ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. データベースシステム(DBS)※2025年度よりデータベースとデータサイエンス(DBS)研究会に名称変更
  3. 2019
  4. 2019-DBS-170

Weakly Supervised Multi-Label Text Classification

https://ipsj.ixsq.nii.ac.jp/records/201552
https://ipsj.ixsq.nii.ac.jp/records/201552
47997296-44ed-46d5-aca9-f964c05e9eab
名前 / ファイル ライセンス アクション
IPSJ-DBS19170007.pdf IPSJ-DBS19170007.pdf (835.2 kB)
Copyright (c) 2019 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
DBS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2019-12-16
タイトル
タイトル Weakly Supervised Multi-Label Text Classification
タイトル
言語 en
タイトル Weakly Supervised Multi-Label Text Classification
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Information, Production and Systems Waseda University
著者所属
Graduate School of Information, Production and Systems Waseda University
著者所属(英)
en
Graduate School of Information, Production and Systems Waseda University
著者所属(英)
en
Graduate School of Information, Production and Systems Waseda University
著者名 Jiaqi, Feng

× Jiaqi, Feng

Jiaqi, Feng

Search repository
Mizuho, Iwaihara

× Mizuho, Iwaihara

Mizuho, Iwaihara

Search repository
著者名(英) Jiaqi, Feng

× Jiaqi, Feng

en Jiaqi, Feng

Search repository
Mizuho, Iwaihara

× Mizuho, Iwaihara

en Mizuho, Iwaihara

Search repository
論文抄録
内容記述タイプ Other
内容記述 Multi-label text classification is a variant of the classification problem where each document is associated with multiple labels, while traditional text classification aims to assign a single label to each document. There exist some previous studies on this problem that have made remarkable achievements, however, existing methods suffer from the lack of labeled data and tend to ignore the interdependencies among labels. In this paper, we propose a method to improve the performance of multilabel text classification given a small set of labeled data. Our method utilizes both the labeled data and unlabeled data to exploit coarse correlations between labels and generates pseudo documents to make up for the deficiency of labeled data, which are used to pre-train our model. Meanwhile, we apply a hierarchical attentional sequence generation model to capture the correlations
between labels at a finer granularity, which will be finetuned via self-training. Experiments show the improvement of our method when given weak supervisions.
論文抄録(英)
内容記述タイプ Other
内容記述 Multi-label text classification is a variant of the classification problem where each document is associated with multiple labels, while traditional text classification aims to assign a single label to each document. There exist some previous studies on this problem that have made remarkable achievements, however, existing methods suffer from the lack of labeled data and tend to ignore the interdependencies among labels. In this paper, we propose a method to improve the performance of multilabel text classification given a small set of labeled data. Our method utilizes both the labeled data and unlabeled data to exploit coarse correlations between labels and generates pseudo documents to make up for the deficiency of labeled data, which are used to pre-train our model. Meanwhile, we apply a hierarchical attentional sequence generation model to capture the correlations
between labels at a finer granularity, which will be finetuned via self-training. Experiments show the improvement of our method when given weak supervisions.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10112482
書誌情報 研究報告データベースシステム(DBS)

巻 2019-DBS-170, 号 7, p. 1-6, 発行日 2019-12-16
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-871X
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 20:58:59.532248
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3