
Privacy Enhanced Slot Machine based on Smart
Contract

PoChu, Hsu1,†1,a),b) Hideaki, Miyaji1,c) Atsuko, Miyaji1,d) ShihWei, Liao†1,e)

Abstract: Slot game is a popular gambling game. We want to build a smart contract protocol for slot game
and preserve its financial fairness and the privacy of gaming parameters. In this research, we will focus on
the most critical one, the winning probability.
Blockchain is a distributed system with no privacy. Traditionally, people will use trusted third party such
as Intel SGX explained in Town Crier to keep critical parameters privately. However, in most cases, the
correctness of the gaming result cannot be verified by smart contract. Zero knowledge proof based protocol
such as Hawk might be able to solve this problem, but it takes more time to generate proof and it contains
possibly not secure initial key generation phase.
In this research, without using trusted third party and zero knowledge proof, we use commitment scheme to
keep the winning probability privately and maintain its verifiability by smart contract.

Keywords: Blockchain, Commitment, Smart Contract

1. Introduction

Slot is a popular gambling game over the world. In casino,

there are many slot machines with different hidden gaming

parameters. Among these gaming parameters, players care

most about the winning probability. Experienced player will

try to find the machine with highest winning probability.

In order to build an online slot game, which is intrinsi-

cally an online gambling service, it is necessary to integrate

a reliable monetary system such as Bitcoin [3]. Bitcoin is

a decentralized monetary system with limited scripting lan-

guage. In blockchain, every transactions are broadcasted to

full nodes for validation. The consensus algorithm, proof of

work, ensures the correctness of the validation process.

Ethereum [4] provides a more sophisticated scripting func-

tionality called smart contract. It contains an account be-

longs to the contract and can use turing complete program-

ming language such as solidity to create control flow to ma-

nipulate the account. This design makes smart contract

more suitable to build games. Except the turing complete

property, it also provides a clock, which can be used to set

timeout for preventing participants abort the game.

As a gambling game, conflict of interest exists between

player and manager. Not only the bet by player or the

stack deposited by manager, but also the transaction fee

1 Osaka University
†1 Presently with National Taiwan University
a) hsu@cy2sec.comm.eng.osaka-u.ac.jp
b) r05922177@ntu.edu.tw
c) hideaki@cy2sec.comm.eng.osaka-u.ac.jp
d) miyaji@comm.eng.osaka-u.ac.jp
e) liao@csie.ntu.edu.tw

paid by manager, everything cost money. Therefore, the de-

sign of stack is necessary to preserve the financial fairness.

In this research, we used some cryptographic techniques to

minimize the stack. Makes manager don’t need to store full

stack for all players at the same time.

The design of blockchain allows every participants to ver-

ify its correctness. Therefore, every transaction are in plain

text. In order to preserve privacy, ZCash [1] used non-

interactive zero knowledge proof (NIZK) to provide privacy

to the transaction. However, currently, they didn’t provide

smart contract functionality. In this research, we use prob-

abilistic additive homomorphic encryption to preserve the

privacy of winning probability and proof the number of win-

ning tokens are same between each rounds.

Besides the privacy issue, malicious manager and player

are also able to harm the protocol by abort the game or vio-

late the protocol. For example, in the scratch-off ticket case,

manager can pretend as a player and buy all winning ticket.

In the slot game case, manager will also trying to create the

illusion of high winning probability to attract players to join

the game.

Traditionally, people use trusted third party to keep se-

cretes. Town Crier [5] provides an example of financial

derivative game. Showing how to use Intel SGX to pre-

serve user credentials such as user name and password from

knowing by others. Compared to Town Crier, our protocol

doesn’t use any trusted hardware such as Intel SGX and

includes more sophisticate design to defense malicious man-

ager.

An other approach is zero knowledge proof. Hawk [2] use

In this research, we proposed a smart contract protocol

Computer Security Symposium 2019 
21 - 24 October 2019

©  2019 Information Processing Society of Japan －1223－



to hide the winning probability of slot machine from player.

