ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. データベースシステム(DBS)※2025年度よりデータベースとデータサイエンス(DBS)研究会に名称変更
  3. 2019
  4. 2019-DBS-170

Generating Emotional Region and Text Representations for Joint Visual Textual Sentiment Analysis

https://ipsj.ixsq.nii.ac.jp/records/201551
https://ipsj.ixsq.nii.ac.jp/records/201551
3484a6be-579a-4432-b698-a11c44935a03
名前 / ファイル ライセンス アクション
IPSJ-DBS19170006.pdf IPSJ-DBS19170006.pdf (682.6 kB)
Copyright (c) 2019 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
DBS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2019-12-16
タイトル
タイトル Generating Emotional Region and Text Representations for Joint Visual Textual Sentiment Analysis
タイトル
言語 en
タイトル Generating Emotional Region and Text Representations for Joint Visual Textual Sentiment Analysis
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Information, Production and Systems, Waseda University
著者所属(英)
en
Graduate School of Information, Production and Systems, Waseda University
著者名 Jiayi, Zhao

× Jiayi, Zhao

Jiayi, Zhao

Search repository
Mizuho, Iwaihara

× Mizuho, Iwaihara

Mizuho, Iwaihara

Search repository
著者名(英) Jiayi, Zhao

× Jiayi, Zhao

en Jiayi, Zhao

Search repository
Mizuho, Iwaihara

× Mizuho, Iwaihara

en Mizuho, Iwaihara

Search repository
論文抄録
内容記述タイプ Other
内容記述 Recently, social media users are increasingly using images and texts to express their opinions and share their experiences. Sentiment analysis of images and texts can help better extract users' sentiments toward events or topic, where prediction of sentiment is an important task. Traditional sentiment analysis on images with textual description only considers the whole image and the whole sentence to predict the result (positive or negative). However, both the whole image and local emotional regions convey significant sentiment information and the emotional textual fragment of the description expresses sentiment as well. Therefore, we propose a deep fusion network to detect the most emotional region in the image and associate the emotional region with the most emotional textual fragment in the description. For predicting the sentiment of the whole image, we consider synthetically integrating the four parts: Textual description, emotional region, and most matching emotional textual fragment. At last, we build a fusion layer to combine the output of the representations to predict the overall sentiment. We carry out experiments on a subset selected from dataset Visual Sentiment Ontology (VSO). The results show that our proposed method can effectively predict sentiment and performs competitively to other methods.
論文抄録(英)
内容記述タイプ Other
内容記述 Recently, social media users are increasingly using images and texts to express their opinions and share their experiences. Sentiment analysis of images and texts can help better extract users' sentiments toward events or topic, where prediction of sentiment is an important task. Traditional sentiment analysis on images with textual description only considers the whole image and the whole sentence to predict the result (positive or negative). However, both the whole image and local emotional regions convey significant sentiment information and the emotional textual fragment of the description expresses sentiment as well. Therefore, we propose a deep fusion network to detect the most emotional region in the image and associate the emotional region with the most emotional textual fragment in the description. For predicting the sentiment of the whole image, we consider synthetically integrating the four parts: Textual description, emotional region, and most matching emotional textual fragment. At last, we build a fusion layer to combine the output of the representations to predict the overall sentiment. We carry out experiments on a subset selected from dataset Visual Sentiment Ontology (VSO). The results show that our proposed method can effectively predict sentiment and performs competitively to other methods.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10112482
書誌情報 研究報告データベースシステム(DBS)

巻 2019-DBS-170, 号 6, p. 1-6, 発行日 2019-12-16
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-871X
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 20:59:01.710198
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3