
A Label-based System for Detecting Adversarial
Examples by Using Low Pass Filters

Dang Duy Thang1,2,a) Taisei Kondo1,b) Toshihiro Matsui1,c)

Abstract: Along with significant improvements in deep neural networks, image classification tasks are solved
with extremely high accuracy rates. However, deep neural networks have been recently found vulnerable to
well-designed input samples that called adversarial examples. Such this issue causes deep neural networks
to misclassify adversarial examples that are imperceptible to humans. Distinguishing adversarial images and
legitimate images are tough challenges. To address this problem, in this paper we proposed a new automatic
classification system for adversarial examples. Our proposed system can almost distinguish adversarial sam-
ples and legitimate images in an end-to-end manner without human intervention. We exploit the important
role of low frequencies in adversarial samples and proposing the label-based method for detecting malicious
samples based on our observation. We evaluate our method on a variety of standard benchmark datasets
including MNIST and ImageNet. Our method reached out detection rates more than 96% in many settings.

Keywords: Deep Neural Networks, Adversarial Examples, Low Pass Filter

1. Introduction

Deep Neural Networks (DNNs) were developed as a ma-

chine learning approach to many complex tasks. Traditional

machine learning methods are successful when the final value

is a simple function of the input data. Conversely, DNNs

can capture the composite relations between millions of

pixels and textual descriptions, brand-related news, future

stock prices, and other contextual information. DNNs at-

tain state-of-the-art performance in practical tasks of many

domains, such as natural language processing, image pro-

cessing, and speech recognition [1]. Current state-of-the-art

DNNs are usually designed to be robust to noisy data; that

is, the estimated label of a DNN output is insensitive to

small noises in the data. Noise robustness is a fundamen-

tal characteristic of DNN applications in real, uncontrolled,

and possibly hostile environments. However, recent research

has shown that DNNs are vulnerable to specially-crafted

adversarial perturbations (also known as adversarial exam-

ples) [2], [3], well-designed fluctuating inputs that are added

to clean inputs. Developers of machine learning models as-

sume a legitimate environment in both training and testing.

Intuitively, the inputs X are assumed to come from the same

distribution during both training and test times. That is,

if the test inputs X are new and previously unseen during

the training process, they at least have the same properties

as the inputs used for training. These assumptions ensure

1 Institute of Information Security, Yokohama, Japan
2 University of Danang, Danang, Vietnam
a) dgs174101@iisec.ac.jp
b) mgs191002@iisec.ac.jp
c) matsui@iisec.ac.jp

a powerful machine learning model, but any attacker can

alter the distribution during either the training time [4] or

the testing time [5]. Typical training attacks [6] try to in-

ject adversarial training data into the original training set.

If successful, these data will wrongly train the deep learning

model. However, most of the existing adversarial methods

attack the testing phase [7], [8], which is more reliable than

attacking the training phase. Especially, training-phase at-

tacks are more difficult to implement and should not be

launched without first exploiting the machine learning sys-

tem. For example, an attacker might slightly modify an

image [4], causing it to be recognized incorrectly, or ad-

just the code of an executable file to enable its escape by

a malware detector [9]. Many researchers have developed

defense mechanisms against adversarial examples. Madry

et al. [8] applied a natural saddle-point method that guards

against adversarial examples in a principled manner. They

found that the network architecture affects the adversar-

ial robustness of a DNN, so the robust decision boundary

of the saddle-point problem can be more complicated than

a decision boundary that simply categorizes the legitimate

data. Preprocessing-based defense strategies against adver-

sarial examples, which are the focus of our current work,

will be reviewed and discussed in Sec. 2.

1.0.1 Our Contributions

This paper introduces new techniques for overcoming ad-

versarial examples. Our proposed system can automatically

detect and classify both adversarial and legitimate samples.