We will give a brief introduction on common gambling games

and blockchain on section 2, comparing our relative works

in section 3.

2. Background

2.1 Common Gambling Games

2.1.1 Lotto

Lotto is a game based on probability. It supports unlim-

ited players to join the game. Every players can select n ∈ N
numbers from m ∈ N,m > n numbers. The lotto institu-

tion will issue tickets contains the selected n numbers as a

certificate to prove the player chose these numbers before

the winning numbers revealed.

In each round, every players can buy as many tickets as

they want. At the end, the institution will use a fair machine

to generate n winning numbers. This machine is designed

for generating uniformly distributed numbers. Tickets which

includes n numbers identical to the winning number can get

the largest reward. Tickets which includes less than n iden-

tical numbers can also earn smaller reward.

The constant n and m are part of the rules, which makes

the winning probability and the expectation value public to

every player.

2.1.2 Scratch-off Lottery Ticket

Scratch-off lottery ticket is different from lotto. Usually,

the probability of winning the game and the expectation

value of each ticket are public by the lottery institution.

On top of the ticket, there is a special coating to prevent

players from knowing the result before they buy the ticket.

After buying the ticket, players can use coins or other tools

to scratch this coatings off to know if he wins the price or

not. This is the reason why this type of lottery ticket called

scratch-off lottery ticket. This property makes some player

feels more convenient.

Different from the lotto game, players doesn’t need to wait

the reveal of the winning number. They can know the result

immediately after they buying the ticket. However, compar-

ing to lotto, it is more boring since the problem is simplified

from which lucky number you love to which ticket you want.

2.1.3 Slot Machine

Slot machine is a common gambling machine in casino.

Usually, there are three identical rollers in front of the ma-

chine. On each roller, there are several symbols. When the

game starts, three rollers will start to roll in a very fast

but not identical rolling speed. Players can stop the rollers

at anytime by pulling the handle. Usually, the rollers will

slow down one by one. If the symbols on these three rollers

are identical in one line, players can get the reward. The

amount of reward is depends on what symbol you makes

into one line. However, the probability to win the game is

not totally depends on the player’s behavior.

In order to make profit, there are several hidden param-

eters in each slot machine. Casino manager can change

these parameters to change the winning probability. Usu-

ally, these parameters are fixed during the day. Machines

Table 1 Winning probability of common gambling games

Beforehand Halfway Afterward
Lotto Public Public Public
Scratch-off ticket Public Public Public
Slot game Private Private Private

with high probability make players winning money more eas-

ily, and vice versa. The key point for players to maximize

their income is to find a machine with high winning prob-

ability. Experienced players will try to find a slot machine

with high winning probability by their experience based on

the outcome of some test rounds or by the statistic board

on top of each machine in some casino.

2.1.4 Comparison

Table 1 shows the comparison of winning probability be-

tween different types of common gambling game. The win-

ning probability of lotto and scratch-off ticket are always

public. The winning probability of slot game is always pri-

vate.

2.2 Blockchain

2.2.1 Bitcoin

Bitcoin [3] is the first blockchain based cryptocurrency. It

introduced the concept of Proof of Work (PoW), and the

details of how to use PoW to reach consensus and secured

cryptocurrency system. It provides primitive scripting lan-

guage, but mainly used for access control.

2.2.2 Ethereum

Ethereum is similar to bitcoin, but its design philoso-

phy is different. Instead of building a secure cryptocur-

rency system, the Ethereum development team wants to use

Blockchain technology to build a decentralized deterministic

state machine, in other words a world computer.

Due to the difference of design philosophy, the meaning

of transaction is different. In Bitcoin, the purpose of trans-

action is transferring cryptocurrencies from one account to

another account. However, in Ethereum, the purpose of

transaction is state transition.

2.2.3 Smart Contract

Smart contract is the program stored in blockchain such

as Ethereum. It is similar to stored scripts in database.

