ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.60
  3. No.12

Understanding Attack Trends from Security Blog Posts Using Guided-topic Model

https://ipsj.ixsq.nii.ac.jp/records/201531
https://ipsj.ixsq.nii.ac.jp/records/201531
cdd61a6d-35b4-4e7a-9350-6039c7220b67
名前 / ファイル ライセンス アクション
IPSJ-JNL6012014.pdf IPSJ-JNL6012014.pdf (2.5 MB)
Copyright (c) 2019 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2019-12-15
タイトル
タイトル Understanding Attack Trends from Security Blog Posts Using Guided-topic Model
タイトル
言語 en
タイトル Understanding Attack Trends from Security Blog Posts Using Guided-topic Model
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:ユーザブルセキュリティ] security blog post, topic model, threat analysis, incident handling
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Kobe University
著者所属
Kobe University/Presently with University of Hyogo
著者所属
National Institute of Information and Communications Technology
著者所属
Kobe University
著者所属
Nanyang Technological University
著者所属
Kobe University
著者所属
Gifu University
著者所属
Kobe University
著者所属(英)
en
Kobe University
著者所属(英)
en
Kobe University / Presently with University of Hyogo
著者所属(英)
en
National Institute of Information and Communications Technology
著者所属(英)
en
Kobe University
著者所属(英)
en
Nanyang Technological University
著者所属(英)
en
Kobe University
著者所属(英)
en
Gifu University
著者所属(英)
en
Kobe University
著者名 Tatsuya, Nagai

× Tatsuya, Nagai

Tatsuya, Nagai

Search repository
Makoto, Takita

× Makoto, Takita

Makoto, Takita

Search repository
Keisuke, Furumoto

× Keisuke, Furumoto

Keisuke, Furumoto

Search repository
Yoshiaki, Shiraishi

× Yoshiaki, Shiraishi

Yoshiaki, Shiraishi

Search repository
Kelin, Xia

× Kelin, Xia

Kelin, Xia

Search repository
Yasuhiro, Takano

× Yasuhiro, Takano

Yasuhiro, Takano

Search repository
Masami, Mohri

× Masami, Mohri

Masami, Mohri

Search repository
Masakatu, Morii

× Masakatu, Morii

Masakatu, Morii

Search repository
著者名(英) Tatsuya, Nagai

× Tatsuya, Nagai

en Tatsuya, Nagai

Search repository
Makoto, Takita

× Makoto, Takita

en Makoto, Takita

Search repository
Keisuke, Furumoto

× Keisuke, Furumoto

en Keisuke, Furumoto

Search repository
Yoshiaki, Shiraishi

× Yoshiaki, Shiraishi

en Yoshiaki, Shiraishi

Search repository
Kelin, Xia

× Kelin, Xia

en Kelin, Xia

Search repository
Yasuhiro, Takano

× Yasuhiro, Takano

en Yasuhiro, Takano

Search repository
Masami, Mohri

× Masami, Mohri

en Masami, Mohri

Search repository
Masakatu, Morii

× Masakatu, Morii

en Masakatu, Morii

Search repository
論文抄録
内容記述タイプ Other
内容記述 Organizations are plagued by sophisticated and diversified cyber attacks. In order to prevent such attacks, it is necessary to understand threat trends and to take measures to protect their assets. Security vendors publish reports which contain threat trends or analysis of malware. These reports are useful for help in responding to a cyber security incident. However, it is difficult to collect threat information from multiple sources such as security blog posts. In this paper, we propose a method to efficiently collect information from the relationship between words using SeededLDA. In our case studies, we visualize the relationship between the words from security blog posts which were published in 2017 by eight security vendors, and demonstrate how our method helps to understand threat trends in the IoT industry and financial institutions.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.27(2019) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.27.802
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Organizations are plagued by sophisticated and diversified cyber attacks. In order to prevent such attacks, it is necessary to understand threat trends and to take measures to protect their assets. Security vendors publish reports which contain threat trends or analysis of malware. These reports are useful for help in responding to a cyber security incident. However, it is difficult to collect threat information from multiple sources such as security blog posts. In this paper, we propose a method to efficiently collect information from the relationship between words using SeededLDA. In our case studies, we visualize the relationship between the words from security blog posts which were published in 2017 by eight security vendors, and demonstrate how our method helps to understand threat trends in the IoT industry and financial institutions.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.27(2019) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.27.802
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 60, 号 12, 発行日 2019-12-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 20:59:24.714111
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

Tatsuya, Nagai, Makoto, Takita, Keisuke, Furumoto, Yoshiaki, Shiraishi, Kelin, Xia, Yasuhiro, Takano, Masami, Mohri, Masakatu, Morii, 2019.

Loading...

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3