
IPSJ Transactions on Mathematical Modeling and Its Applications Vol.12 No.3 78–88 (Dec. 2019)

Regular Paper

Enumeration of Maximally Frequent Ordered Tree
Patterns with Height-constrained Variables for Trees

Yusuke Suzuki1,a) TetsuhiroMiyahara1,b) Takayoshi Shoudai2,c)

Tomoyuki Uchida1,d) SatoshiMatsumoto3,e) Tetsuji Kuboyama4,f)

Received: October 29, 2018, Revised: January 8, 2019/July 11, 2019,
Accepted: August 30, 2019

Abstract: We propose height-constrained ordered tag tree patterns for representing characteristic tree structured fea-
tures of structured data which are represented by rooted trees with ordered children. Height-constrained ordered tag
tree patterns are ordered tree patterns having height-constrained structured variables, wildcards, tags and keywords as
edge labels. For two positive integers i and j (i ≤ j), an (i, j)-height-constrained structured variable can be replaced
with any rooted ordered tree whose trunk length is at least i and whose height is at most j. A height-constrained
variable can represent the distance between subtree patterns connected by the variable as one of tree structured fea-
tures. On the other hand, a variable without height constraint can be replaced with any rooted ordered tree. A variable
without height constraint can represent the connectedness but not the distance between subtree patterns. In this sense,
ordered tree patterns with height-constrained variables are more accurate tree structured features than ordered tree
patterns having variables without height constraint. In this paper, first, we state that it is hard to compute an optimum
frequent height-constrained ordered tag tree pattern. Then, we present an algorithm for enumerating all maximally
frequent height-constrained ordered tag tree patterns. Finally, we report experimental results showing the effectiveness
of the proposed model of characteristic tree structured features, maximally frequent height-constrained ordered tag tree
patterns, compared with the previous model of maximally frequent ordered tag tree patterns without height constraint.

Keywords: ordered tree pattern, height-constrained variable, enumeration, tree structured feature, maximal frequency

1. Introduction

The modeling of characteristic tree structured features com-
mon to given tree structured data has been more and more im-
portant, as the amount of tree structured data has increased. In
this paper, we present a new refined model for representing char-
acteristic tree structured features and a discovery method of such
characteristic features. We consider models of characteristic tree
structured features in two aspects, i.e., expressive power of tree
structured patterns and desired characteristics that the tree struc-
tured patterns must have.

Tree structured data which we consider in this paper are
semistructured data whose structures are modeled by rooted trees
with ordered children, based on Object Exchange Model [1].
Many tree structured data such as glycan data with respect to a

1 Graduate School of Information Sciences, Hiroshima City University,
Hiroshima 731–3194, Japan

2 Faculty of Contemporary Business, Kyushu International University,
Kitakyushu, Fukuoka 805–8512, Japan

3 Faculty of Science, Tokai University, Hiratsuka, Kanagawa 259–1292,
Japan

4 Computer Centre, Gakushuin University, Toshima, Tokyo 171–8588,
Japan

a) y-suzuki@hiroshima-cu.ac.jp
b) miyares19@hiroshima-cu.ac.jp
c) shoudai@cb.kiu.ac.jp
d) uchida@hiroshima-cu.ac.jp
e) matsumoto@tsc.u-tokai.ac.jp
f) ori-mps19@tk.cc.gakushuin.ac.jp

specific phenomenon and the XML format of DBLP database are
known to have height constraint, i.e., the height of such tree struc-
tured data is partially bounded by a constant induced from the
property of the data.

Therefore, in this paper, in order to formalize tree structured
features concerning expressive power of tree structured patterns,
we propose height-constrained ordered tag tree patterns (or sim-
ply HC-tag tree patterns), which are ordered tree patterns hav-
ing height-constrained structured variables, wildcards, tags and
keywords as edge labels. A height-constrained structured vari-
able [12] can be replaced with an arbitrary rooted ordered tree
satisfying height constraint, but a structured variable satisfying no
height constraint [9] can be replaced with an arbitrary rooted or-
dered tree satisfying no height constraint. An HC-tag tree pattern
or an ordered tag tree pattern without height constraint matches
the whole structure of a tree, although many other work such
as [2] uses subtree structures as tree structured features. For two
positive integers i, j (i ≤ j), an (i, j)-height-constrained variable

(or simply an HC-variable) can be replaced with any tree such
that the length of the path (called the trunk length of the tree)
corresponding to the variable (See Section 2) is at least i and the
height of the tree is at most j. A height-constrained variable can
represent the distance between subtree patterns connected by the
variable as one of tree structured features. On the other hand, a
variable without height constraint can be replaced with any rooted
ordered tree. A variable without height constraint can represent

c© 2019 Information Processing Society of Japan 78

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.12 No.3 78–88 (Dec. 2019)

the connectedness but not the distance between subtree patterns.
A wildcard for edge labels of an HC-tag tree pattern matches any
edge label of a tree. A tag (resp. a keyword) as an edge label of an
HC-tag tree pattern matches the same edge label as the tag (resp.
an edge label containing the keyword as a substring) of a tree. An
HC-tag tree pattern t is said to match a tree T if T can be obtained
from t by replacing variables of t with appropriate trees satisfying
the above height constraint and replacing wildcards and keywords
with appropriate matched strings. Thus HC-tag tree patterns are
more accurate tree structured features than ordered tag tree pat-
terns without height constraint.

For example in Fig. 1, we consider an HC-tag tree pattern t

and its corresponding ordered tag tree pattern t′ without height
constraint. The pattern t′ is obtained from t by converting the
HC-variables of t to the variables without height constraint. Fig-
ure 1 shows that the expressive power, i.e., the set of all matched
trees, of t is strictly smaller than that of t′.

The maximal frequency of tree structured patterns is shown to
be effective as the desired characteristic that the tree structured
patterns must have [9]. In this paper, as a discovery method of a
new refined model for representing characteristic tree structured
features, we give a method for enumerating all maximally fre-
quent HC-tag tree patterns. An HC-tag tree pattern t is said to
be σ-frequent w.r.t. a set D of trees, if the ratio of the trees that
are matched by t in D is larger than or equal to a user-specified
threshold ratio σ (a real number σ with 0 < σ ≤ 1). An HC-tag
tree pattern t is said to be maximally σ-frequent w.r.t. a set D of
trees, if t is σ-frequent w.r.t.D and any HC-tag tree pattern more
specific than t w.r.t. the substitution operation is not σ-frequent
w.r.t.D.

For example in Fig. 2, we consider finding one of the maxi-
mally 0.75-frequent HC-tag tree patterns that match at least three
trees in {T1, T2,T3, T4}. The HC-tag tree pattern t0 matches all
trees in {T1, T2, T3,T4}. However t0 matches all trees whose
height is at most 6, so t0 is an overgeneralized and meaningless
pattern. In comparison, the HC-tag tree pattern t1 is one of the
maximally 0.75-frequent HC-tag tree patterns that match three
trees T1,T2 and T3 but not T4. The ordered tag tree pattern t2,
which is an ordered tree pattern without height constraint con-
sidered in our previous work [9], is one of the maximally 0.75-
frequent ordered tag tree patterns that match three trees T1, T2

and T3 but not T4. However the HC-tag tree pattern t1 is far more
specific than the ordered tag tree pattern t2 without height con-
straint, as Fig. 2 shows that t2 matches T5 and t1 does not match
T5.

