FeEN_—AY AT A 104—13

(1995. 7. 18)

A7V 7 b BFIEERICE S SBRFIXA Y XBY F=IN—A
C2FhEF—IR—2ATT/T 37 EEMAPPLE

LY, BRI, 02 MBS
imasaki@csce.kyushu-u.ac.jp
T 812-81 JUNKF LEEF#R TFH

BH AL E2—FDEALAET) 72K EANDCPUIZLT NF— I DERBLEICHTFEI LS
Z L BAREL DAL Y ATY F—F R—ZX Y X7, (MMDBS) {ZEL TV 5. Zhizko
T, BEEFI R TF 7 L a VUEATREL 2. ORI TIINEAE JyFarea—s Lk
DEBFIAA{ Y AEY AT V27 MEETF —F R—2EHL X7 L MAPPLE/DB izonWT
#~5 . BHz, MAPPLE/DB (/e F—F R—2A5EF - #FS53E MAPPLE 2oV Tk
K32 . Xz MAPPLE/DB ®87 ¥ =2 ¥ 2% 001 RV F3—7 2AWTFRT.

Massively Parallel Main Memory Database System
based on Object-Prallelism and Database
Programming Language MAPPLE

Kenji Imasaki, Tsuyoshi Ono, and Akifumi Makinouchi

Department of Computer Science and Communication Engineering,

, Kyushu University
Makinouchi Lab. Department of Computer Science and Communication
Engineering, Faculty of Engineering, 812-81, Japan.

The massive main memory and a large number of CPUs of parallel computers are thought
to be suitable for memory resident database systems(MMDBSs) since the whole data can be
stored in main physical memory and high-speed parallel transaction processing is possible.
This paper presents the design of MAPPLE/DB, a massively parallel, main memory object-
oriented database management system on multicomputers. First, MAPPLE, the database
programming language for MAPPLE/DB as database definition and manipulation is intro-
duced. Next, the performance of MAPPLE/DB using OO1 Benchmark is shown in terms
of its scalability. ‘ .

1 Introduction

MAPPLE/DB is a massively parallel, main
memory object-oriented DBMS that is under
development. The first prototype of MAP-
PLE/DB aims at massively shared nothing
parallel multicomputers such as Fujitsu AP-
1000. MAPPLE/DB supports MAPPLE[AI94],
a MAssively object-Parallel Programming Lan-
guagE which enhances C++ for parallel process-
ing as its object definition and manipulation lan-
guage.

MAPPLE is designed to be used for writ-
ing data-intensive applications such as CAE,
CAM, and CAM. Data-parallel programming
languages [HQ91] in which arrays are a basic
unit of parallel execution, are stuck with some
limitations[AI94] for such applications.

MAPPLE adopts object-parallelism{GL91],
which is enhancement of the data-parallelism.
MAPPLE allows users to process arbitrary ag-
gregates in parallel, to allocate objects dynam-
ically to processors at run time and to handle
the fluctuation of the number of data. These
features make MAPPLE well-suited for data-
intensive applications including database manip-
ulation.

MAPPLE supports object persistence that
most of the current OODBMSs do. However,
'persistence’ for MAPPLE/DB differs from the
one for ordinary disk-based database systems, in
that persistent objects in MAPPLE/DB resides
primarily in main memory. However, they are
similar in that they are alive after the programs
creating the objects, are terminated.

To support such persistent objects in MAP-
PLE/DB, persistent heaps are used. Any object
created in a persistent heap becomes persistent
and survives the termination of programs creat-
ing them. In addition, the persistent heap sup-
ports logging of the objects’ modification and
recovering them when they are lost.

The goal of MAPPLE/DB is to exploit the
available resources of multicomputers: massive
main memory(GByte order all together), a large
number of CPUs and parallel accessible disks if
any.