Assuming that most of the adversarial perturbations are cre-

ated in the high frequencies of the image, we seek to reduce

the high-frequency adversarial noises while retaining the be-

Computer Security Symposium 2019
21 - 24 October 2019

© 2019 Information Processing Society of Japan －1356－

nign high-frequency features. To prove our hypothesis, we

first installed a low-pass filter layer between the adversarial

example and target classifier. The probability of detect-

ing the target class by the classifier dropped significantly

(to nearly zero), but the recognition results of the primary

class were retained. In Sec. 3, we demonstrate the correct-

ness of these implementations in a theoretical proof. Based

on the previous observation, we propose a new end-to-end

system that automatically detects adversarial examples by

using a filter layer inserted between the input and DNN,

which traps suspicious noises. In parallel with this process,

the un-filtered input is fed to the classifier and the highest-

confidence class is marked as a marked label, on the other

hand, input will be passed through the filter layer before

feeding into the classifier. The output labels will be ob-

served and named as checked labels. The marked label and

checked labels are then compared, and the final decision on

the input (adversarial or benign) is determined by the vari-

ation of labels.

The main contributions of this paper are as follows:

• We summarized the different attack strategies and we

provided an intuitive overview of these current attack

methods.

• We assumed that most of the adversarial perturbations

are created at high frequencies. After implementing

many experiments based on our theoretical framework,

we confidently affirm our hypothesis.

• After thoroughly analyzing our experimental and the-

oretical observations, we created a new automated de-

tection method for adversarial examples. Our approach

differs from previous researches, in which the experi-

mental steps are typically based only on the original

hypothesis. Our approach was successfully applied to

two types of common datasets: a small-scale dataset

(MNIST) and a large-scale dataset (ImageNet). Our

defense method accurately classified adversarial exam-

ples and legitimate samples. Moreover, in some cases,

it recovered the high accuracy rates of the DNN classi-

fication.

2. Related Works and Background

2.1 Related Works

Removing the adversarial noises and regaining the recog-

nition integrity of classifiers have been attempted in sev-

eral works. Liao et al. [10] developed High-level represen-

tation Guided Denoiser (HGD) as a defense for image clas-

sification systems. They argued that many defense models

cannot remove all adversarial perturbations, and that the

non-removed adversarial noises are greatly amplified in the

top layers of the target model. Consequently, the model

will output a wrong prediction. To overcome this problem,

they trained a denoiser by an HGD loss function. How-

ever, their proposed system was implemented only on Ima-

geNet, which contains color images, and was not trialed on

grayscale datasets such as MNIST. Although this omission

is not highly important, the performance of a method based

on high-level representation in a very deep neural network

may degrade on grayscale images, whereas a simple neural

network performs accurately on MNIST data. The strat-

egy of Xu et al. [11], which they called “feature squeezing”,

reduces the number of degrees of freedom available to an

adversary by squeezing out the unnecessary input features.

The squeezing is performed by two denoisers performing dif-

ferent denoising methods: (1) squeezing the color bit depth,

and (2) spatial smoothing. The prediction results are then

compared with those of the target model, and the input is

inferred as adversarial or legitimate. Although Xu et al. [11]

evaluated their proposed method on various adversarial at-

tacks, how they specified their thresholds on different bench-

mark datasets is unclear. Deciding appropriate thresholds

for their system will overburden operators, and the method

cannot easily adapt to new and unknown datasets.

2.2 Background

2.2.1 Deep Neural Networks

In this subsection, we review neural networks in detail and

introduce the required notation and definitions. Neural net-

works consist of elementary computing units named neurons

organized in interconnected layers. Each neuron applies an

activation function to its input, and produces an output.

Starting with the input to the machine learning model, the

output produced by each layer of the network provides the

input to the next layer. Networks with a single intermedi-

ate hidden layer are called shallow neural networks, whereas

those with multiple hidden layers are DNNs. The multiple

hidden layers hierarchically extract representations from the

model input, eventually producing a representation for solv-

ing the machine learning task and outputting a prediction.

