Item type |
Symposium(1) |
公開日 |
2019-06-26 |
タイトル |
|
|
タイトル |
Preliminary Investigation on Recognizing Environment-dependent Human Actions using a Fusion of Wi-Fi Based Place Clustering and Motif Detection from Accelerometer Data |
タイトル |
|
|
言語 |
en |
|
タイトル |
Preliminary Investigation on Recognizing Environment-dependent Human Actions using a Fusion of Wi-Fi Based Place Clustering and Motif Detection from Accelerometer Data |
言語 |
|
|
言語 |
eng |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
ウェアラブルコンピューティング |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_5794 |
|
資源タイプ |
conference paper |
著者所属 |
|
|
|
Graduate School of Information Science and Technology, Osaka University |
著者所属 |
|
|
|
Graduate School of Information Science and Technology, Osaka University |
著者所属 |
|
|
|
Graduate School of Information Science and Technology, Osaka University |
著者名 |
Thilina, Dissanayake
Takuya, Maekawa
Takahiro, Hara
|
著者名(英) |
Thilina, Dissanayake
Takuya, Maekawa
Takahiro, Hara
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
This paper presents a novel method to estimate a location label of a user using sensor data from his/her smart devices (smartwatch and smartphone) without using labeled training data collected in his/her environments. Specifically, we attempt to predict the user's location semantics, i.e., location classes such as restroom and meeting room. We propose a novel matrix operation method that automatically finds acceleration data motifs specific to a certain location class, e.g., brushing teeth action observed at bathroom, based on the idea of Gini coefficient. We evaluated the proposed method in 4 real environments. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
This paper presents a novel method to estimate a location label of a user using sensor data from his/her smart devices (smartwatch and smartphone) without using labeled training data collected in his/her environments. Specifically, we attempt to predict the user's location semantics, i.e., location classes such as restroom and meeting room. We propose a novel matrix operation method that automatically finds acceleration data motifs specific to a certain location class, e.g., brushing teeth action observed at bathroom, based on the idea of Gini coefficient. We evaluated the proposed method in 4 real environments. |
書誌情報 |
マルチメディア,分散協調とモバイルシンポジウム2019論文集
巻 2019,
p. 770-776,
発行日 2019-06-26
|
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |