ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. コンピュータセキュリティシンポジウム
  4. 2019

Towards a Privacy-Aware Recommendation System for Manga Reading Application

https://ipsj.ixsq.nii.ac.jp/records/201503
https://ipsj.ixsq.nii.ac.jp/records/201503
3a8291fa-ccca-4ca3-a34c-5e7b3aece639
名前 / ファイル ライセンス アクション
IPSJCSS2019210.pdf IPSJCSS2019210.pdf (1.4 MB)
Copyright (c) 2019 by the Information Processing Society of Japan
オープンアクセス
Item type Symposium(1)
公開日 2019-10-14
タイトル
タイトル Towards a Privacy-Aware Recommendation System for Manga Reading Application
タイトル
言語 en
タイトル Towards a Privacy-Aware Recommendation System for Manga Reading Application
言語
言語 eng
キーワード
主題Scheme Other
主題 Privacy,Recommendation System,Machine Learning
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Graduate School of Information Science and Technology The University of Tokyo
著者所属
Graduate School of Information Science and Technology The University of Tokyo
著者所属
Graduate School of Information Science and Technology The University of Tokyo
著者所属(英)
en
Graduate School of Information Science and Technology The University of Tokyo
著者所属(英)
en
Graduate School of Information Science and Technology The University of Tokyo
著者所属(英)
en
Graduate School of Information Science and Technology The University of Tokyo
著者名 Mhd, Irvan

× Mhd, Irvan

Mhd, Irvan

Search repository
Toshiyuki, Nakata

× Toshiyuki, Nakata

Toshiyuki, Nakata

Search repository
Rie, Shigetomi Yamaguchi

× Rie, Shigetomi Yamaguchi

Rie, Shigetomi Yamaguchi

Search repository
著者名(英) Mhd, Irvan

× Mhd, Irvan

en Mhd, Irvan

Search repository
Toshiyuki, Nakata

× Toshiyuki, Nakata

en Toshiyuki, Nakata

Search repository
Rie, Shigetomi Yamaguchi

× Rie, Shigetomi Yamaguchi

en Rie, Shigetomi Yamaguchi

Search repository
論文抄録
内容記述タイプ Other
内容記述 Reading habits can potentially reveal many characteristics of the readers that they likely want to keep private to themselves. Furthermore, many on-demand reading applications nowadays are being deployed as smartphone applications, allowing even more delicate data to be detected and shared away from the phone itself. These information are useful to feed into centralized machine learning programs to, for example, recommend interesting contents. This paper argues that it is possible to build reliable recommendation systems without gathering those data into a centralized place, beyond the users' control. We propose a privacy-preserving machine learning approach that can be applied to recommendation systems. This approach is tested on a manga reading application dataset to demonstrate its usefulness in real world usage.
論文抄録(英)
内容記述タイプ Other
内容記述 Reading habits can potentially reveal many characteristics of the readers that they likely want to keep private to themselves. Furthermore, many on-demand reading applications nowadays are being deployed as smartphone applications, allowing even more delicate data to be detected and shared away from the phone itself. These information are useful to feed into centralized machine learning programs to, for example, recommend interesting contents. This paper argues that it is possible to build reliable recommendation systems without gathering those data into a centralized place, beyond the users' control. We propose a privacy-preserving machine learning approach that can be applied to ecommendation systems. This approach is tested on a manga reading application dataset to demonstrate its usefulness in real world usage.
書誌レコードID
識別子タイプ NCID
関連識別子 ISSN 1882-0840
書誌情報 コンピュータセキュリティシンポジウム2019論文集

巻 2019, p. 1493-1496, 発行日 2019-10-14
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 21:00:10.891324
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3