A neural network model F can be formalized as multidimen-

sional and parametrized functions fi, each corresponding to

one layer of the network architecture and one representa-

tion of the input. Specifically, each vector θi parametrizes

layer i of the network F and includes weights for the links

connecting layer i to layer i1. The set of model parameters

θ = {θi} is learned during training. For instance, in super-

vised learning, the parameter values are learned by comput-

ing the prediction errors f(x) − y on a collection of known

input–output pairs (x, y).

2.2.2 Adversarial Attacks

The adversarial examples and their counterparts are de-

fined as indistinguishable from humans.

C&W method. Carnili et al. [7] proposed a new and

powerful adversarial attack with several optimal perturba-

tion settings. In this work, Carnili et al. used three distance

metrics to approximate human’s perception based on the Lp

norm:

||x||p =

(n∑
i=1

|xi|p
) 1
p

(1)

Carnili et al. used L0, L2, L∞ metrics for expressing the dif-

ferent aspects of visual significance. L0 counts the number of

pixels with different values at corresponding positions in two

－1357－

images. It describes how many pixels are changed between

the two images. L2 is used for measuring the Euclidean

distance between two images. And L∞ will help to mea-

sure the maximum difference for all pixels at corresponding

positions in two images. There is no agreement on which

distance metric is the best so it depends on the proposed

algorithms.

EAD:Elastic-Net Attacks. EAD adversarial attack

was invented by Pin-Yu Chen et al. [12] inspired from [7].

This paper use elastic-net regularization technique [13] that

is widely used in solving high-dimensional feature selection

problems to invent new attack method by extending from

C&W method.

L-BFGS. Szegedy et al. [14] used a method name

L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-

Shanno) to create targeted adversarial examples. This

method minimize the weighted sum of perturbation size

ε and loss function L(x∗, ytarget) while constraining the

elements of x∗ to be normal pixel value.

FGSM. Goodfellow et al. [2] consumed that adversarial

examples can be caused by cumulative effects of high di-

mensional model weights. They proposed a simple attack

method, called Fast Gradient Sign Method (FGSM):

x∗ = x+ ε · sign(OxL(x, y)) (2)

where ε denotes the perturbation size for crafting adversar-

ial example x∗ from original input x. Given a clean image x,

this method tries to create a similar image x∗ in L∞ neigh-

borhood of x that fools the target classifier. This leads to

maximize loss function L(x, y) which is the cost of classi-

fying image x as the target label y. The fast gradient sign

method solves this problem by performing one step gradi-

ent update from x in the input space with a small size of

perturbation ε. Increasing ε will lead to higher and faster

attack success rate however it may also make your adver-

sarial sample to be more different from the original input.

FGSM computes the gradients for once, so it is much more

efficient than L-BFGS. FGSM is very simple however it is

fast and powerful for creating the adversarial examples.

PGD. Madry el al. [8] proposed an attack method named

Projected Gradient Descent (PGD):

x∗ = x+ δ · (5L (x, y)) respect to project(x,ε)(x
∗)

(3)

Where project(x,ε)(x
∗) defines a projection operator with

parameter x∗ on the circle area around x with radius ε, δ is

a clip value that is searched in a box (x, ε). FGSM is cre-

ated based on Gradient Descent (GD) to maximize the loss

function L(x, y). And GD is a standard method to solve an

unconstrained optimization problem. In another hand, PGD

is a way to solve a constrained problem. Madry el al. [8] used

PGD to propose a new adversarial attack method.

In this paper, we implement FGSM [2], PGD [8],

CW L2 [7] means C&W method with L2 norm optimization

for searching adversarial perturbation, and EAD [12] meth-

ods in attack phase. The model is used to create adversarial

attacks is called the attacking model. When the attacking

model is the target model itself or contains the target model,

the resulting attacks are white-box. In this work, we also

implement our method in a white-box manner.

