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Abstract: Nowadays, there is a concern about how to use energy efficiently. Energy management is one
of the technologies which play an important role to reduce energy consumption in buildings. For building
energy management, there are several technologies which make the resident feel comfortable by controlling
HVAC and lighting through IoT. The critical information, which enables such management in a building, is
the location of IoT devices. However, the manual location identification manner requires a significant labor
effort for a large number of IoT devices deployed in the building. Although the wired network has reliable,
low-delay and secured characteristics, it has no property to be used for the localization technique in the phys-
ical environment. Hence, Bluetooth Low Energy (BLE) is one of the most popular wireless network modules
for IoT devices because it can provide a cost-effective and easy-deployment network. As a signal strength
of wireless technology is related to the distance between receiver and transmitter, the BLE modules can be
used to generate the signal fingerprint to estimate their locations. In this paper, it is assumed to attach a
BLE module to each HVAC individually, and then the location of HVACs can be estimated by observing the
signal strength of BLE. We propose a survey mechanism to collect signal propagation. We provide a method
to estimate the location of BLE without visiting every place by analyzing the change in signal strength of
every BLE. Our method requires the floorplan and physical location of HVAC. We request one tester to carry
the smartphone and walk around the building for collecting the signal strength of every BLE. After that our
method generates the candidate list of the BLEs to each physical location. We evaluate our algorithm by
deploying 26 BLEs in an office building. The results show that the average number of matching BLE candi-
dates for each location is 2.17, which is useful to identify BLEs which cannot be identified by network-based
localization.

1. Introduction

Since smart building technologies are becoming more in-

novative, they are expected to provide energy efficiency and

resident comfort simultaneously using information and com-

munication technologies. Such technologies commonly in-

stall HVAC (Heating, Ventilation and Air Conditioning) sys-

tem in buildings. Some system emphasizes the environmen-

tal features such as temperature indoor and outdoor, the

wind flows to control the temperature and energy usage in

each area in the building individually [1], [2], [3], [4]. Al-

though control strategy based on the environment provide

a good result in energy saving, there are some rooms such

as meeting rooms which are not used for the whole day.

For example, there is some research that shows the benefit

of localization of human to power management systems, in

which, energy management systems can manage both en-

ergy consumption and comfort of occupant simultaneously

1 Graduate School of Information Science and Technology, Osaka
University, Osaka, Japan

2 DAIKIN INDUSTRIES, LTD.
a) nat-kit@ist.osaka-u.ac.jp
b) chuanhsin.chen@daikin.co.jp
c) s-kajita@ist.osaka-u.ac.jp
d) h-yamagu@ist.osaka-u.ac.jp
e) higashino@ist.osaka-u.ac.jp

depending on the presence of humans, for example, POEM

[5], Smart Thermostat [6], HitoNavi [7] and the occupancy-

based HVAC system [8].

In order to provide such services, HVAC units and sensors

have wired network modules for connecting themselves to

Network for more efficient management and control. How-

ever, we have to map their network addresses (IDs) with

the physical locations in order to control the HVAC system

precisely, which needs considerable labour cost. Currently,

we perform the mapping procedure manually. For instance,

workers turn on HVAC units one by one at a time, and the

physical address of HVAC unit which is turned on is shown

on the controller screen, then the workers can map the phys-

ical address onto the layout map. In particular, there will

be tens of thousands of HVAC in a large building, thus this

procedure is unrealistic as it is too time-consuming, and it

incurs high labour cost for both configuration and validation

effort. Let us assume the situation in a hotel and an office

building, where they are currently operating, which contain

a numerous number of small rooms where each room has one

or more HVAC units inside. Unfortunately, some rooms may

not be allowed to access due to privacy and administrative

reasons (privileged access policy and/or confidential space),

and the workers may just be allowed to move on only pub-
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lic hallways. Consequently, the workers cannot enter those

privileged areas to identify the location of HVAC units.

In this paper, we propose a semi-automatic position esti-

mation that links network IDs and their physical positions,

which contributes greatly to the reduction of management

cost. We attach the wireless modules, especially BLE, to

be used to the location estimation technology based on ra-

dio field intensity to identify the location of HVAC units.