With massive main memory it becomes fea-
sible to store entire databases in main mem-

ory, making MMDBSs a reality. Actually, some
MMDBSs are aware of the impact of the massive
main memory in parallel multicomputers{?][?].
In those systems, MMDBSs can provide much
better response time and transaction through-
put because data can be accessed directly in
memory compared to conventional disk residen-
tial databases and a large number of CPUs en-
able user to process normal DB operations in
a parallel manner and to get much better re-
sponse time and transaction throughput. Al-
though MAPPLE/DB is a MMDBS which needs
no I/O operation for normal processing of DB
operations, I/O operations are necessary for log-
ging and checkpointing to guarantee the recover-
bility of persistent heaps. Parallel accessible
disks might be useful for such I/O operations.

This paper focuses on the performance scala-
bility of normal DB operations for data-intensive
applications such as CAD/CAM. We imple-
mented an engineering database benchmark pro-
grams using MAPPLE and measured the perfor-
mance on a Fujitsu AP1000 parallel computer.

This paper is organized as follows. The next
section briefly introduces the 64-node parallel
shared nothing multicomputer Fujitsu AP1000,
and MAPPLE that is used as database definition
and manipulation language in MAPPLE/DB.
Section 3 describes the performance of MAP-
PLE/DB with O01(Object Operation Version
1) Benchmark[{CS92]. Finally, we sum up with
the conclusion in section 4.

2 Hardware and Software Support

MAPPLE/DB is implemented on a parallel
shared nothing multicomputer Fujitsu AP1000.
This section summarizes its features and then
introduces the database language MAPPLE.

2.1 The Architecture of AP1000

AP1000 is a highly parallel MIMD computer
with distributed memory. It consists of 16
to 1024 processing elements(SPARC 25MHz),
called cells, connected by three independent net-
works called T-Net, B-Net and S-Net. The host
controls the flow of execution and the 1/0 oper-
ations.

AP1000 is equipped with a low-level software
library which allows users to explicitly commu-
nicate and synchronize between processors.

2.2 MAPPLE

MAPPLE is a massively object-parallel pro-
gramming language based on C++. C++ was
chosen to base MAPPLE. In MAPPLE pro-
grams, objects to be processed are retrieved from
’containers’ (i.e., databases). Containers may
have different structures depending on the ac-
cess patterns of applications. Since MAPPLE
is based on C++, it allows users to implement
their containers as 'set object’ of C4++. This
makes it possible to tune the applications.

2.2.1 Object-Parallelism

Object-parallelism{GL91] is an extension of the
data-parallel approach. In the object-parallel
approach, users define objects which have data
structures and methods. Then, those objects
are allocated to PEs by the system. The
same kind of methods are applied to each
object in parallel. Each processor executes
the method asynchronously until termination of
each method. Figure 1 illustrates the object-
parallelism in MAPPLE. In this approach, the so
called frontend-backend configuration, in which
the monitor would run on a frontend machine
and the actual data management would be done
in the backend, is adopted.

2.2.2 Categories of objects

In MAPPLE, objects are classified into two cat-
egories: set objects and atomic objects. Set ob-
jects are collections of objects and have inter-
faces for set operations such as new, insert and
delete functions, and objects other than set ob-
Jjects are atomic. Users can implement set ob-
jects using list, array, hash table and so forth
for their needs. In addition, we call objects con-
tained in a set object Element objects which can
be either set objects or atomic objects.

Each object, either set or atomic, is allocated
in a PE. If the object is a set object, all elements
of it must be allocated in the same PE where the
set object is allocated.

HOST E/",_“,\ \{
A(r] Pofr | T

2 [T
\\u:"\\o ":' m
T

Figure 1: Execution of a method m; in MAPPLE

To manage objects distributed in different
PEs, Union objects are introduced for the man-
agement. A union object is a kind of set objects
but differs from set objects in that it contains
objects allocated in different PEs. In addition,
elements of a union object must have same type
and only one object in a PE can participate in
the union object. A union object allows users to
execute distributed methods of a same type on
its all element objects distributed on all PEs in
parallel. Figure 2 illustrates various objects in
MAPPLE.

In addition to those categories, remote objects
and local objects are distinguished in MAPPLE.
Remote objects are those which may be refer-
enced by another PE while local objects are
those which are referenced locally; the local ob-
jects are normal objects in C++. Elements of
a unjon object must be global objects. They
are usually set objects. Element objects of the
set are usually local objects which are referenced
only through the set object. However, the ele-
ments may be global, if applications need it.