2.2.3 Adversarial Defenses

Adversarial training of machine learning systems has

been extensively researched [15], [16]. This strategy trains

the models on adversarial examples to improve their at-

tack robustness. Some researchers have combined data

augmentation with adversarial perturbed data for train-

ing [14], [15], [16]. However, this training is more time

consuming than traditional training on clean images alone,

because it adds extra training dataset to the training set,

which clearly extends the training time. In other defense

strategies based on pre-processing, the perturbation noise

is removed before feeding the data into a machine learn-

ing model. Meng et al. [17] proposed a two-phase defense

model that first detects the adversarial input, and then re-

forms the original input based on the difference between the

manifolds of the original and adversarial examples. Another

adversarial defense direction is based on the gradient mask-

ing method [16]. By virtue of the gradient masking, this de-

fense strategy typically ensures high smoothness in specific

directions and neighborhoods of the training data, inhibiting

attackers from finding the gradients of the good candidate

directions. Accordingly, they cannot perturb the input in a

damaging way. Papernot et al. [18] adapted distillation to

adversarial defense and trained the target model on soft la-

bels output by another machine learning model. Nguyen and

Sinha [19] developed a gradient masking method to defend

against C&W attacks [7], in which the noise is appended

to the network logit layer. Gu et al. [3] proposed the deep

contrastive network, which imposes a layer-wise contrastive

penalty to achieve output invariance under input perturba-

tions. However, methods based on gradient masking can be

replaced by a substitute model (a copy that imitates the de-

fended model), which attackers can train by observing the

labels assigned by the defended model to inputs that are

chosen carefully by the adversary.

3. Proposed End-to-End System

3.1 Attack phase

We consider the white-box targeted attack settings, where

the attacker can fully access the model type, model archi-

tecture, all trainable parameters, and the adversary aims

to change the classifier’s prediction to some specific target

class. The attackers use available information to identify the

feature space where the model is vulnerable or try to find

the victim decision boundaries. Then the victim model is

exploited by altering a clean input by using adversarial ex-

ample methods. To create adversarial samples that are mis-

classified by the machine learning model, an adversary with

knowledge of the model’s classifier f and its trainable pa-

rameters. In this work, we use FGSM [2], PGD [8], CW [7],

and EAD [12] methods for crafting adversarial examples.

－1358－

We define classifier function f : Rn →
[
1...k

]
that maps im-

age pixel value vectors to a particular label. Then we assume

that function f has a loss function L : Rn ×
[
1...k

]
→ R.

For an input image x ∈ Rn and target label y ∈
[
1...k

]
,

our system aims to solve the following optimization prob-

lem: δ + L(x + δ, y) subject to x + δ ∈
[
0, 1
]n

, where δ

is a perturbation noise that we add to the original image

x. We have to note that this function method would yield

the solution for f(x) in the case of convex losses, however,

the neural networks are non-convex so we end up with an

approximation in this case. In this case, we use the out-

put of the second-to-last layer logits for calculating the gra-

dient instead of using the output of the Softmax. So our

attack phase is denoted as algorithm 1 by using PGD. For

FGSM and CW attacks, we use ||δx||2 instead of ||δx||∞ and

EAD attack still uses ||δx||∞ like PGD method. For FGSM,

CW L2 and EAD attacks, the algorithm 1 will be executed

without using project(x,ε)(x
∗). In the attacking phase, we

set the learning rate for crafting adversarial examples is 0.01

that keeps adversarial noises are as small as possible and the

iterative process is 500 times. From the clean images, we will

create the targeted output images.

Algorithm 1: Crafting Adversarial Examples Algo-

rithm
input : x, ytrue, y∗, f , ε, α

output : x∗

parameter : learning rate = 0.01, epochs = 500

1 x← x∗ // initial adversarial sample

2 δx ← ~0 // initial perturbation factor

3 iter ← 1 // initial iteration counter

4 while ||δx||∞ < ε and f(x∗) 6= y∗ and iter <= epochs do
5 x∗ ← x+ δ · sign(5L(y∗|x∗))
6 x∗ ← project(x,ε) (x∗)