In this paper, first we give a hardness result of computing an
optimum HC-tag tree pattern. The problem, called Maximally
Frequent Height-Constrained Ordered Tag Tree Pattern of
Maximum Tree-Size, is to find a maximally frequent HC-tag
tree pattern with maximum number of vertices. In Theorem 1,
we state that this problem is NP-complete. This indicates that it
is hard to find an optimum HC-tag tree pattern representing given
data. Since meaningless tree patterns are excluded and all pos-
sible meaningful tree patterns are not missed, we consider the
problem, called All Maximally Frequent Height-Constrained
Ordered Tag Tree Patterns (MFHCOTTP), of enumerating all

Fig. 1 An HC-tag tree pattern t and its corresponding ordered tag tree pat-
tern t′ without height constraint. Trees T1,T2,T3,T4 and T5. A vari-
able is represented by a box with lines to its elements. A box with
a notation (i, j) inside shows an (i, j)-HC-variable. A box without a
notation (i, j) inside shows a variable without height constraint. The
label near an edge represents the edge label of the edge. The edge
label “?” of t and t′ is a wildcard for edge labels. The edge labels “a”
and “c” are tags. Variables of tag tree patterns are replaced with sub-
trees enclosed by broken lines. The pattern t matches T1,T2 and T3

but does not match T4 and T5. The pattern t′ matches T1,T2,T3,T4

and T5.

maximally frequent HC-tag tree patterns. We present an algo-
rithm, called Gen-MFHCOTTP, for solving MFHCOTTP, i.e., an
algorithm for enumerating maximally frequent HC-tag tree pat-
terns, and show the correctness and the computational complexity
of the algorithm.

Finally, we report comparative experimental results of the
proposed algorithm Gen-MFHCOTTP that enumerates all max-
imally frequent HC-tag tree patterns and the previous algorithm
Gen-MFOTTP [9] that enumerates all maximally frequent or-
dered tag tree patterns without height constraint. The experi-
mental results show that maximally frequent HC-tag tree patterns
have more characteristic tree structures than maximally frequent
ordered tag tree patterns without height constraint.

We discuss related work. Our HC-tag tree patterns are different
from tree structured patterns in related research [2], [3], [4], [5],
[15], [16], in that our tree patterns have HC-variables that can be
replaced with arbitrary trees having height constraint, and match
the whole structure of a tree instead of a subtree structure. In our
previous work [8], [10], we considered maximally frequent tree

c© 2019 Information Processing Society of Japan 79

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.12 No.3 78–88 (Dec. 2019)

Fig. 2 Trees T1, . . . , T5, f1, f2, g1, g2 and g3. The HC-tag tree pattern t0 matches trees T1, T2, T3 and
T4. The HC-tag tree pattern t1 is one of the maximally 0.75-frequent HC-tag tree patterns that
match trees T1,T2,T3 but not T4. The HC-tag tree pattern t1 is maximally 0.75-frequent w.r.t.
D = {T1,T2,T3,T4}. The ordered tag tree pattern t2 without height constraint is treated in our
previous work [9].

patterns with unordered children and contractible variables, all of
which are different from HC-tag tree patterns. In Ref. [12], we
considered finding a minimally generalized height-constrained
ordered term tree pattern, i.e., a least generalized tree pattern of
frequency 1.0, from tree structured data with at least two edge
labels. In Ref. [12], also we gave an efficient pattern matching
algorithm for height-constrained ordered term tree patterns, the
extended algorithm of which we use in this paper for calculating
the matching relation of HC-tag tree patterns and trees.

This paper is organized as follows. In Section 2, we intro-
duce HC-tag tree patterns and give a hardness result of comput-
ing an optimum HC-tag tree pattern. In Section 3, we give an
algorithm for enumerating all maximally frequent HC-tag tree
patterns and show its correctness and computational complexity.
In Section 4, we report experimental results showing the effec-
tiveness of the proposed model of characteristic tree structured
features, i.e., maximally frequent HC-tag tree patterns, compared
with the previous model [9]. In Section 5, we conclude this pa-
per. This paper is a complete version of our previous results on
HC-tag tree patterns [13], and we present the full descriptions of
an improved algorithm, full proofs and comparative experimental
results showing the effectiveness of maximally frequent HC-tag
tree patterns.

2. Height-Constrained Ordered Tag Tree Pat-
tern

We explain height-constrained ordered tag tree patterns as tree

structured patterns. Let Λ be a set of infinitely or finitely many
words. In this paper, a tree means a rooted tree with ordered chil-
dren such that each edge is labeled with an element in Λ. Let X

be an infinite alphabet. We assume that Λ ∩ X = ∅. For a set S ,
the number of elements in S is denoted by |S |.

Definition 1 (Wildcard, keyword and tag) Let “?” be a
special symbol, called a wildcard, such that “?” � Λ holds. Let
Λ{?} be a subset of Λ. The symbol “?” is a wildcard for any word
in Λ{?}. Let ΛTag be a subset of Λ. Let ΛKW be a set of infinitely
or finitely many words of the form “/k/” for words k in Λ, where
we assume that “/” � Λ holds. We call a word in ΛTag a tag and
a word in ΛKW a keyword. For a keyword /k/ ∈ ΛKW , we define
the set Λ{/k/} = {w ∈ Λ | k is a substring of w}.

Let T = (VT , ET) be a tree that has a set VT of vertices and a
set ET of edges. For a tree T , V(T) and E(T) denote the vertex set
and the edge set of T , respectively. For a tree T and its vertices
v and w, a path from v to w is a sequence v = v1, v2, . . . , vn = w
of distinct vertices of T such that for any k with 1 ≤ k < n, there
exists an edge consisting of vk and vk+1. The integer n−1 is called
the length of the path v1, v2, . . . , vn. If there is an edge consisting
of u and u′ such that u lies on the path from the root to u′, then
u is said to be the parent of u′ and u′ is a child of u. A notation
(u, u′) denotes the edge such that u is the parent of u′.

Definition 2 (Height-constrained variable label) Let XH

be an infinite subset of X. An element of XH is called a height-

constrained variable label (or simply an HC-variable label). For
two positive integers i, j (i ≤ j), let XH(i, j) be an infinite sub-

c© 2019 Information Processing Society of Japan 80

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.12 No.3 78–88 (Dec. 2019)

set of XH such that XH =
⋃

1≤i≤ j XH(i, j) and for (i, j) � (i′, j′)
XH(i, j) ∩ XH(i′ , j′) = ∅ hold.

Definition 3 (Height-constrained ordered tag tree pattern)
Let T = (VT , ET) be a tree which has a set VT of ver-
tices and a set ET of edges with an edge labeling func-
tion μT : ET → {“?”} ∪ ΛTag ∪ ΛKW ∪ XH . Let
Et = {e ∈ ET | μT (e) ∈ {“?”} ∪ ΛTag ∪ ΛKW } and
Ht = {h ∈ ET | μT (h) ∈ XH} be a partition of ET , i.e.,
Et ∪ Ht = ET and Et ∩ Ht = ∅. And let Vt = VT . A triplet
t = (Vt, Et,Ht) is called a height-constrained ordered tag tree

pattern (or simply an HC-tag tree pattern). The root of t is the
root of T . The definitions of a path, a parent and a child of t are
defined as those definitions of T . Hereafter, we call an element
in Et an edge and call an element in Ht a height-constrained

variable (or simply an HC-variable).
For an HC-tag tree pattern t, V(t), E(t), and H(t) denote the

vertex set, the edge set, and the HC-variable set of t, respec-
tively. For two positive integers i, j (i ≤ j), an HC-variable
h is called an (i, j)-height-constrained variable (or simply an
(i, j)-HC-variable), if h is an HC-variable labeled with an ele-
ment in XH(i, j). The notation h(i, j) means that h is an (i, j)-HC-

variable. We use a notation [u, u′] to represent an HC-variable
such that u is the parent of u′. Let H(v1, vn) be the set of all HC-
variables in the path v1, v2, . . . , vn of t and E(v1, vn) the set of all
edges in the path v1, v2, . . . , vn of t. The trunk length of the path
v1, v2, . . . , vn is defined as the integer

∑
h(i, j)∈H(v1 ,vn) i + |E(v1, vn)|.