We assume that we can get the floor plan of building with

the location of HVAC units from the owner or construction

manager, and it has already been analyzed. We send only

one tester carrying a smartphone to collect RSSI (Received

Signal Strength Indicator) of BLEs. In this approach, we

mention on finding the list of BLE IDs which are possible to

be located at each physical location before we apply another

technique to find the best matching between each BLE ID

and physical location. We let the tester walk along given

routes that are calculated from that floor plan information.

Our method emphasizes the RSSI peak of BLE ID during

walking in two directions to estimate the potential list of

HVAC locations which contain a set of the BLE IDs that

are possible to be located on those HVAC locations individ-

ually. We evaluate our method by deploying BLEs in the

actual office building.

2. Related work

2.1 Radio Signal Strength and Its Benefits

Received signal strength indicator (RSSI) is one of the

noticeable characteristics of wireless technologies as they

broadcast the radio signal to communicate with each other

through the air. As the RSSI can show the distance between

the radio transmitter and radio receiver [9], [10], [11], [12],

[13], there are several benefits of RSSI such as RSSI-based in-

door localization. RSSI-based indoor localization leverages

the RSSI to estimate the trajectory of Wi-Fi devices (e.g.

smartphones) in the indoor environment by calculating the

distance between Wi-Fi devices and anchor [9], [10], [11].

The basic method to estimate the location of the Wi-Fi de-

vice is the multilateration mathematical method which relies

on the estimated distance between the Wi-Fi device holder

and at least 3 surrounding APs based on signal propagation

model [9]. However, the RSSI based indoor localization re-

quires a calibration effort such as configuring the location of

each well-known anchor in the building to pursue good ac-

curacy. Hence, there are some research teams who propose

an RSSI survey method to estimate the location of anchors.

They propose that if we collect the RSSI on the known loca-

tions, the anchor locations are able to be identified [10], [11].

specifically, the literature [10] proposes that the relative

location can be obtained by estimating the distance between

anchors to Wi-Fi devices at many locations. They apply an

optimization technique to find the estimated location of a

human without information about the localization of an-

chors. In order to estimate the actual trajectory of human,

they leverage the GPS-fixed locations which are obtained

when a tester walks close to the windows during the calibra-

tion phase.

Since the fluctuation in RSSI of BLE will increase if the

receiver is far from transmitter and receiver [12], [14], we

have to collect the RSSI close to the transmitter for bet-

ter accuracy. However, there are possibilities that a tester

may not have permission to enter some rooms in the case

of reconstruction. Consequently, the existing techniques in

localization of anchors will be unable to apply in this case.

2.2 Pedestrian Dead Reckoning (PDR)

Another popular technique for indoor localization is

Pedestrian Dead Reckoning (PDR), which estimates the tra-

jectory of human by analyzing the number of steps and the

head direction of human who holds the smartphone from its

embedded sensors [15], [16]. However, the location error of

PDR is accumulated because most types of sensors embed-

ded in the smartphone has much noise [15], [16]. Therefore,

a research team proposes a technique to reset a location er-

ror by identifying a landmark in the building [15].

In our proposed method, we avoid the location error by

providing the walking paths to the tester, thus the loca-

tion error will be reset every time we give the path to the

tester. Moreover, our approach does not require the fine-

grained localization of human. Hence we will calculate only

the number of steps which is enough information to roughly

estimate the location of the tester on the given path.

3. Methodology

In the building, HVAC has been used to manage in-

door temperature and indoor air quality for improving liv-

ing quality. To accomplish HVAC management, most tech-

niques need primary information, which is the location of

HVAC components. Currently, HVAC units are equipped

with Ethernet module for connecting to the central network.

The general location identification method requires a worker

to go to HVAC location where that the worker needs to con-

figure, and then to turn on that HVAC unit. After that, the

HVAC unit will connect to the central server, and the worker

can see the network ID. Consequently, the worker can match

that HVAC unit to the location where that worker turned on

the HVAC unit. Next, the worker goes to another location

to turn on another HVAC unit and matches that unit to the

location. The worker repeats the matching procedure until

every HVAC unit is identified.

The performance of this manual manner is ineffective

when a large number of HVAC units are deployed in a large

building due to time-consuming, heavy workload. Thus, we

leverage the advantage of radio signal to perform localization

of HVAC automatically. We will attach a wireless module

such as Bluetooth Low-Energy (BLE) to each HVAC device.