7 maximize L(y∗|x∗) respect to ||δx||∞
8 δ ← clip(x∗, x− ε, x+ ε)

9 iter ← iter + 1

10 end

11 return x∗

3.2 Detection phase

To create a new benchmark dataset for our detection sys-

tem, we combined benign images with the adversarial im-

ages created in the attack phase. Assuming that the adver-

sarial noises are high- frequency features on the images, we

targeted the high-frequency domains on the images while

retaining all features in the low-frequency areas. Various

common algorithms are available for reducing image noises

before further processing such as classification. In this work,

we investigate the two most well-known filters in image de-

noising studies: linear and non-linear filters. For example,

consider a new array with the same dimensions as the spec-

ified image. Fill each location of this new array with the

weighted sum of the pixel values from the locations sur-

rounding the corresponding location in the image, using a

constant weight set. The result of this procedure is shift-

invariant meaning that the output value depends on the

pattern (not the positions) of the image neighborhood. It

is also linear, meaning that summing the two images yields

the same output as summing the separate outputs of both

images. This procedure, known as linear filtering, smooths

the noises in the images. One famous linear filter is the

Gaussian filter, defined as

Gσ(i, j) =
1

2πσ2
e−

i2+j2

2σ2 . (4)

Here, i, j denotes the coordinate signal of the input and σ

is the standard deviation of the Gaussian distribution. Al-

ternatively, noise removal can be considered as filtering by

a statistical estimator. In particular, the goal is to estimate

the actual image value of a pixel in a noisy measurement sce-

nario. The class of noise-removal filters is difficult to analyze

but is extremely useful. Smoothing an image by a symmetric

Gaussian kernel replaces a pixel value with some weighted

average of its neighbors. If an image has been corrupted

by stationary additive zero-mean Gaussian noise, then this

weighted average can reasonably estimate the original value

of the pixel. The expected noise response is zero. Weight-

ing the spatial frequencies provides a better estimate than

simply averaging the pixel values. However, when the image

noise is not stationary additive Gaussian noise, the situation

becomes more complicated. In particular, consider that a

region of the image has a constant dark value with a sin-

gle bright pixel composed of noise. After smoothing with a

Gaussian, a smooth, Gaussian-like bright bump will be cen-

tered on the noise pixel. In this way, the weighted average

can be arbitrarily and severely affected by very large noise

values. The bump can be rendered arbitrarily bright by in-

troducing an arbitrarily bright pixel, possibly by a transient

error in reading a memory element. When this undesirable

property does not develop, the estimator outputs robust es-

timates. The most well-known robust estimator computes

the median of a set of values from its neighborhood. A me-

dian filter assigns a neighborhood shape (which can signifi-

cantly affect the behavior of the filter). As in convolution,

this neighborhood shape is passed over the image, but the

median filter replaces the current value of the element by a

median of the neighborhood values. For the neighborhood

surrounding (i,j), the filter is described by:

xij = median(Xuv|Xuv ∈ Nij), (5)

where Xuv denotes the neighborhood points of xij . Any ad-

versarial noises can be attenuated by smoothing the pixels in

the image. When adversarial noises are absent, smoothing

the pixels does not severely affect the input-image quality,

so the target classifier still recognizes the correct label. We

name this process the sieve process.

Our proposed detection system runs the filter and mark

processes in parallel. The filter process arrests the high fre-

quencies in the input processing while the marking process

transfers the input directly to the machine learning model.

－1359－

The highest-confidence class from the classifier is assigned

as the marked label. The filter process then tracks the labels

similar to the marked label. If the marked label is equal to all

filtered labels, our system confidently determines the input

as benign, but in the case, there are more than two different

marked labels and they are different with the marked la-

bel, out the detection system will point out it as adversarial

example. Our system proceeds by Algorithm 2, where x de-

fines the input image, L is filtered labels, lmarked is marked

label, κ denotes the kernel sizes, f is a machine learning

function that computes the predicted label with the highest

probability, and s is the filter function. The filter function

based on the Gaussian filter is called the label-based De-

tection System based on Gaussian (LDG); the other filter

function is Detection System based on Median (LDM).