The height of t, denoted by height(t), is defined as the integer
max
{∑

h(i, j)∈H(r,�) j + |E(r, �)|
∣∣∣ r is the root and � is a leaf

}
. The

minimum size of t, denoted by Sizemin(t), is defined as the integer∑
h(i, j)∈H(t) i + |E(t)|. An HC-tag tree pattern t has a total ordering

on all children of every internal vertex u. The ordering on the
children of u is denoted by <t

u. That is, for any two children u′

and u′′ of u, u′ <t
u u′′ denotes that u′ is a left sibling of u′′ in t.

Definition 4 (Variable-chain) Let t be an HC-tag tree pat-
tern. Let a sequence u0, u1, . . . , uk be a path of t such that its
length is more than one and for every u�−1 and u� (1 ≤ � ≤ k),
[u�−1, u�](i� , j�) is an (i�, j�)-HC-variable of t for certain integers i�
and j�. Then, u0, u1, . . . , uk is said to be a variable-chain of t if u�
is the only child of u�−1 for any 2 ≤ � ≤ k. If g has no variable-
chain, t is called variable-chain free.

Definition 5 (Word tree [9]) OT denotes the set of all trees
whose edge labels are in Λ. A tree T is a word tree if |V(T)| = 2
and |E(T)| = 1. For a word w ∈ Λ, T (w) denotes the word tree
whose edge is labeled with the word w. For a subset Λ′ � Λ, we
define the set of word treesWT Λ′ =

⋃
w∈Λ′ {T (w)}.

Definition 6 (Class of HC-tag tree patterns) OTTPH de-
notes the set of all HC-tag tree patterns. OTTPh denotes the
set of all variable-chain free HC-tag tree patterns. For two
positive integers p and q (p ≤ q), OTTPh(p,q) denotes the set of
all variable-chain free HC-tag tree patterns whose HC-variable
labels are in

⋃
p≤i≤ j≤q XH(i, j). Note that for any two positive

integers p and q, the relations OTTPh(p,q)
� OTTPh

� OTTPH

hold. Let Tag be a finite subset of ΛTag and KW a finite subset
of ΛKW . For a set C of HC-tag tree patterns, we denote by
C(Tag,KW) the set of HC-tag tree patterns t ∈ C with the
tags of t in Tag and the keywords of t in KW. In particular, if

Tag = ∅ and KW = ∅, an HC-tag tree pattern in C(Tag,KW)
is called an HC-wildcard tree pattern. An HC-wildcard tree
pattern is an extended model of a wildcard tree pattern [9] by
introducing HC-variables. OTTPh(ΛTag,ΛKW) denotes the set of
all variable-chain free HC-tag tree patterns with tags in ΛTag and
keywords in ΛKW .

Let s be an HC-tag tree pattern or a tree with at least two ver-
tices. Let τ = [[w0, w1]] denote a list of two distinct vertices in
s where w0 is the root of s and w1 is a leaf of s. The trunk
length of τ = [[w0, w1]] is regarded as the trunk length of the path
w0, . . . , w1. Let t be an HC-tag tree pattern with at least two ver-
tices and e an HC-variable or an edge of t. The form e := 〈s, τ〉 is
called a binding for e if the following three conditions hold. (1)
If e is an edge labeled with “?”, then s ∈ WT Λ{?} , (2) if e is an
edge labeled with a keyword /k/ then s ∈ WT Λ{/k/} and (3) if e

is an (i, j)-HC-variable (1 ≤ i ≤ j) then (i) the trunk length of τ
is at least i and (ii) the height of s is at most j. A new HC-tag
tree pattern or a new tree t′ is obtained by applying the bind-
ing e := 〈s, τ〉 to t in the following way. Let e = [v0, v1] (resp.
e = (v0, v1)) be an HC-variable (resp. an edge) in t. Let s′ be one
copy of s and w′0, w

′
1 the vertices of s′ corresponding to w0, w1 of

s, respectively. For the HC-variable or the edge e, we attach s′ to
t by removing e from E(t) ∪ H(t) and by identifying the vertices
v0, v1 with the vertices w′0, w

′
1 of s′, respectively. Further we de-

fine a new total ordering <t′
u on every vertex u of t′ in a natural

way. Suppose that u has more than one child and let u′ and u′′

be two children of u of t′. We have the following three cases.
Case 1: If u, u′, u′′ ∈ V(t) and u′ <t

u u′′, then u′ <t′
u u′′. Case

2: If u, u′, u′′ ∈ V(s) and u′ <s
u u′′, then u′ <t′

u u′′. Case 3: If
u = v0, u′ ∈ V(s), u′′ ∈ V(t), and v1 <t

u u′′ (resp. u′′ <t
u v1),

then u′ <t′
u u′′ (resp. u′′ <t′

u u′). Let e1, e2, . . . , en be mutually
distinct HC-variables or edges in t. A substitution θ for t is a fi-
nite collection of bindings {e1 := 〈s1, τ1〉, . . . , en := 〈sn, τn〉} if
either following conditions are satisfied (1) all si (1 ≤ i ≤ n)
are HC-tag tree pattens or (2) all si (1 ≤ i ≤ n) are trees and
{e1, . . . , en} = {e ∈ E(t) | e is labeled with the wildcard or a key-
word } ∪ H(t). The new HC-tag tree pattern or the new tree tθ,
called the instance of t by θ, is obtained by applying the all bind-
ings ei := 〈si, τi〉 to t simultaneously. We note that the root of tθ

is the root of t.
Example 1 Figure 3 shows examples of applying bindings.

Let e = [u2, u3] be the (1, 6)-HC variable in t0. The HC-
tag tree pattern t1 is obtained from t0 by applying the binding
e := 〈T1, [[w1, w3]]〉 for e to t0. The trunk length of τ1 = [[w1, w3]]
is 2 and the height of T1 is 2. The HC-tag tree pattern t2 is ob-
tained from t0 by applying the binding e := 〈T2, [[w1, w3]]〉 for e

to t0. The trunk length of τ2 = [[w1, w3]] is 1 and the height of T2

is 3.
Let t and s be two HC-tag tree patterns. We say that t and s

are isomorphic, denoted by t � s, if there is a bijection ϕ from
V(t) to V(s) such that (1) the root of t is mapped to the root of
s by ϕ, (2) (u, v) ∈ E(t) if and only if (ϕ(u), ϕ(v)) ∈ E(s) and
the two edges have the same edge label, (3) for any integers i, j

(1 ≤ i ≤ j), [u, v](i, j) ∈ H(t) if and only if [ϕ(u), ϕ(v)](i, j) ∈ H(s),
and (4) for any internal vertex u in t which has more than one
child, and for any two children u′ and u′′ of u, u′ <t

u u′′ if and

c© 2019 Information Processing Society of Japan 81

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.12 No.3 78–88 (Dec. 2019)

Fig. 3 Examples of applying bindings. HC-tag tree patterns t0, t1, t2 and trees T1,T2.

only if ϕ(u′) <s
ϕ(u) ϕ(u′′). Such a bijection from V(t) to V(s) is

called an isomorphism from t to s.
An HC-tag tree pattern t is said to match a tree T if there exists

a substitution θ such that T � tθ holds.
Definition 7 (Language of HC-tag tree patterns) For an

HC-tag tree pattern t in OTTPH , the language L(t) is defined as
{s ∈ OT | s � tθ for a substitution θ }.