Hence, we can estimate the location of HVAC by analyzing

the wireless information.

3.1 Problem Definition

The localization techniques of radio transmitter have been

proposed so far [10], [11]. Those researches require a worker
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carrying a radio receiver to collect the signal strength around

the building. Those methods require the worker to visit

many spots in a building for improving accuracy. Then they

apply the signal propagation model to estimate the distance

between receiver and transmitter.

However, the RSSI of BLE is more fluctuated when the

BLE receiver is far from the transmitter. As a result, the

worker needs to collect the RSSI at closer location to the

BLE transmitter to improve the performance of BLE local-

ization. For such cases, the HVAC system is deployed in the

reconstruction site or the building which has already been

operated. There are some areas where the tester is prohib-

ited. Consequently, the location of BLEs in those rooms are

inaccurate.

In this paper, we identify the location of HVAC units by

detecting the strongest RSSI location of every BLE on the

walking paths. We assume that the floorplan has already

been identified before performing localization of BLE. As a

result, we know rooms, walkable area, HVAC locations and

prohibited area from the floorplan. According to literature

[17], we match the BLE device IDs to the physical locations

by means of RSSI peak measurement. For such an exam-

ple, when a tester walks passing 3 BLEs as in Fig1a, the

application in the smartphone will perceive the RSSI as Fig

1b. Consequently, we can match the BLE ID “1-1” to lo-

cation L1, “1-2” to location L2 and “1-3” to location L3,

respectively.

L3L2

L1

A B C

(a) Tester walk passing 3 BLEs

1-1
1-2
1-3

RS
SI

Location

A B C

id

(b) RSSI of 3 BLEs

Fig. 1: Location estimation by the order of rssi’s peak

According to Fig2b, we hardly generate the suitable walk-

ing path for every HVAC location because the walkable

paths in the real environment are limited due to furniture

etc. Therefore, we will discuss how we can design a survey

method such as walking path design and a method to collect

RSSI to clearly see the peak order of every BLE in general

buildings.

1-1 1-2 1-3

1-4 1-5

1-6 1-7

1-11

1-8 1-9

1-10 1-12 1-13

(a) Location of BLEs on 1st floor.

2-1 2-2 2-3

2-4 2-5

2-6 2-7

2-11

2-8 2-9

2-10 2-12 2-13

(b) Location of BLEs on 2nd floor.

1-1 1-2 1-3

1-4 1-5

1-6 1-7

1-11

1-8 1-9

1-10 1-12 1-13

AH G F E D C B

(c) Smartphones are placed on 8 locations.

Fig. 2: Location of BLEs Deployeed in This Project.

3.2 Algorithm Design

In order to design an algorithm, we have to know some

behaviour of RSSI when we observe it on the walking path.

We, therefore, placed smartphones on 8 locations as in Fig

2c and had collected the RSSI for 30 seconds. We found

that the RSSI of BLE is not stable, and that the RSSI of

BLE cannot represent the distance between transmitter and

receiver. Specifically, the RSSI of BLE ID “1-2” seems to

be similar to RSSI of BLE ID “1-4” where a smartphone

is placed under BLE ID “1-2” as Fig 3a. Consequently, we
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think that the techniques leveraging the RSSI to estimate

the distance between the transmitter and receiver cannot be

applied directly. Additionally, when we calculate the aver-

age of RSSI on 8 locations, we found that the average RSSI

of BLE located in the same perpendicular alignment of col-

lecting direction have a similar trend as Fig 3b.
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(a) The RSSI of 26 BLEs at Location G in Fig2c

(b) Average RSSI on 8 locations in Fig2c

Fig. 3: RSSI

Since the shape of most buildings is rectangle and the

walkable paths usually belong to both sides of the building,

we suppose when we walk on one side of the building, we

can see the peak of BLE representing on the orthogonal pro-

jection location of BLE location onto the walking path that

belong to that side. Accordingly, if we consider the peak

location in both sides of the building as in Fig 4, we can es-

timate the location of HVAC and we will discuss this topic

in the “2-dimensional localization” section.