Algorithm 2: The Label-based System for Detect-

ing Adversarial Examples by Using Low Pass Filters

input : x, s, f, L

output : 0, 1

// 0: benign; 1: adversarial

parameter : κ = [(3× 3); (5× 5)]

1 lmarked ← f(x)

2 for i in κ do
3 xfiltered ← s(x, i)

4 lfiltered ← f(xfiltered)

5 Li ← lfiltered
6 end

7 if lmarked == ∀li ∈ L then
8 return 0

9 else
10 return 1

11 end

4. Implementation and Results

4.1 Datasets

The classification task was evaluated on two common

benchmark datasets, namely, MNIST and ImageNet.

4.1.1 Setup of MNIST

The MNIST dataset [20] includes 70,000 gray images of

hand-written digits ranging from 0 to 9. It is separated into

60,000 training images and 10,000 testing images. A single

MNIST image is composed of 28 × 28 pixels, each encoded

by an 8-bit grayscale. We randomly extracted 200 images

of the digit “0” from the 10,000 testing images. From each

of these 200 images, we created nine adversarial images tar-

geting the remaining digits (1-9). Finally we created a new

benchmark dataset of 2,000 images (200 benign images and

1,800 adversarial images).

4.1.2 Setup of ImageNet

We consider the ImageNet dataset [21] that is a very large

database designed for use in visual object recognition re-

search. The original ImageNet includes more than 14 million

images in 20,000 categories with a typical category, such as

“koala” or “spindle”, consisting of several hundred images.

The machine learning model that we use is Google Inception

V3 [22] that was trained with 1,000 common categories Ima-

geNet. We randomly select 360 testing images. By applying

FGSM, PGD, CW L2 and EAD methods to craft adversar-

ial images target to randomly targeted labels, we generate

new 1,440 adversarial images. We combine them together

to form a new benchmark repository including 1,800 images

for our experiment.

4.2 Implementation

Although adversarial examples have recently attracted

much interest from researchers, a public benchmark dataset

for evaluating the robustness of defense systems remains

lacking. In the attack phase of our system, we thus cre-

ated a new benchmark dataset for evaluating the detection

capabilities of our detection system.

The 200 random images of digit “0” extracted from the

MNIST dataset were converted to adversarial images of dig-

its 1-9 by the FGSM method. The FGSM was run through

1,000 iterations (epochs). The adversarial images were com-

bined with original images into the new benchmark dataset

for evaluating our detection system. The proposed detection

system knows the true labels of the input. When presented

with the unknown input, our system automatically processes

the input and returns a decision (adversarial or benign).

In the ImageNet dataset, from 360 random testing images,

we created 1,440 adversarial images with a randomly tar-

geted label by using FGSM, PGD, CW L2 and EAD meth-

ods. The number of iteration (epochs) is 500 times. We end

up with a new synthesize evaluation dataset that includes

1,800 images.

4.3 Results

Our results were compared with those of Xu et al. [11].

Our system is more convenient than Xu’s system, owing to

its high detection accuracy and easy setup. Specifically, our

system adopts a fixed threshold whereas Xu et al.’s system

must adopt the threshold value to individual cases. The

performance of our system was evaluated by the F1-score.

In the observation phase, we observed and analyzed a

typical tench image. From a benign tench image with a

detection probability of 99.08%, we created four adversar-

ial images with the targeted label is a walking stick that is

randomly selected. Afterward, the adversarial noises were

stuck by the filter function, and the “tench” features were

regained. As shown in Fig. A·1, the probabilities of the tar-

geted “walking stick” and legitimate “tench” dramatically

differed when processed by the filter functions. When an in-

put is Original “tench”, classification probability is 99.08%

for “tench” label and the probabilities for the true label

are still remained more than 90% after using a gaussian

and median filter. Conversely, with an adversarial image

with targeted class “walking stick”, filters not only remove

adversarial noises but only regain the probabilities of true

label nearly equal to when using original input. This ob-

servation confirms our assumption that adversarial noises

are high-frequency noises, and that adversarial samples are

－1360－

(a) Probabilities of original Tench label with Gaussian Filters (b) Probabilities of targeted walking stick label with Gaussian
Filters