LetD = {T1, T2, . . . , Tm} be a nonempty finite set of trees. The
matching count of an HC-tag tree pattern t w.r.t. D, denoted by
matchD(t), is the number of trees Ti ∈ D (1 ≤ i ≤ m) such
that t matches Ti. Then the frequency of t w.r.t. D is defined
by suppD(t) = matchD(t)/m. Let σ be a real number where
0 < σ ≤ 1. An HC-tag tree pattern t is σ-frequent w.r.t. D if
suppD(t) ≥ σ holds. Let Tag be a finite subset of ΛTag and KW a
finite subset of ΛKW .

Definition 8 (Maximally frequent HC-tag tree patterns)
An HC-tag tree pattern t in OTTPh(Tag,KW) is maximally

σ-frequent w.r.t. D in OTTPh(Tag,KW) if the following two
conditions hold. (1) t is σ-frequent w.r.t. D. (2) For any
HC-tag tree pattern s in OTTPh(Tag,KW) if s � t and there is
a substitution θ such that s � tθ holds, then s is not σ-frequent
w.r.t.D.

Example 2 Let D = {T1,T2, T3, T4} be the set of trees in
Fig. 2. We set Tag = {“Gal–1b4”,“Man–1a3”,“Man–1a6”,“Man–
1b4” } and KW = {“/GlcNAc/”,“/NeuAc/”}. The HC-tag
tree pattern t1 in Fig. 2 is a maximally σ-frequent w.r.t. D in
OTTPh(Tag,KW).

We give the hardness of computing an optimum HC-tag tree
pattern. The formal definition of the problem is as follows.
Maximally Frequent Height-Constrained Ordered Tag Tree
Pattern of Maximum Tree-Size
Instance: A nonempty finite set of trees D = {T1, T2, . . . , Tm}, a
real number σ (0 < σ ≤ 1), a finite set Tag of tags, a finite set
KW of keywords and a positive integer K.
Question: Is there a maximally σ-frequent HC-tag tree pattern t

w.r.t.D in OTTPh(Tag,KW) with |V(t)| ≥ K?
In Ref. [9], we showed that the problem of computing a max-

imally frequent tag tree pattern of maximum tree-size w.r.t. a
nonempty finite set of trees is NP-complete. We can prove the
following theorem in a similar way to the proof of Theorem 1 in
Ref. [9].

Theorem 1 Maximally Frequent Height-Constrained Or-
dered Tag Tree Pattern of Maximum Tree-Size is NP-complete.

An ordered tag tree pattern (or simply called a tag tree pat-
tern) is an ordered tree structured pattern having variables with-
out height constraint [9]. We note that the set OTTPh(ΛTag,ΛKW)

of all variable-chain free HC-tag tree patterns is incomparable
with the set OTTP(ΛTag,ΛKW) of all tag tree patterns [9]. More-
over, the class of all languages of HC-tag tree patterns in
OTTPh(ΛTag,ΛKW) is incomparable with the class of all lan-
guages of tag tree patterns in OTTP(ΛTag,ΛKW). From Theorem 1,
we propose a new enumeration algorithm which outputs all max-
imally frequent HC-tag tree patterns.

3. Enumeration of Maximally Frequent Tag
Tree Patterns with Height-constrained Vari-
ables

3.1 Enumeration Algorithm
In this section, we consider the following problem.

All Maximally Frequent Height-Constrained Ordered Tag
Tree Patterns (MFHCOTTP)
Input: A nonempty finite set D � OT of trees, a real number
σ (0 < σ ≤ 1), a finite set Tag of tags, and a finite set KW of
keywords.
Assumption: (1) (Tag ∪ ⋃/k/∈KW Λ{/k/}) � Λ{?} � Λ, (2)
Tag ∩ ⋃/k/∈KW Λ{/k/} = ∅, and (3) there exists an algorithm for
deciding whether or not any word in Λ is in Λ{?}.
Problem: Generate all maximally σ-frequent HC-tag tree pat-
terns w.r.t.D in OTTPh(Tag,KW).

Let D � OT be a nonempty finite set of trees. In our pre-
vious work [9], we proposed the algorithm Gen-MFOTTP that
enumerates all maximally σ-frequent tag tree patterns w.r.t. D.
By extending the previous algorithm Gen-MFOTTP, we pro-
pose an algorithm Gen-MFHCOTTP (Algorithm 1) that gener-
ates all maximally σ-frequent HC-tag tree patterns w.r.t. D in
OTTPh(Tag,KW). In the algorithm Gen-MFHCOTTP, we de-
cide whether or not an HC-tag tree pattern is σ-frequent w.r.t.D,
by using an extended version of polynomial time pattern match-
ing algorithm [12] in a similar way to Ref. [9].

At first, Procedure EnumFreqTP is Procedure 2 of Gen-
MFOTTP [9] that uses the tree enumeration technique [2], [11],
[17]. Procedure ReplaceEdge2, which is Procedure 8 of Gen-
MFOTTP, outputs the setΠ2(σ) of allσ-frequent tag tree patterns
w.r.t.D.

Then, in Algorithm Gen-MFHCOTTP, we propose new pro-
cedures MergeVariable (Procedure 2), ConstrainVariable (Pro-
cedure 3) and ConstrainVariableSub (Procedure 4) to enumer-
ate σ-frequent HC-tag tree patterns from Π2(σ) as follows. Let
hD be the maximum height of trees in D. For a σ-frequent tag
tree pattern t ∈ Π2(σ), Procedure MergeVariable makes the σ-
frequent variable-chain free HC-tag tree pattern th from t by re-

c© 2019 Information Processing Society of Japan 82

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.12 No.3 78–88 (Dec. 2019)

Algorithm 1 Gen-MFHCOTTP
Input: A nonempty finite setD � OT of trees, a real number σ (0 < σ ≤ 1),

a finite set Tag of tags, and a finite set KW of keywords;

Output: The setΠ(σ) of all maximallyσ-frequent HC-tag tree patterns w.r.t.

D in OTTPh;

/* Step 1,2: Enumerate all σ-frequent tag tree patterns */

1: Π1(σ) :=EnumFreqTP(D, σ) // See Procedure 2 in [9]

2: Π2(σ) :=ReplaceEdge2(D, σ, Tag,KW,Π1(σ)) // See Procedure 8 in [9]

/* Π2(σ) is the set of all σ-frequent tag tree patterns without height con-

straint */

/* Step 3,4: Enumerate all σ-frequent HC-tag tree patterns */

3: Π3(σ) :=MergeVariable(D, σ,Π2(σ)) // See Procedure 2

4: Π4(σ) :=ConstrainVariable(D, σ,Π3(σ)) // See Procedure 3

/* Π4(σ) is the set of all σ-frequent HC-tag tree patterns */

/* Step 5: Maximality test */

5: Π(σ) :=TestMaximality(D, Tag,KW, σ,Π4(σ)) // See Procedure 5

6: return Π(σ)

Procedure 2 MergeVariable
Input: A nonempty finite setD � OT of trees, a real number σ (0 < σ ≤ 1),

and a set Πin of tag tree patterns;

Output: A set Πout of HC-tag tree patterns;

1: Πout := ∅
2: Let hD be the maximum height of trees inD
3: for each tag tree pattern t ∈ Πin do

4: Let th be an HC-tag tree pattern obtained from t by replacing each

variable of t with an (1, hD)-HC-variable

5: while th has a variable-chain do

6: Let u1, u2, u3 be vertices in th such that [u1, u2](i1 ,hD) is an (i1, hD)-

HC-variable, [u2, u3](i2 ,hD) is an (i2, hD)-HC-variable and u3 is the

only child of u2

/* the path u1, u2, u3 is a variable-chain */

7: th := (V(th) \ {u2}, E(t),H(th) ∪ {[u1, u3](i1+i2 ,hD)} \ {[u1, u2](i1 ,hD),

[u2, u3](i2 ,hD)})
8: end while

9: Πout := Πout ∪ {th}
10: end for

11: return Πout

Procedure 3 ConstrainVariable
Input: A nonempty finite setD � OT of trees, a real number σ (0 < σ ≤ 1),

and a set Πin of HC-tag tree patterns;

Output: A set Πout of HC-tag tree patterns;

1: Πout := Πin

2: for each HC-tag tree pattern t ∈ Πin do

3: Πout := Πout∪ ConstrainVariableSub(D, σ, t, 1) // See Procedure 4

4: end for

5: return Πout

placing each variable of t with a (1, hD)-HC-variable and merg-
ing consecutive HC-variables into one HC-variable. Procedure
ConstrainVariable outputs the set Π4(σ) of all σ-frequent HC-
tag tree patterns inOTTPh(1,hD)(Tag,KW) by replacing each (i, j)-
HC-variable with an (i, j′)-HC-variable (i ≤ j′ < j).