In order to acquire RSSI, our method requests the

tester to survey the RSSI of each BLE around the build-

ing by carrying a smartphone with our application. Our

application collects the RSSI values in the format <

li, rssi1,i, rssi2,i, ..., rssin,i > where li is the place the data

are collected using the PDR technique, and rssin,i is the

RSSI from BLE ID n at location li. For estimating the

location where RSSI data is collected, we apply a Roughly-

Controlled PDR from literature [17]. Especially, we give

the walking path including the start and stop positions to a

tester, and thus we can estimate the walking size (meters per

step) and the location of tester for each step of the tester.

Nevertheless, we found the insufficient sample when we

walk continuously on the walking path. Specifically, we de-

ploy 26 BLEs in the first and second floors of the office

building whose size is 18x18 square-meters and set the BLEs

Fig. 4: Concept of 2 dimensional peak order for BLE local-

ization

to broadcast the advertising beacon every 1 second. Our

application cannot receive the beacon every second due to

shadowing and collision problem. Moreover, the RSSI data

for one location will not be reliable due to fluctuation as in

Fig 3a. Therefore, we will ask the tester to stop walking for

collecting RSSI at designed locations. We will describe the

detail in the “Stand and walk Scheme” section.

3.3 Stand and Walk Scheme

Even though we would like to ask the tester to collect

RSSI around the building by walking continuously, the bea-

cons which are received by walking continuously seem to be

inadequate. We guess the number of beacon collision will

increase when we densely deploy more BLE in the building.

Consequently, we consider the average value of RSSI in each

location which is able to represent more stable and reliable

than a single value. Hence, the tester needs to stop walking

at designed locations for some time to collect more beacon

packages for calculating the average RSSI then he/she re-

sumes walking again. It is almost impossible for the tester

to stand on the correct locations when we give numerous lo-

cations for measuring RSSI on the map due to no accurate

indoor localization deployment. For instance, we need to

collect the RSSI for every one meter for seeing the change of

RSSI clearly when the gap between HVACs are close with

each other (about 2-3 meters). After the application gives

the locations for collecting data on the map, the tester has to

go to the exact location and push the location where he/she

is to the application before collecting data. The tester may

misunderstand and make a problem easily, so we apply the

Roughly-Controlled PDR [17] to address this problem.

To apply Roughly-Controlled PDR to the data collection,

we give walking path pj to a tester with start point pj,start

and stop point pj,stop on the smartphone application as

in Fig 5. The tester goes to the start point and pushes

the start button, and our application starts increasing step

count pj,count. After the tester walks pstep steps and stops

walking pstand second for collecting rssi, the tester repeats

“Stand and Walk Scheme” until he/she reaches the end
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point. When the tester reaches the end point, he/she presses

the stop button to finish recording the RSSI on the walk-

ing path pj . After that the application estimates the step

side wstepsize = pj .length/pj,totalcount where pj .length

and pj,totalcount are the total distance of walking path pj

and the number of total steps, respectively. To record the

location where the tester stands to collect RSSI, we define

the location li = (pj , lr,i) as a set of walking path and the

relative distance from start point lr,i = pj,count ∗ wstepsize

at location li.

Map

Suggestion
***************
***************
***************
**********

Fig. 5: Smartphone application.

In reality, the time where the tester spends on our survey

method is depended on how often we need to stand for col-

lecting data and how long we collect the RSSI. Specifically,

the tester may spend more time if tester stands for a long

time to collect the RSSI for every step. However, the RSSI

data will be inefficient if we collect for a short time and we

cannot see the trend of RSSI if we walk more step before

standing to collect the RSSI in the case that HVACs are

installed close with each other. Hence the number of steps

before collecting the RSSI pstep and then the time for col-

lecting RSSI pstand should be varied and we will show the

effect of them in the experimental section.

3.4 2 Dimensional Localization

In this work, we observe the locations of RSSI peak from

every BLE belonging to the 2 sides of the building. For eas-

ily explaining, we define the side of the building which is

longer is the ”horizontal side” and another side is the ”ver-

tical side”. Because our method needs to show the floor

plan and the given walking path, we assume the floorplan

information and the device locations on the floorplan are

already identified. We believe every large building has the

floorplan information. Another fundamental information is

the walkable paths, and we assume the floorplan information

also provides that information. If the floorplan information

does not provide the walkable paths, it can be generated

by some indoor floorplans construction methods [18], [19].