2.2.3 Object IDentifier(OID)

In MAPPLE, each global object is identified by
its OID which is the pair of ORT entry number
which we explain later and its PE number. Lo-
cal objects are referenced locally by their local

Figure 2: An illustration of various objects in
MAPPLE

addresses.

2.2.4 Volatile Heap Management Ob-
jects(VHMOs)
and Persistent Heap Management
Objects(PHMOs)

VHMOs and PHMOs are system objects which
manage a heap area in which objects are created
on a PE. They have a same structure as shown
in Figure 3. The difference between the two is
that PHMO has persistence, which will be dis-
cussed later. Their common functions are the
followings.

o Creating and deleting objects on its own
heap area

o Receiving a message and unpacking it to get
method names, arguments and OIDs

o Invoking the methods of the designated ob-
jects which a PHMO or a VHMO recognizes

In the case of a two-dimensional multicom-
puter as its target machine, users declare an ar-
ray of PHMOs with a statement of the form:
PHMO Phmo(8,8). PHMOs are created on PEs
and OIDs of PHMOs are returned to Phmo on

Heap Object
EEEENENEREN

- Element Oblect
NN

Figure 3: A Persistent Heap Management Ob-
ject on a PE

the host processor. The two arguments define
the size of PHMOs to be 8 by 8 on a multicom-
puter. Since a PHMO manages all objects on
its own heap area, the PHMO must be created
before the parallel portion of the main program
is executed.

A PHMO has additional functionalities that a
VHMO doesn’t have. They are;

e It is checkpointed at certain intervals. The
modified pages are dumped out into backup
files stored in disks.

o Logs are recorded whenever the data in the
heap are modified.

e Data are loaded into the heap from the
backup files after the data is lost because
of some kinds of system failure.

To assure the addressability of the recovered
data, the persistent heap area in each PE has
a fixed beginning address and a fixed size. In
the current design, a PE has only one persistent
area. The address and size are determined by
users when MAPPLE/DB is initialized. By this
feature, addressing in a persistent heap is same
as in a volatile heap managed by a VHMO, al-
though some overhead for logging is expected
when data are modified. Note that in the fol-
lowing performance measurement, this overhead
is ignored, since logging is not yet implemented.
However, only insertion test is affected by this

—100—

kind of overhead, and we think that the result
of the test is valid in terms of performance scal-
ability.

2.2.5 Union Objects

A union object manages distributed objects as
a group. When users create a union object, an
object (atomic or set) is created on each PE and
the union object holds their global OIDs by re-
ceiving messages from each PE. To get the ref-
erence(global OID) to an object managed by a
unjon object, a union object offers the method
ref(int i) which returns the reference(global
OID) to the object on PE;. See Figure 4.

HOST PEo PEy

union

pE, UNION pg,

1 1
nEESEN LITTITY

Figure 4: Union Object

2.2.6 Parallel Execution of Methods

Fujitsu AP1000 is equipped with high speed net-
works to broadcast messages. MAPPLE uses
these broadcast networks for communication
among processors based on object-parallelism.

In MAPPLE, users can execute a method of
objects (set objects or atomic objects) in a union
object. They can also execute a method of ele-
ment objects in the set objects contained in the
union object. In the latter case, a union object
can be viewed as a big container stuffed with
objects to be processed simultaneously.

To apply a method to objects in parallel,
MAPPLE offers for all statement. For all
statement has the following syntax:

for all [type temp-val 1t in union do {
[temp-val. method() ;1%

o type: Type of objects executing a
method simultaneously

o temp-val: Temporary variable which indi-
cates objects

e union: Pointer to a union object

o method: Name of the method executed in

parallel

An example of for all statement is found in
section 3.3.1.

3 Performance Evaluation Using OO1
Benchmark

001 Benchmark{GS92] is the benchmark for en-
gineering DB applications. Because of its sim-
plicity, 001 has became one of standards for
OODB benchmarking.

