (Fig. 14).

4.3 Discussion
Figure 16 shows the results of comparing these accuracies with

the target accuracy. We found that the accuracy of the estimated
pedestrian trajectories was improved by selecting reliable trajec-
tories based on the stability of the sensing data, the correction of
the trajectory length by analyzing the step length trends, and the
generation of average trajectories rather than using the estimated
pedestrian trajectories.

The cumulative error rate was about 2.2 times when we com-
pared the final and target accuracies because we included those
trajectories with low reliability when we averaged them. This
time, we improved the accuracy using the multiple pedestrian tra-
jectories of identical routes in Approach C for the most reliable
trajectory selected by Approach A. The averaging included the
low reliability trajectories. Therefore, the accuracy of the pedes-
trian trajectories became one reason why we failed to reach the
target accuracy. Another cause is that we failed to eliminate those
pedestrian trajectories with large error by our three proposed ap-
proaches. The data used for the evaluation experiment include
pedestrian trajectories with large error due to a deviation in the
traveling direction at the start of sensing. We used the value of
the angular velocity sensor to estimate the traveling direction by
PDR. The data used this time where the sensing started from an
upright state with the travel direction were specified at the start of
the sensing. Since the direction of the body was slightly inclined,
the direction of the travel deviated due to the body’s twist at the
sensing’s start. A trajectory with large error was included even if
a trace with high reliability was selected. For these reasons, the
accuracy of the estimated pedestrian trajectory must be improved
to achieve the target accuracy. We think that Approach C will im-
prove the accuracy quite well if there is sufficient data to generate

the average trajectory.

5. Conclusion

We propose a method to improve the accuracy of indoor PDR
trajectories using many trajectories by selecting reliable trajecto-
ries based on the stability of the sensing data. For the selected
trajectories, we corrected the step lengths using the actual route
lengths and the walking distances of the estimated pedestrian tra-
jectories and the generated average trajectories for each route.

From an evaluation experiment using an indoor pedestrian
sensing corpus called HASC-IPSC, our proposed method im-
proves the trajectory accuracy. After adapting it, the cumulative
error rate improved to 0.0622 [m/s]. However, since achieving
our target accuracy was impossible, a method that improves ac-
curacy even further is needed.

Future work will improve the accuracy of our estimated pedes-
trian trajectory. In this paper, we select the most reliable trajec-
tory in each identical route and correct it without investigating the
reliability of the same-route walking trajectories. We averaged
the trajectories even when their reliability was as low as 20%.
If such distorted trajectories were included, they would greatly
affect the pedestrian trajectory estimation and correction. The
trajectory’s accuracy will be further improved if we only correct
the pedestrian trajectories using those whose reliability exceeds a
particular threshold.
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Appendix

A.1 Pseudo-code of the Proposal Method

Algorithm 1 Selection of Reliable Trajectories (Section 3.1)
Require:

n: The number of identical route

i: Route ID

mi: The number of trajectories of route i

ti
j: The j-th trajectory of route i

T : A set of all trajectories

Ensure:

Treliable: A set of the most reliable trajectories for each identical route

function length whole(t)

return length of trajectory t

end function

function length stable(t)

return total length of stable-sensing zones in trajectory t

end function

function reliability(t)

return length stable(t)/length whole(t)

end function

procedure select reliable trajectories

for all route i do

pick up all trajectories of route i from T

find j that reliability(ti
j) becomes the largest

put ti
j into Treliable

end for

end procedure

Algorithm 2 Correction of Trajectory Length (Section 3.2)
Require:

a: Scaling factor

s: Partial trajectory of stair section

o: Partial trajectory other than stairs

Ensure:

T ′reliable: A set of processed trajectories in Treliable

function scaling(t, a)

for all coordinates (x, y, z) in t do

replace the coordinates to (a · x, a · y, z)

end for

return scaled trajectory

end function

function parallel shift(t1, t2)

parallely shift t2 so that the end coordinates of t1 and the start coordi-

nates of t2 match

return shifted trajectory

end function

procedure correct trajectory length

for all trajectory t in T do

divide t into a sequence of partial trajectories (o1, s1, ..., sk , ok+1)

for all partial trajectory ci in t do

if ci is a partial trajectory other than stairs then

ci = scaling(ci, a)

ci = parallel shift(ci−1, ci)

else

ci = parallel shift(ci−1, ci)

end if

end for

put modified trajectory t into T ′

end for

for all trajectory t in Treliable do

same process as above

put modified trajectory t into T ′reliable

end for

end procedure
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Algorithm 3 Generation of Average Trajectories (Section 3.3)
Require:

ct: Reference point of trajectory t

C: A set of reference points of trajectories

oi: Number of stable-sensing zones in i-th route

tmedian: Median stable sensing zone

a: Scaling factor of expansion/contraction

Ensure:

T ′′reliable: A set of processed trajectories in T ′reliable

function get partial trajectories(t, j)

pick up ct from C

generate tstable which is a partial trajectory of j-th stable-sensing zone

of trajectory t

generate tprev which is a partial trajectory from reference point ct to the

start point of j-th stable-sensing zone

generate tnext which is a partial trajectory from the end point of j-th

stable-sensing zone to the end of the trajectory

return [tstable, tprev, tnext]

end function

function distance(c, tstable)

return vertical distance between c and the line segment tstable

end function

function expand contract(ct , tstable, tprev, tmedian)

a = distance(ct , tmedian)/distance(ct , tstable)

Return expanded/contracted tprev using scaling factor a in the perpen-

dicular direction of ct and tstable

end function

function get median stable sensing zone(T ′i, j)

define S as a set of j-th stable-sensing zones of each trajectory in T ′i

calculate each distance of stable-sensing zones in S

find median stable-sensing zone tmedian according to the distances

Return tmedian

end function

procedure generate average trajectories

for all trajectory t in T ′ do

ct = starting point of t

put ct into C

end for

for all route i do

generate T ′i that is a set of all trajectories of i-th route from T ′

for num=1 to oi do

tmedian=get median stable sensing zone(T ′i, num)

for all trajectory t in T ′i do

[tstable, tprev, tnext] = get partial trajectories(t, num);

pick up ct from C

t′prev = expand contract(ct , tstable, tprev, tmedian)

t′stable = parallel shift(t′prev, tstable)

t′next = parallel shift(t′stable, tnext)

t = sequence of partial trajectories (t′prev, t′stable, t′next)

ct = coordinates of the end point of t′stable

end for

end for

find j that reliability(t′ij ) becomes the largest from T ′i

put t′ij into T ′′reliable

end for

end procedure

Editor’s Recommendation
This paper proposes a method to improve the accuracy of in-

door Pedestrian Dead Reckoning (PDR) trajectories by using a
large number of trajectories. The proposed method extracts reli-
able trajectories for step length correction and generation of av-
erage trajectories. The method greatly mitigates trajectory error,
which is also useful in various actual environments. Therefore,
the paper is selected as a recommended paper.

(Chief examiner of SIGMBL Nobuo Kawaguchi)
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