Then we can pick up the possible walking paths pi ∈ Pwalk

with attribute pi.detection ∈ {“horizon′′, “vertical′′} from

the walkable path.

For the large building, the tester may not finish a survey

within one day if the tester performs the “Stand and Walk

Scheme” on every walking path. Therefore we will calcu-

late the capability to estimate the BLE localization for each

Algorithm 1 PathSelection(Pwalk)

Require: The possible walking paths Pwalk.

1: for ∀pi ∈ Pwalk do

2: for ∀sble ∈ Sble do

3: if Fappro(sble, pi) then

4: pi.listble < −pi.listble ∪ sble
5: end if

6: end for

7: end for

8: Cdiscover,h ← ∅
9: Cdiscover,v ← ∅

10: while isReliable(∀idiinIDble) do

11: for ∀pi ∈ Pwalk do

12: if pi.direction = ’horizontal’ then

13: select pi where |Cdiscover,h ∪ pi.listble| is max

14: Cdiscover,h ← Cdiscover,h ∪ pi.listble
15: give pi to tester

16: end if

17: end for

18: for ∀pi ∈ Pwalk do

19: if pi.direction = ’vertical’ then

20: select pi where |Cdiscover,v ∪ pi.listble| is max

21: Cdiscover,h ← Cdiscover,v ∪ pi.listble
22: give pi to tester

23: end if

24: end for

25: end while

walking path and ranking them. After that, we will give the

best set of walking paths to the tester, which cover all the

BLE location. To reduce the number of walking paths that

our method gives to the tester, we calculate the peak of ev-

ery BLE ID and we verify which BLE ID we can trust after

the tester stops at the end point of every given path. Our

method will give the walking path until the peak location of

all BLE IDs is reliable as in algorithm 1.

The algorithm starts from calculating a capable list

pi,blereliable
of BLE of walking path pi where we can per-

ceive reliable RSSI from those BLEs if we collect RSSI for

every path. Specifically, we consider that the RSSI of BLE

is reliable on 2 conditions as in Table 1. In order to assess

walking path pi is appropriate to see the correct peak loca-

tion of RSSI from BLE sble, we assume we obtain the per-

pendicular distance Fdist(sble, pi) between BLE sble and the

walking path pi from the floorplan information. Note that,

there are short walking paths where we cannot draw the per-

pendicular line from every BLE to those walking paths as in

Fig 6. We also know the number Fobst(sble, pi) of obstacles

such as walls and doors between BLE sble and the walking

path pi.

Table 1: The rule to estimate the RSSI of BLE sble which

is collected on the walking path pi is reliable or not
Fdist(sble, pi) Fobst(sble, pi) Fappro(sble, pi)
≤ βa 0 True
≤ βb 1 True

* ≥ 2 False

In Equation 1, we have 3 conditions to consider which
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Fig. 6: Dot lines from BLE locations (dark blue circle) to

walking path (red line) are Perpendicular distance

BLE can be collected reliably. The first condition is that the

perpendicular distance Fdist(sble, pi) from BLE sble to the

walking path pi should be lower than βa (we use βa = 12

maters in this paper). The second condition is that the

perpendicular distance Fdist(sble, pi) from BLE sble to the

walking path pi should be lower than βb (we use 6 maters in

this paper) and the number Fobst(sble, pi) of obstacles be-

tween BLE sble and walking path pi should not be greater

than two obstacles. Otherwise, the RSSI of that BLE loca-

tion is regarded unreliable.

When the capability list for every walking paths has al-

ready been estimated, we give the walking path which has

the highest number of capable BLE to the tester for walking

on the given path. We will repeat to give the walking path

until we see reliable RSSI data for covering every physical

location of BLE as in Fig 7.

Fig 7a and Fig 7b show the walking paths where we re-

quest the tester to collect the RSSI data. Specifically, the

blue circles are locations of BLE, the red arrow lines are

walking paths and the light blue areas are the coverage area

where the RSSI data from every BLE inside this area will

be reliable if the tester walks on the walking path inside this

area. For example, the tester walks on path P3 as in Fig 7a,

we expect the order of RSSI peaks from BLE S4, S2, S3 and

S5 respectively. However, the receiver can widely receive the

beacon from surrounding BLE transmitters. Specifically, we

will see the peak of BLEs S2, S3, S4 and S5 at the begin-

ning of walking path P2 in Fig 7b when the tester walks on

that walking path. As a result, we will involve some invalid

RSSI peak location to the calculation process.