3.1 An Overview

The database of 001 Benchmark consists of
part objects and connections between them.
Each part has five data fields: a part id, a type,
an (x,y) coordinate pair, and a build date. Each
part has exactly three out-going(“to”) connec-
tions to other parts plus a variable number of
incoming(“from”) connections, and each connec-
tion has a type and a length. For locality in the
object graph, OO1 parts are logically ordered
by part id, and the “to” connections for each
part are chosen so that each connection has a
90% chance of referencing a “nearby” part. The
001 definition of “nearby” part is one within
1% of the part id space.

There are three 001 Benchmark operations.
The first is a part “lookup” operation, which
looks up 1,000 random parts by their part ids.
The second is an object graph “traverse” op-
eration, which accesses 3,280 connected parts
by selecting a random part and then perform-
ing a seven-level depth-first traverse(with multi-
ple visits allowed) of the parts. The third 001
Benchmark operation is an insert operation that
adds 100 new parts to the database.

—101—

3.2 Distribution of objects

To store the entire part data, a persistent union
object is defined. The union is a collection of the
set objects each of which is created in the persis-
tent heap of each PE. Part objects are allocated
in the set objects distributed in all PEs. Since
most of the references are to “nearby” parts, the
block distribution is more reasonable than any
other data distribution strategies such as inter-
lieve or random. According to the block dis-
tribution strategy, each set in a PE has parts
which have consecutive part ids. The following
code generates part objects and distributes them
over PEs.

P_Union<Part_t>x*
p-union = new P_UNION<Part_t>;
for(int i=0;i<MAX;i++)
p-new(p_union->ref(i ¥ PE)) Part_t();

where P_UNION is persistent union class and to
insert objects into the object belonging to the
class, users have to write p_new method.

3.3 Operations

3.3.1 Lookup

Parallel lookup operation is implemented as the
following: First, the random part ids to be
retrieved are generated at the host processor.
Then, they are broadcasted as a lookup method
argument in a packed form. Next, each PE(i.e.,
each set in each PE) receives it and invokes the
lookup method. Since each PE knows the range
of part ids of the parts stored in the PE, it dis-
cards uninteresting part ids. The method looks
up the corresponding parts and inserts them into
a result union object. Figure 5 describes the
lookup operations.

Array_t ids; target ids
Union<Result_t> result_union;
for all Part_t p in p_union do
p-lookup(result_union,ids);

Note that the result are stored in a volatile union
object since the result is temporal.

PE+

Figure 5: 001 Lookup Operation

3.3.2 Traverse

The most difficult one of the three operations is
traverse since the parts are distributed among
PEs and traverse has to go across them. Imple-
menting the operation, we had two choices on
how to hold references to a part on another PE :
part id or global OID. Using the former is rather
a RDB style where value matching plays an im-
portant role, while the latter is a OODB style
where traversing by pointers is used. Here, we
adopted the former as a preliminary implemen-
tation.

The method of traverse on a PE is imple-
mented as follows(Figure 7).

1. Getting part id to be traversed

2. performing -a seven-level = breadth-
first search(although this may be different
from the definition of the operation which
is to perform depth-first search, we think

- the result is same except for the order.)

3. Having met the remote part id, the method
inserts the part id and the current depth
into a External Traverse(ET) set.

4. these steps are iterated until the method
reaches at the certain number(in this case
7) of depth.

The ET set is implemented: by a volatile union
set which is shared among PEs. Having finished

—102—

the steps above, each processor broadcast its ET
Set elements(Figure 7). Then, each PE receives
corresponding ET Set elements and starts tra-
verse again using each element. That iteration
terminates when the ET set becomes empty.

T ~ :
| \ PEi
| |
! I
|
| ? |
l |
l [
| S —— ET_Set
Part_Set N
1
)
\ID.Deptty

Figure 6: 001 Traverse Operation-(1)

Figure 7: 001 Traverse Operation-(2)

3.3.3 Insert

Parallel insert operation is almost same as the
parallel lookup operation except the arguments
of the insert method is not only part id but also
the entire arguments of the constructor.