Finally, Procedure TestMaximality (Procedure 5), which is the
extended version of Procedure TestMaximality2 in Ref. [9], de-
cides whether or not each HC-tag tree pattern in Π4(σ) is maxi-
mally σ-frequent w.r.t.D in OTTPh(Tag,KW).

Procedure 4 ConstrainVariableSub
Input: A nonempty finite setD � OT of trees, a real number σ (0 < σ ≤ 1),

an HC-tag tree pattern t and a positive integer p;

Output: A set Πout of HC-tag tree patterns;

1: if p > |H(t)| then

2: return ∅
3: end if

4: Πout := ∅
5: Let h(i, j) = [u, v](i, j) be the p-th HC-variable of t in the DFS order

6: for k := j − 1 downto i do

7: Let t′ be an HC-tag tree pattern obtained from t by replacing an (i, j)-

HC-variable [u, v](i, j) of t with an (i, k)-HC-variable [u, v](i,k)

8: if t′ is σ-frequent w.r.t.D then

9: Πout := Πout ∪ {t′}
10: end if

11: end for

12: Πtmp := Πout ∪ {t}
13: for each HC-tag tree pattern t′ ∈ Πtmp do

14: Πout := Πout∪ ConstrainVariableSub(D, σ, t′, p + 1)

15: end for

16: return Πout

Procedure 5 TestMaximality
Input: A nonempty finite setD � OT of trees, a real number σ (0 < σ ≤ 1),

a finite set Tag of tags, a finite set KW of keywords, and a set Πin of

HC-tag tree patterns;

Output: A set Πout of HC-tag tree patterns;

1: Πout := Πin

2: for each HC-tag tree pattern t ∈ Πout do

3: for each (1, j)-HC-variable h(1, j) in t do

4: Let T0(“?′′) be the HC-tag tree pattern in Fig. 4

5: if t{h(1, j) := 〈T0(“?′′), [[R0, L0]]〉} is σ-frequent w.r.t.D then

6: Πout := Πout \ {t}
7: end if

8: end for

9: for each (i, j)-HC-variable h(i, j) in t do

10: Let T (i, j)
1 , . . . ,T

(i, j)
9 be the HC-tag tree patterns in Fig. 4

11: if there exists a positive integer K ∈ {1, . . . , 9} such that

t{h(i, j) := 〈T (i, j)
K , [[RK , LK]]〉} is σ-frequent w.r.t.D then

12: Πout := Πout \ {t}
13: end if

14: end for

/* T0(w) is the HC-tag tree pattern in Fig. 4 for a tag or keyword w */

15: for each edge e labeled with “?” in t do

16: if there exists a tag or keyword w ∈ Tag ∪ KW such that t{e :=

〈T0(w), [[R0, L0]]〉} is σ-frequent w.r.t.D then

17: Πout := Πout \ {t}
18: end if

19: end for

20: for each edge e labeled with a keyword in t do

21: Let /k/ ∈ KW be the keyword of the edge e

22: if there exists a keyword /k′/ ∈ KW such that Λ{/k′/} � Λ{/k/} and

t{e := 〈T0(/k′/), [[R0, L0]]〉} is σ-frequent w.r.t.D then

23: Πout := Πout \ {t}
24: end if

25: end for

26: end for

27: return Πout

c© 2019 Information Processing Society of Japan 83

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.12 No.3 78–88 (Dec. 2019)

Fig. 4 HC-tag tree pattern T0(w) for any tag or keyword w. HC-tag tree pat-
terns T0(“?′′) and T (i, j)

1 , . . . ,T
(i, j)
9 . For HC-tag tree patterns T (i, j)

5 and

T (i, j)
6 , we assume that i1 + i2 = i and j1 + j2 = j hold. For the HC-tag

tree pattern T (i, j)
9 , we assume that i3 + i4 + 1 = i and j3 + j4 + 1 = j

hold.

3.2 Correctness of Enumeration Algorithm
In this section, we will prove the correctness of Algorithm Gen-

MFHCOTTP in a similar way to the proofs of Lemmas 3, 4 and
Theorem 4 in Ref. [9].

First, we give the following important fact of the languages of
HC-tag tree patterns. For HC-tag tree patterns t and t′, if there
is a substitution θ such that t′ � tθ holds then L(t′) � L(t) holds.
However, for HC-tag tree patterns t and t′, L(t′) � L(t) does not
necessarily imply that there is a substitution θ such that t′ � tθ

holds. We give an example of this case in Fig. 5. Therefore, in
Definition 8, the maximallyσ-frequent HC-tag tree patterns is de-
fined by the substitution operation of HC-tag tree patterns. Since
the definition of a maximally σ-frequent HC-tag tree pattern is
different from that of a maximally σ-frequent tag tree pattern [9],
most of the proofs are different.

The following Lemma was proved in Ref. [9].
Lemma 1 (Lemma 4 in Ref. [9]) After the second step of

Algorithm Gen-MFOTTP, the set Π2(σ) is the set of all σ-
frequent tag tree patterns w.r.t.D.

Therefore, after the second step of Algorithm Gen-
MFHCOTTP, the set Π2(σ) is the set of all σ-frequent tag
tree patterns w.r.t.D.

Lemma 2 After the fourth step of Algorithm Gen-

Fig. 5 HC-tag tree patterns t′, t and trees T1,T2,T3. We can show that T3 ∈
L(t) and T3 � L(t′) hold. Thus, we can see that {T1,T2} � L(t′) � L(t)
holds, but there is no substitution θ such that t′ � tθ holds.

MFHCOTTP, the set Π4(σ) is the set of all σ-frequent
HC-tag tree patterns w.r.t.D in OTTPh(1,hD)(Tag,KW).

Proof. Procedure MergeVariable makes a variable-chain free
HC-tag tree pattern from each tag tree pattern in Π2(σ). We
note that |Π2(σ)| = |Π3(σ)| holds. Furthermore, Procedure Con-
strainVariable also uses a brute-force method for replacing each
(i, j)-HC-variable of t in Π3(σ) with an (i, j − 1)-HC-variable
(1 ≤ i < j). Thus, Π4(σ) contains all σ-frequent HC-tag tree
patterns in OTTPh(1,hD)(Tag,KW). �

Theorem 2 Algorithm Gen-MFHCOTTP outputs the set of
all maximally σ-frequent HC-tag tree patterns w.r.t. D in
OTTPh(Tag,KW).

Proof. The fifth step of Algorithm Gen-MFHCOTTP (Proce-
dure TestMaximality) removes elements from Π4(σ). Therefore,
from Lemma 2, all HC-tag tree patterns in Π(σ) are σ-frequent.
Let t be a σ-frequent HC-tag tree pattern in Π(σ). We will prove
that t is a maximallyσ-frequent HC-tag tree pattern w.r.t.D. That
is, we will prove that for any substitution θ, if tθ is σ-frequent,
then tθ � t holds. We consider each binding h := 〈s, τ〉 in θ. Ac-
cording to the definition of bindings, we have the following two
cases.