To tackle this problem, we should use the knowledge from

the path selection method. Especially, we use the capable

list pi,blereliable
of BLE of path pi in our location estimation

method. Especially, we will be able to see the RSSI peak

location of BLEs S2, S3, S4 and S5 correctly if the tester

walks on path P3 in Fig 7a and path P1 in Fig 7b. There-

fore, we have to use the RSSI data in those paths to identify

which BLE IDs are located on BLE locations S2, S3, S4 and

S5.

Accordingly, we pick up BLE location sl if BLE location

(a) 4 paths for covering all BLE in horizontal direction

(b) 3 paths for covering all BLE in vertical direction

Fig. 7: Walking path after apply path selection algorithm.

sl is in a capable list of RSSI of horizontal walking path pi

and vertical walking path pj . We analyze the RSSI data

from each BLE ID idk when the tester walks on horizon-

tal walking path pi and vertical walking path pj to find a

RSSI peak from every BLE ID. We define the 2 dimension

peak location lidk,pi,pj
= {xidk,pi

, yidk,pj
} of BLE ID idk on

the horizontal direction xidk,pi
when walking on horizontal

walking path pi and the vertical direction yidk,pj
when walk-

ing on vertical walking path pj . We ignore RSSI data from

some BLE IDs when the average RSSI data from those BLE

IDs are weaker than a threshold δ1 (we use -85dB in this

paper). Then we calculate the distance error dlidk,pi,pj
,sl

be-

tween the 2 dimension peak location lidk,pi,pj
and the BLE

location sl. Then, we apply the threshold δ2 to generate the

potential list idk ∈ Psl of BLE location sl which is BLE ID

idk that will be located at BLE locationn sl. Specifically,

the 2 dimension peak location of BLE ID idk, whose dis-

tance error to BLE location is less than δ2, is possible to

be located at BLE location sl. Finally, we will estimate the

potential list for the rest BLE locations.

4. Experiment

The experiment is conducted in an office building whose

size is 18 x 18 square meters, and we deploy 13 BLEs over

the ceiling on the first floor and another 13 BLEs over the

ceiling on the second floor (26 BLEs as a total). These BLEs
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(a) Plastic box in which a BLE
module is deployed

(b) BLE module inside plastic
box

Fig. 8: Experiment setup

are laid in the plastic boxes individually. We, thus, provided

26 plastic boxes and deployed them close to HVAC units as

in Fig 2a and Fig 2b. In each plastic box, we provided a

power supply for the BLE module.

In order to perform an experiment in “Stand and Walk

scheme”, we have developed an android application to col-

lect the RSSI of BLE. Accomplishing the RSSI collection,

we requested the tester to carry the NEXUS6P and walk on

the given walking path. Note that, the experiment was con-

ducted in an uncontrolled environment, i.e. other members

also did their normal activities during collection.

4.1 Evaluation

In this experiment, we measured the performance of our

algorithm by “precision” and “recall”. Specifically, after we

created the candidate list which was a set of BLE IDs for

each BLE location, we could calculate the true positive TP

which was 1 if there was a true answer in the candidate

list, and 0 otherwise. We also calculated the false positive

FP and the false negative FN . Finally, we calculated the

“precision” and “recall” as in Equation 1.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

4.2 Walking Path Selection

In this section, we discuss the effect of path selection.

First of all, we assume the walking paths have been identi-

fied from the floorplan. There are 20 walking paths on the

first floor and 15 walking paths on the second floor as in the

Figure. After that we applied our path selection method.

we can reduce the number of walking paths which need to

be given to the tester as in Table 2.