3.4 Performance

Figure 8 illustrates the performance scalability
of the lookup operation on AP1000 when look-
ing up 1000 parts out of 10,000 and 20,000 parts.
The shown speedup is almost liner with the num-
ber of used PEs since there is almost no commu-
nication among the PEs.

001 Benchmark(Lookup)

64 -
10000 ~+—
20000 —+—
32
16 |
3
3 8
&
4
2
; .
1 2 4 8 16 32 64

Processors

Figure 8: The speedup of 001 lookup operation

001 Benchmark(Traversal)

10000 ——
20000 —

16 } /\
5
?-;- 8

1 2 4 8 16 32 64
Processors

Figure 9: The speedup of O0O1 Traverse opera-
tion

Figure 9 illustrates the performance scalabil-
ity on AP1000 of the traverse operation. When
the number of used PEs becomes greater than
40, the performance degrades because of the
broadcast effects: as the number of PEs in-
creases, the number of messages also increases;
Since every part has three connections and 1
percent of them are remote references, the total

—103—

number of the messages sent among the involved
PEs is (the number of part objects)*3*0.01*(the
number of PEs). This is the reason why no more
improvement is expected over 40 PEs.

Figure 10 illustrates the performance scalabil-
ity on AP1000 of insert operation when insert-
ing 100 parts. The speedup is almost liner with
the number of PEs used since there is almost no
communication among the PEs.

001 Banchmark(Insert)
64 T 4 T r .
10000 1
2 ——
32}
16 |
a
3
3 8
o
%)
4t
2F
3 s
1 2 4 8 16 32 64

Processors

Figure 10: The speedup of 001 Insert operation

4 Conclusions and Future Research

In this paper, we have discussed the design
and implementation of the database language
MAPPLE for a massively parallel main memory
database system, MAPPLE/DB. The design of
the system can be characterized by the two main
ideas: use of parallelism and main memory data
storage to provide high performance in transac-
tion processing.

Using MAPPLE, 001 Benchmark DB was
built and the performance is shown. For both
lookup and insert operation, where no commu-
nication among objects exists, the performance
is almost ideal. For traverse operation, which
perplex communication exists, the performance
is dropped at a certain point. Qur intention of
the design of MAPPLE is to use broadcast mak-
ing the most use of high speed broadcasting net-
work of AP1000. However, as an alternative, it
might be needed to include one-to-one commu-
nication among objects to improve performance

in MAPPLE using its global OID. We leave this
approach as a future work.

Currently, the second version of MAP-
PLE/DB is being implemented. The version will
include the logging facility for crash recovery and
transaction management.When it is completed,
007 Benchmark will be a interesting benchmark
for MAPPLE/DB.

References

H. Amano, K. Imasaki, K. Fukumi,
A. Makinouchi: Design Policy and
Preliminary Ezperiments of Object-
Parallel Programming Language IN-
ADA/MPP, Proc. of the 4th Sym-
posium on Massively Parallel Pro-
cessing, Sopnsored by Grant-in-Aid
for Scientific Research on Priority
Areas, pp.2-214-2-220, Mar. 1994(in
Japanese).

[AI94]

[GL91] Gannon, D. and Lee, J. K.: Object
Oriented Parallelism : pC++ Ideas
and Ezperiments, Proc. of 1991 Joint
Symposium on Parallel Processing,

pp.13-23, 1991.

[HQ91] Hatcher,P.J. and Quinn,M.J.: Data-
Parallel Programming on MIMD
Computers, The MIT Press, pp.171-

176, 1991.

R. G. CATTELL and J. SKEEN:
Object Operations Benchmark, ACM
Transactions on Database Systems,
Vol.17, No.1, Pages 1-31, Mar. 1992.

[CS92]

[GS92] Hector Garcia-Molina, and Kenneth
Salem:Main Memory Database Sys-
tems:An Querview, IEEE Tansactions
on Knowledge and Data Engineer-
ing, Vol.4, No.6, pp.509—pp.516, Dec.

1992.

—104—