Case 1: h is an (i, j)-HC-variable. Note that height(s) ≤ j and
Sizemin(s) ≥ i hold. We show that height(s) = j, Sizemin(s) = i

and |E(s)| = 0 hold as follows.
• Suppose that height(s) < j holds. Since there is a substitu-

tion θ′ such that t{h := 〈s, τ〉} � t{h := 〈T (i, j)
1 , [[R1, L1]]〉}θ′

holds, t{h := 〈T (i, j)
1 , [[R1, L1]]〉} is σ-frequent w.r.t. D. This

contradicts the fact that t is not removed from Π(σ) in lines
9–14 in Procedure TestMaximality. Therefore, height(s) =
j holds.

• Suppose that Sizemin(s) > i holds. Since there is a substitu-
tion θ′ such that t{h := 〈s, τ〉} � t{h := 〈T (i, j)

K , [[RK , LK]]〉}θ′

holds for some K ∈ {2, 3, 4, 5, 6}, t{h := 〈T (i, j)
K , [[RK , LK]]〉}

is σ-frequent w.r.t. D. This contradicts the fact that t is not
removed from Π(σ) in lines 9–14 in Procedure TestMaxi-
mality. Therefore, Sizemin(s) = i holds.

• Suppose that |E(s)| � 0 holds. Since there is a substitution

c© 2019 Information Processing Society of Japan 84

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.12 No.3 78–88 (Dec. 2019)

θ′ such that t{h := 〈s, τ〉} � t{h := 〈T0(“?′′), [[R0, L0]]〉}θ′

or t{h := 〈s, τ〉} � t{h := 〈T (i, j)
K , [[RK , LK]]〉}θ′ hold for

some K ∈ {7, 8, 9}, t{h := 〈T0(“?′′), [[R0, L0]]〉} or t{h :=
〈T (i, j)

K , [[RK , LK]]〉} is σ-frequent w.r.t. D. This contradicts
the fact that t is not removed from Π(σ) in lines 3–14 in
Procedure TestMaximality. Therefore, |E(s)| = 0 holds.

Thus, if h is an (i, j)-HC-variable then height(s) = j,
Sizemin(s) = i and |E(s)| = 0 hold. Since h is an (i, j)-HC-variable
and Sizemin(s) = i, s consists of either one HC-variable or one
variable-chain. However, since s is a variable-chain free HC-tag
tree pattern, s is an HC-tag tree pattern consisting of only one
(i, j)-HC-variable.

Case 2: h is an edge. Then s is a word tree. Let e be the unique
edge of s.
• Suppose that h is labeled with the wildcard “?” and e is

labeled with w ∈ Tag ∪ KW. Since there is a substitution
θ′ such that t{h := 〈s, τ〉} � t{h := 〈T0(w), [[R0, L0]]〉}θ′

holds, there is a keyword or tag w ∈ Tag ∪ KW such that
t{h := 〈T0(w), [[R0, L0]]〉} is σ-frequent w.r.t.D. This contra-
dicts the fact that t is not removed from Π(σ) in lines 15–19
in Procedure TestMaximality. Therefore, if h is an edge la-
beled with the wildcard then e is an edge labeled with the
wildcard.

• Suppose that h is labeled with some /k/ ∈ KW and e is
labeled with a keyword w ∈ KW such that Λ{w} � Λ{/k/}
holds. Since there is a substitution θ′ such that t{h :=
〈s, τ〉} � t{h := 〈T0(w), [[R0, L0]]〉}θ′ holds. there is a key-
word /k′/ ∈ KW such that t{h := 〈T0(w), [[R0, L0]]〉} is σ-
frequent w.r.t. D. This contradicts the fact that t is not re-
moved from Π(σ) in lines 20–25 in Procedure TestMaxi-
mality. Therefore, h and e have the same keyword.

• Suppose that h is labeled with some /k/ ∈ KW and e is la-
beled with a tag w ∈ Tag such that w ∈ Λ{/k/} holds. This
contradicts the assumption of the problem MFHCOTTP.

If h is an edge then h and the unique edge of s have the same
edge label.

From Cases 1 and 2, for each binding h := 〈s, τ〉 in θ we see
that t{h := 〈s, τ〉} � t holds. Thus, t � tθ holds. Therefore,
we conclude that t is a maximally σ-frequent HC-tag tree pattern
w.r.t.D in OTTPh(Tag,KW). �

Next we discuss the complexity of the problem of enumerating
all σ-frequent HC-tag tree patterns. An enumeration algorithm
is polynomial total time if the time required to compute all solu-
tions is bounded by a polynomial in the size of the input and the
number of solutions [6].

Theorem 3 Algorithm Gen-MFHCOTTP computes the set
Π4(σ) of all σ-frequent HC-tag tree patterns w.r.t. D in
OTTPh(Tag,KW) in polynomial total time.

Proof. The problem of deciding whether an HC-tag tree pat-
tern (resp. a tag tree pattern) is σ-frequent w.r.t.D is computable
in polynomial time by using a polynomial time matching algo-
rithm [12] (resp. [14]). A variable-only tree pattern is a tag tree
pattern consisting of only vertices and variables [9]. Procedure
EnumFreqTP outputs the set Π1(σ) of σ-frequent variable-only
tree patterns in polynomial total time. Procedure ReplaceEdge2

makes a polynomial number of new candidate tag tree patterns
by replacing each variable in an input tag tree pattern t with a
labeled edge. That is, the number of new candidate tag tree pat-
terns is |H(t)| × (|Tag ∪ KW | + 1). Since Π1(σ) � Π2(σ) holds,
Procedure ReplaceEdge2 outputs the set Π2 of all σ-frequent tag
tree patterns in polynomial total time. Procedure MergeVariable
makes a variable-chain free HC-tag tree pattern from each tag tree
pattern t′ in Π2(σ) in O(|H(t′)|) time. Note that |Π3(σ)| = |Π2(σ)|
holds. Procedure ConstrainVariable makes a polynomial num-
ber of new candidate HC-tag tree patterns by replacing each (i, j)-
HC-variable of an input HC-tag tree pattern t′′ with an (i, j − 1)-
HC-variable (1 ≤ i < j). That is, the number of new candidate
HC-tag tree patterns is |H(t′′)| × hD. Since Π3(σ) � Π4(σ) holds,
Algorithm Gen-MFHCOTTP computes the set Π4(σ) in polyno-
mial total time. �

Unfortunately, Algorithm Gen-MFHCOTTP cannot output the
set of all maximally σ-frequent HC-tag tree patterns w.r.t. D in
OTTPh(Tag,KW) in polynomial total time. The reason is shown
with this counterexample. We assume that the set D1 consisting
of only one tree T , σ = 1.00, Tag = ∅ and KW = ∅ are given as an
input of Algorithm Gen-MFHCOTTP. The number of σ-frequent
HC-tag tree patterns w.r.t. D1 is more than 2|E(T)|. However, the
number of maximally σ-frequent HC-tag tree patterns w.r.t. D1

is just one. Thus, Algorithm Gen-MFHCOTTP cannot output in
polynomial total time.

4. Experimental Results

In this section, we report experimental results of the proposed
algorithm Gen-MFHCOTTP. We implemented Algorithm Gen-
MFHCOTTP and our previous algorithm Gen-MFOTTP [9] in
Java on a PC with 3.50 GHz processors, 32.0 GB of RAM on
Windows 7 (64-bit). We compare experimental results of the
two algorithms Gen-MFHCOTTP and Gen-MFOTTP. Algorithm
Gen-MFHCOTTP uses the polynomial time pattern matching al-
gorithm [12] as a subroutine.