(c) Probabilities of original Tench label with Median Filters (d) Probabilities of targeted walking stick label with Median
Filter

Fig. 1: Adversarial examples (true class: Tina Tench) suffers to our filter layer

powerfully detected by adopting the low-pass filter in our

model.

The detection results on the MNIST dataset are reported

in Table 1. The dashes in this table signify a lack of infor-

mation from earlier research. Although the same number

of images was compared in ours and Xu et al.’s methods,

we created a more challenging test set than Xu et al. [11].

Whereas Xu et al. created a balanced dataset of 1,000 le-

gitimate images and 1,000 adversarial examples, we created

1,800 adversarial images from 200 legitimate inputs, thus im-

posing an imbalanced [23] dataset in our experimental test.

Nevertheless, our detection rates are highly competitive with

those of Xu et al. and slightly surpass the earlier detection

rates. Moreover, our system applies a fixed threshold for all

settings, whereas in Xu et al.’s work, the threshold must be

adjusted in different settings.

On the ImageNet dataset, our detection rates exceeded

those of Xu et al. As highlighted in Table 1, we analyzed

more files in this implementation than Xu et al., while main-

taining the imbalance in our benchmark dataset. Our de-

tection rate was 96.9% and 99.6% with LDG and LDM,

respectively, greatly outperforming Xu et al.’s system.

5. Conclusion

We investigated the high-frequency noises in adversarial

image examples. Based on the high-frequency noise as-

sumption and a theoretical framework, we demonstrated

the effectiveness of a low-pass filter in removing these

noises. This observation guided the development of our

automated detection system for adversarial examples. On

the MNIST and ImageNet datasets, our system achieved

maximum accuracy rates of 99.2% and 99.6%, respectively.

For evaluating our system, we constructed new benchmark

datasets posing more challenges than previously constructed

datasets [10], [11]. Whereas the earlier studies evaluated

their systems on images from the training set, our evalu-

ation employed the testing images. As another important

contribution to the existing datasets, our system not only

defeated adversarial noises but also regained the legitimate

class from adversarial examples.

－1361－

Table 1: Detection Results
(a) MNIST

Our Method Xu et al. [11]
LDG LDM Bit-D Smooth Best-J

No. Files 2,000 2,000 2,000 2,000 2,000
Threshold NA NA 0.0005 0.0029 0.0029
TP 1,786 1,776 - - -
TN 199 182 - - -
FP 1 18 - - -
FN 14 24 - - -
Accuracy 0.993 0.979 - - -
Precision 0.999 0.999 - - -
Recall 0.992 0.987 0.903 0.868 0.982
F1 score 0.996 0.988 - - -

(b) ImageNet

Our Method Xu et al. [11]
LDG LDM Bit-D Smooth Best-J

No. Files 1,800 1,800 1,800 1,800 1,800
Threshold NA NA 1.4417 1.1472 1.2128
TP 1,395 1,434 - - -
TN 319 294 - - -
FP 41 66 - - -
FN 45 6 - - -
Accuracy 0.952 0.960 - - -
Precision 0.971 0.956 - - -
Recall 0.969 0.996 0.751 0.816 0.859
F1 score 0.970 0.976 - - -

Acknowledgments We would like to thank Professor

Akira Otsuka for his helpful and valuable comments. This

work is supported by the Iwasaki Tomomi Scholarship.

References

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” na-
ture, vol. 521, no. 7553, p. 436, 2015.

[2] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” in International Confer-
ence on Learning Representations ICLR, 2015. [Online].
Available: http://arxiv.org/abs/1412.6572

[3] S. Gu and L. Rigazio, “Towards deep neural network ar-
chitectures robust to adversarial examples,” CoRR, vol.
abs/1412.5068, 2014.