Table 2: Walking Distance for Collecting RSSI Before and

After Applying Path Selection

floor
wo Path selection w Path selection

# paths distance(m) # paths distance(m)
1 20 157.5 6 64.5
2 15 137.5 5 48.5

4.3 Performance of Candidate estimation Using

2D Peak Localization

In this section, we discuss the performance of our 2 dimen-

sion localization. We give the selected walking paths to the

tester through our smartphone application. The tester per-

forms the “Stand and Walk Scheme” following the instruc-

tion on the smartphone application. In this experiment, the

tester stopped for 20, 15 and 10 seconds for collecting RSSI

after walking 1 steps, and we measured “precision” and “re-

call” as in Table 3.

Table 3: Performance of Our Algorithm to Generate Candi-

date List by Varying Time to Collect RSSI
parameter

δ2
pstand=10 pstand=15 pstand=20

Precision Recall Precision Recall Precision Recall

1 0.5 0.15 0.29 0.23 0.29 0.23
2 0.36 0.38 0.42 0.42 0.46 0.46
3 0.51 0.77 0.58 0.81 0.53 0.77
4 0.44 0.88 0.5 0.92 0.5 0.92
5 0.34 0.92 0.46 1.0 0.45 0.96
6 0.34 1.0 0.44 1.0 0.35 1.0
7 0.32 1.0 0.32 1.0 0.32 1.0

We found the results from the data collected in 10, 15 and

20 seconds seem to be similar as in Table 3. Although the

data should be reliable if we receive enough beacons, the re-

sults when we collect RSSI for 15 seconds look better than

the data collected in 20 seconds. The reason is the aver-

age value is sensitive to the noise. However, we tried other

methods such as median and mode and the results were the

same. The reason is that the RSSI of BLE was unstable and

we carried one device and stood pstand seconds to collect

RSSI. When we can use median and mode to remove out-

lier, we need to collect sufficient data at the same time. For

example, we need to carry many phones to collect the data

and this method will create burden on the tester.

In our algorithm, there is another parameter such as the

distance interval between collecting location where we need

to adjust. To measure the effect of distance between collect-

ing location, we set the time to stand for collecting RSSI to

20 seconds. Then, we make the three scenarios in which the

tester walks 1,2 and 3 steps before stop to collect RSSI, and

we measure “precision” and “recall” as in Table 4.

Table 4: Performance of Our Algorithm to Generate Candi-

date List by Varying the Number of Steps Before Standing

to Collect RSSI
parameter

δ2
pstep=1 pstep=2 pstep=3

Precision Recall Precision Recall Precision Recall

1 0.29 0.23 0.31 0.35 0.22 0.38
2 0.46 0.46 0.31 0.62 0.18 0.65
3 0.53 0.77 0.32 0.88 0.21 0.92
4 0.50 0.92 0.26 0.96 0.20 1.0
5 0.45 0.96 0.16 0.96 0.12 1.0
6 0.35 1.0 0.15 1.0 0.10 1.0
7 0.32 1.0 0.13 1.0 0.10 1.0

In this experiment, the tester spent around 40,20 and 13

minutes for collecting the RSSI on the first floor, and spent

around 30, 15 and 10 minutes for collecting the RSSI on the
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second floor when the tester stopped 20 seconds after walked

1,2 and 3 steps respectively. We can see that the recalls in

Table 4 are very low when we increase a gap between col-

lecting location as increasing the walking step pstep. The

reason is when the tester increases walking step pstep, that

tester will miss collecting RSSI at the peak location. Conse-

quently, it makes the error of estimated peak location longer

than the collected data by using pstep = 1. As a result, the

peak location of many BLE IDs will be projected to be at

the same location.

In summary, when we increase parameter δ2, the recalls

increase while the precisions decrease as in Table 3 and Ta-

ble 4. According to Table 3, if we consider every true answer

is contained in candidate lists, the best false negative is 0.46.

It means if our algorithm returns the candidate lists all of

which contain the true answers, the average size of candidate

list will be 2.17.

5. Conclusion

In this paper, we have presented the semi-automatic BLE

localization. Our algorithm can reduce the walking area and

can estimate the location of every BLE without entering ev-

ery location in the building. The result of our algorithm is

a set of BLEs which are suitable to be located on each BLE

location. We evaluate our algorithm by deploying BLE in

the office building.

In the future, We will design a one-to-one matching pro-

cedure, and we also need to apply our algorithm to another

building. In particular, we will collect the data on another

setting such as sparse deployment to prove our approach can

be performed in any environment.
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