In our experiments, we used glycan data extracted from the
KEGG/GLYCAN database [7] as tree structured data. For exam-
ple, the tree T in Fig. 6 shows the tree structured data correspond-
ing to the glycan data g.

Let Dleu be the glycan data related to leukemia and Dnon the
glycan data not related to leukemia. Then we have 177 trees
in Dleu and 302 trees in Dnon. We set Tag = {“Gal–1b4”}
and KW = {“/GlcNAc/”,“/NeuAc/”} as inputs of the algorithms,
since the occurrences of these tags and keywords are higher than
those of the other tags and keywords. We performed experi-
ments in 20 experimental settings, by the two algorithms Gen-
MFHCOTTP and Gen-MFOTTP, given two datasets Dleu and
Dnon, for a threshold σ ∈ {1.00, 0.95, 0.90, 0.85, 0.80}. We have
10 runs for each experimental setting and measured the aver-
age run time of 10 runs. Table 1 shows the experimental re-
sults of the proposed algorithm Gen-MFHCOTTP. We report
the number of σ-frequent HC-tag tree patterns, the number of
maximally σ-frequent HC-tag tree patterns and the average run
time of Algorithm Gen-MFHCOTTP. Table 2 shows the ex-
perimental results of the previous algorithm Gen-MFOTTP. We

c© 2019 Information Processing Society of Japan 85

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.12 No.3 78–88 (Dec. 2019)

Table 1 Experimental results of the proposed algorithm Gen-MFHCOTTP.

target dataset Dleu Dnon

threshold σ 1.00 0.95 0.90 0.85 0.80 1.00 0.95 0.90 0.85 0.80
number of σ-frequent HC-tag tree patterns 4 139 612 3387 30152 4 16 28 147 513

number of maximally σ-frequent HC-tag tree patterns 1 7 14 21 40 1 1 2 6 15
run time of Algorithm Gen-MFHCOTTP (ms) 21 56 204 1107 11001 15 14 48 107 386

Table 2 Experimental results of the previous algorithm Gen-MFOTTP.

target dataset Dleu Dnon

threshold σ 1.00 0.95 0.90 0.85 0.80 1.00 0.95 0.90 0.85 0.80
number of σ-frequent tag tree patterns 3 9 18 42 99 3 3 5 6 11

number of maximally σ-frequent tag tree patterns 1 2 4 6 8 1 1 1 2 2
run time of Algorithm Gen-MFOTTP (ms) 18 45 138 399 822 9 7 25 43 115

Fig. 6 Glycan data and corresponding tree structured data. We treat a tree
corresponding to glycan data by regarding each vertex label in gly-
can data as the prefix of the edge label assigned to the edge adjacent
to the vertex in the tree.

also report the number of σ-frequent tag tree patterns, the num-
ber of maximally σ-frequent tag tree patterns and the average
run time of Algorithm Gen-MFOTTP. Figure 7 (resp. Fig. 8)
shows examples of maximally 0.80-frequent HC-tag tree patterns
w.r.t. Dleu (resp. Dnon) obtained by the proposed algorithm Gen-
MFHCOTTP. Also, Fig. 9 (resp. Fig. 10) shows examples of
maximally 0.80-frequent tag tree patterns w.r.t. Dleu (resp. Dnon)
obtained by the previous algorithm Gen-MFOTTP. As additional
experiments, for Algorithm Gen-MFHCOTTP and the dataset
Dleu, we performed experiments in 21 experimental settings for a
threshold σ ∈ {1.00, 0.99, 0.98, . . . , 0.81, 0.80}. Figure 11 shows
the relationship between the average run time of Algorithm Gen-
MFHCOTTP and the number of σ-frequent HC-tag tree patterns
w.r.t.Dleu.

Table 1 shows that as the threshold σ decreases, the number of
σ-frequent HC-tag tree patterns and the average run time of Algo-
rithm Gen-MFHCOTTP increase. Figure 11 shows that the aver-
age run time of Algorithm Gen-MFHCOTTP increases in propor-
tion to the number of σ-frequent HC-tag tree patterns. The rea-
son is that Algorithm Gen-MFHCOTTP computes all σ-frequent
HC-tag tree patterns and checks whether or not each σ-frequent
HC-tag tree pattern is maximally σ-frequent. From Table 1, for
each threshold σ, the number of maximally σ-frequent HC-tag
tree patterns is much smaller than that of σ-frequent HC-tag tree
patterns. Therefore, Algorithm Gen-MFHCOTTP succeeds in re-
ducing the number of candidate HC-tag tree patterns characteris-
tic toDleu.

Tables 1 and 2 show that the run time of Algorithm Gen-

Fig. 7 Examples of maximally 0.80-frequent HC-tag tree patterns w.r.t.
Dleu obtained by Gen-MFHCOTTP.

Fig. 8 Examples of maximally 0.80-frequent HC-tag tree patterns w.r.t.
Dnon obtained by Gen-MFHCOTTP.

Fig. 9 Examples of maximally 0.80-frequent tag tree patterns w.r.t.Dleu ob-
tained by Gen-MFOTTP.

MFHCOTTP is greater than that of Algorithm Gen-MFOTTP.
This reason is as follows. Algorithm Gen-MFHCOTTP first com-
putes all σ-frequent tag tree patterns by using procedures of

c© 2019 Information Processing Society of Japan 86

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.12 No.3 78–88 (Dec. 2019)

Fig. 10 Examples of maximally 0.80-frequent HC-tag tree patterns w.r.t.
Dnon obtained by Gen-MFOTTP.

Fig. 11 Average run time of Algorithm Gen-MFHCOTTP. The value near
each dot means threshold of each experimental setting.

Gen-MFOTTP. Algorithm Gen-MFHCOTTP computes all σ-
frequent HC-tag tree patterns from all σ-frequent tag tree pat-
terns. Therefore, for the same inputs, the run time of Algorithm
Gen-MFHCOTTP is always greater than that of Gen-MFOTTP.
In general, the number of maximally σ-frequent HC-tag tree pat-
terns is larger than that of maximally σ-frequent tag tree patterns.

From the definition of bindings, the HC-tag tree pattern πh
L1 in

Fig. 7 matches any tree such that the root of the tree has only one
child and the height of the tree is at least 6 and at most 7. In com-
parison, the HC-tag tree pattern πh

N1 in Fig. 8 matches any tree
such that the root of the tree has only one child and the height of
the tree is at least 2 and at most 7. More than 80% of the trees
in Dleu are of height 7. πh

L1 well represents structured features
of the trees in Dleu. Furthermore, the structural difference be-
tween πh

L1 and πh
N1 implies a difference between Dleu and Dnon.

Knowledge on the height of the trees in Dleu and Dnon cannot
be obtained from the output tag tree patterns of Algorithm Gen-
MFOTTP. Therefore, the results show the effectiveness of the
proposed model of HC-tag tree patterns with HC-variables. The
knowledge on the height of the trees is not always meaningful.

Furthermore, we can obtain knowledge on the distance be-
tween two edges. For example, from the HC-tag tree pattern πh

L3

in Fig. 7, the distance between the edges labeled with “?” and
“/NeuAc/” is at most 6. Since this knowledge cannot be obtained
from tag tree patterns without height constraint, HC-tag tree pat-
terns are effective in representing tree structured features.

5. Conclusions

In this paper, we have presented a new refined model of char-
acteristic tree structured features of structured data which are
represented by rooted trees with ordered children, by extend-

ing our previous model of characteristic tree structured features,
maximally frequent ordered tag tree patterns without height con-
straint [9]. As a new refined model of characteristic tree struc-
tured features, we have proposed height constrained ordered tag
tree patterns, which are ordered tree patterns having height-
constrained structured variables, wildcards, tags and keywords as
edge labels.