[4] C. Xiao, B. Li, J. yan Zhu, W. He, M. Liu, and D. Song,
“Generating adversarial examples with adversarial net-
works,” in Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18, 7
2018, pp. 3905–3911.

[5] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić,
P. Laskov, G. Giacinto, and F. Roli, “Evasion attacks against
machine learning at test time,” in Joint European conference
on machine learning and knowledge discovery in databases.
Springer, 2013, pp. 387–402.

[6] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and
J. Tygar, “Adversarial machine learning,” in Proceedings
of the 4th ACM workshop on Security and artificial intel-
ligence. ACM, 2011, pp. 43–58.

[7] N. Carlini and D. Wagner, “Towards evaluating the robust-
ness of neural networks,” in 2017 IEEE Symposium on Se-
curity and Privacy (S&P 2017). IEEE, 2017, pp. 39–57.

[8] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial at-
tacks,” in 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings, 2018.

[9] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and
P. McDaniel, “Adversarial examples for malware detection,”
in European Symposium on Research in Computer Security.
Springer, 2017, pp. 62–79.

[10] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “De-
fense against adversarial attacks using high-level representa-
tion guided denoiser,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition CVPR, 2018,
pp. 1778–1787.

[11] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting
adversarial examples in deep neural networks,” in 25th An-
nual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21,
2018.

[12] P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh,
“Ead: elastic-net attacks to deep neural networks via ad-
versarial examples,” in Thirty-second AAAI conference on
artificial intelligence, 2018.

[13] H. Zou and T. Hastie, “Regularization and variable selection
via the elastic net,” Journal of the royal statistical society:
series B (statistical methodology), vol. 67, no. 2, pp. 301–320,
2005.

[14] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,

I. Goodfellow, and R. Fergus, “Intriguing properties of neural
networks,” in International Conference on Learning Repre-
sentations ICLR, 2014.

[15] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial ma-
chine learning at scale,” in International Conference on
Learning Representations ICLR, 2017.

[16] A. Kurakin, D. Boneh, F. Tramr, I. Goodfellow, N. Paper-
not, and P. McDaniel, “Ensemble adversarial training: At-
tacks and defenses,” in International Conference on Learning
Representations ICLR, 2018.

[17] D. Meng and H. Chen, “Magnet: a two-pronged defense
against adversarial examples,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2017, pp. 135–147.

[18] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami,
“Distillation as a defense to adversarial perturbations against
deep neural networks,” in 2016 IEEE Symposium on Secu-
rity and Privacy (S&P 2016). IEEE, 2016, pp. 582–597.

[19] L. Nguyen, S. Wang, and A. Sinha, “A learning and masking
approach to secure learning,” in International Conference on
Decision and Game Theory for Security. Springer, 2018, pp.
453–464.

[20] Y. LeCun, C. Cortes, and C. Burges, “Mnist hand-
written digit database,” AT&T Labs [Online]. Available:
http://yann. lecun. com/exdb/mnist, vol. 2, 2010.

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein
et al., “Imagenet large scale visual recognition challenge,”
International Journal of Computer Vision IJCV, vol. 115,
no. 3, pp. 211–252, 2015.

[22] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 2818–2826.

[23] Y. Sun, A. K. Wong, and M. S. Kamel, “Classification of im-
balanced data: A review,” International Journal of Pattern
Recognition and Artificial Intelligence, vol. 23, no. 04, pp.
687–719, 2009.

Appendix

A.1 Our Observation on Tench Image

－1362－

Fig. A·1: Our observation on original tench image and adversarial walking stick images that created by FGSM [2], PGD [8],

CW L2 [7], and EAD [12] methods and when we use Gaussian and Median filters with kernel size is 3x3. First row, percentage

values illustrate classification rates for tench label. Other rows, percentage values are classification rates for walking stick

label.
－1363－