First, we have stated that it is hard to compute a maximally
frequent height-constrained ordered tag tree pattern of maximum
tree-size. Then, we have presented an algorithm for enumerating
all maximally frequent height-constrained ordered tag tree pat-
terns. Finally, we have reported experimental results showing the
effectiveness of the proposed model of characteristic tree struc-
tured features, maximally frequent height-constrained ordered tag
tree patterns, compared with the previous model [9]. As future
work, we will study more efficient algorithms for enumerating
characteristic HC-tag tree patterns from the viewpoint of the the-
ory of enumeration algorithms. Furthermore, we will develop a
robust and scalable algorithm for enumerating characteristic tree
patterns from large amount of tree structured data.

Acknowledgments We would like to thank the anonymous
reviewers for their valuable and helpful comments on our
manuscript. This work was partially supported by Grant-in-
Aid for Scientific Research (C) (Grant Numbers 15K00312,
15K00313, 17K00321) from Japan Society for the Promotion of
Science (JSPS).

References

[1] Abiteboul, S., Buneman, P. and Suciu, D.: Data on the Web: From Re-
lations to Semistructured Data and XML, Morgan Kaufmann (2000).

[2] Asai, T., Abe, K., Kawasoe, S., Sakamoto, H., Arimura, H. and
Arikawa, S.: Efficient substructure discovery from large semi-
structured data, IEICE Trans. Inf. Syst., Vol.E87-D, No.12, pp.2754–
2763 (2004).

[3] Chehreghani, M.H. and Bruynooghe, M.: Mining rooted ordered trees
under subtree homeomorphism, Data Mining and Knowledge Discov-
ery, Vol.30, No.5, pp.1249–1272 (2016).

[4] Doshi, M. and Roy, B.: Enhanced data processing using positive nega-
tive association mining on AJAX data, Proc. 2014 International Con-
ference on Circuits, Systems, Communication and Information Tech-
nology Applications (CSCITA-2014), pp.386–390 (2014).

[5] Jiang, C., Coenen, F. and Zito, M.: A survey of frequent subgraph
mining algorithms, The Knowledge Engineering Review, Vol.28, No.1,
pp.75–105 (2013).

[6] Johnson, D., Yannakakis, M., Papadimitriou, C.: On generating all
maximal independent sets, Information Processing Letters, Vol.27,
pp.119–123 (1988).

[7] KEGG GLYCAN Database, available from 〈https://www.genome.jp/
kegg/glycan/〉 (accessed 2018-11-16).

[8] Miyahara, T., Shoudai, T., Uchida, T., Takahashi, K. and Ueda, H.:
Discovery of Frequent Tree Structured Patterns in Semistructured Web
Documents, Proc. PAKDD-2001, LNAI 2035, pp.47–52, Springer-
Verlag (2001).

[9] Miyahara, T., Suzuki, Y., Shoudai, T., Uchida, T. and Kuboyama, T.:
Enumeration of Maximally Frequent Ordered Tree Patterns with Wild-
cards for Edge Labels, IPSJ Trans. Math. Model. Appl. (TOM), Vol.10,
No.2, pp.59–69 (2017).

[10] Miyahara, T., Suzuki, Y., Shoudai, T., Uchida, T., Takahashi, K.
and Ueda, H.: Discovery of Maximally Frequent Tag Tree Patterns
with Contractible Variables from Semistructured Documents, Proc.
PAKDD-2004, LNAI 3056, pp.133–134, Springer-Verlag (2004).

[11] Nakano, S.: Efficient generation of plane trees, Information Process-
ing Letters, Vol.84, pp.167–172 (2002).

[12] Shoudai, T., Aikoh, K., Suzuki, Y., Matsumoto, S., Miyahara, T. and
Uchida, T.: Polynomial Time Inductive Inference of Languages of
Ordered Term Tree Patterns with Height-Constrained Variables from
Positive Data, IEICE Trans. Fund., Vol.E100-A, No.3, pp.785–802
(2017).

c© 2019 Information Processing Society of Japan 87

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.12 No.3 78–88 (Dec. 2019)

[13] Suzuki, Y., Miyahara, T., Shoudai, T., Uchida, T. and Nakamura,
Y.: Discovery of Maximally Frequent Tag Tree Patterns with Height-
Constrained Variables from Semistructured Web Documents, Proc. In-
ternational Workshop on Challenges in Web Information Retrieval and
Integration (WIRI-2005), pp.107–115 (2005).

[14] Suzuki, Y., Shoudai, T., Uchida, T. and Miyahara, T.: An Efficient
Pattern Matching Algorithm for Ordered Term Tree Patterns, IEICE
Trans. Inf. Syst., Vol.E98-A, No.6, pp.1197–1211 (2015).

[15] Wang, J., Liu, Z., Li, W. and Li, X.: Research on a frequent maxi-
mal induced subtrees mining method based on the compression tree
sequence, Expert Systems with Applications, Vol.42, No.1, pp.94–100
(2015).

[16] Wang, K. and Liu, H.: Discovering structural association of semistruc-
tured data, IEEE Trans. Knowledge and Data Engineering, Vol.12,
No.3, pp.353–371 (2000).

[17] Zaki, M.: Efficiently mining frequent trees in a forest: algorithms and
applications, IEEE Trans. Knowledge and Data Engineering, Vol.17,
No.8, pp.1021–1035 (2005).

Yusuke Suzuki received his B.S. degree
in Physics, his M.S. and Dr. Sci. degrees
in Informatics all from Kyushu Univer-
sity, in 2000, 2002 and 2007, respec-
tively. He is currently a research as-
sociate of Graduate School of Informa-
tion Sciences, Hiroshima City University,
Hiroshima, Japan. His research interests

include machine learning and data mining.

Tetsuhiro Miyahara is an associate pro-
fessor of Graduate School of Informa-
tion Sciences, Hiroshima City University,
Hiroshima, Japan. He received his B.S.
degree in Mathematics, his M.S. and Dr.
Sci. degrees in Information Systems all
from Kyushu University, Fukuoka, Japan
in 1984, 1986 and 1996, respectively. His

research interests include algorithmic learning theory, knowledge
discovery and machine learning.

Takayoshi Shoudai received his B.S. in
1986, his M.S. degree in 1988 in Math-
ematics and his Dr. Sci. in 1993 in Infor-
mation Science all from Kyushu Univer-
sity. Currently, he is a professor of Faculty
of Contemporary Business, Kyushu Inter-
national University. His research interests
include graph algorithms, computational

learning theory, and data mining.

Tomoyuki Uchida received his B.S. de-
gree in Mathematics, his M.S. and Dr.
Sci. degrees in Information Systems all
from Kyushu University, in 1989, 1991
and 1994, respectively. Currently, he is
an associate professor of Graduate School
of Information Sciences, Hiroshima City
University. His research interests include

data mining from semistructured data, algorithmic graph theory
and algorithmic learning theory.

Satoshi Matsumoto is an associate pro-
fessor of Department of Mathematical
Sciences, Tokai University, Kanagawa,
Japan. He received his B.S. degree in
Mathematics, his M.S. and Dr. Sci. de-
grees in Information Systems all from
Kyushu University, Fukuoka, Japan in
1993, 1995 and 1998, respectively. His

research interests include algorithmic learning theory.

Tetsuji Kuboyama received his B.Eng.
and M.Eng. degrees from Kyushu Univer-
sity in 1992 and 1994 respectively, and his
Ph.D. degree in 2007 from the University
of Tokyo. He is currently a professor of
the Computer Centre of Gakushuin Uni-
versity. He worked for the Center for Col-
laborative Research of the University of

Tokyo as a research associate. His current research interests in-
clude pattern matching, data mining, and machine learning.

c© 2019 Information Processing Society of Japan 88