With smart contracts, we can write programs which will

be executed and verified by all full nodes in the blockchain

network. When we issue a function call to smart contract,

every computation and money transfer will be included in

the same transaction. This atomic property make smart

contract able to prevent various attacks.

2.2.4 Transaction Fee (Gas)

Even though Ethereum is a world computer, people needs

to pay for the computation. Different from stored scripts

in database, smart contracts can only triggered by someone

who can afford to the computation. Transaction fee is the

necessary fee to execute smart contract or money transfer.

The amount of fee depends on the computation and storage

usages.

－1224－



2.3 Trusted Third Party

Trusted third party (TTP) is the party which cab be

trusted by everyone. There are different type of trust. For

example, the trust of not disclose any secret, the trust of

always execute some program correctly or the trust of not

abscond with money.

2.4 Trusted Execution Environment

Trusted execution environment (TEE) is the execution

environment which can be trusted by everyone. Normal

user space programs can be easy affected by other programs

with higher privilege such as operating system. For exam-

ple, memory, disk, network, everything not fully controlled

by the program is vulnerable. TEE is the environment that

the program will not be affected by any other programs.

2.5 Commitment Scheme

Commitment scheme is a common way to proof some se-

cret not changed before revealing. There are two phase of

commitment scheme, Commit phase and reveal phase. In

the commit phase, user will use one way function such as

hash function to create a digest from a secret. The digest

can be shared to any party. After the commit phase, user

will reveal the secret. This is so called reveal phase. Com-

mitment scheme can be used in various places, for example,

rock-paper-scissors. Assume there are two player, Alice and

Bob. In the commit phase, Alice and Bob share the digest

of their choice to each other, rock, paper or scissors. Then,

in reveal phase, they share their real choice to each other.

Both of them can verify the justness of the game by exam-

ining if each others choice equals to their previous digest or

not.

2.6 Zero Knowledge Proof

Zero knowledge proof is similar to commitment scheme,

but verifier can verify it without revealing secrete. For ex-

ample, with public g, Alice can prove to Bob that she knows

y = gx without revealing x.

Generally speaking, a practical general purposed zero

knowledge proof can prove a NP statement C be True, with

public input in and a secret witness w. For example, Al-

ice can prove to Bob that she knows w = x = 3 makes

in = (g, y) = (2, 8) such that C(w, in) = C(x, (g, y)) =

(y == gx).

3. Relative Works

3.1 Town Crier

Town crier [5] is a system which use Intel Software Guard

Extensions (SGX), a trusted execution environment (TEE),

to build a trusted third party (TTP). The main purpose of

Town Crier is to provide secured data feeds from HTTPS en-

abled websites to smart contract, solving the problem that

smart contract cannot access HTTPS enabled websites.

There are two main parts in the Town Crier system, Town

Crier smart contract and Town Crier server. In the server

side, the main program is running in a TEE called enclave

Blockchain

Town Crier

Contract

Financial

Derivative

Contract

Town Crier Server

Relay

Enclave

(Public Key,

Private Key)

Data Source

stock-price.com
HTTPS

Fig. 1 Town crier system structure

created by Intel SGX. Everyone can ask the Intel attesting

service if the program is really running in a valid Intel SGX

enclave.

Town Crier can not only fetch normal websites, it can also

fetch private data from websites which needs user creden-

tials. For example, user can use Town Crier server’s public

key to encrypt their user name and password. After Town

Crier fetch the request from smart contract, it can decrypt

the user name and password within the enclave, then en-

crypt the user name and password by HTTPS and login to

the website.

Practically, it provides an example of how to use Town

Crier to create a gambling contract based on HTTPS en-

abled website’s data feeds as figure 1. First, the gambling

contract sends a request to Town Crier contract for a specific

stock price. Second, programs in Town Crier server enclave

fetch the request. Third, the program fetch stock price from

website. Forth, the program sends the result back to Town

Crier contract and calls the gambling contract.

Even though the design of Town Crier is remarkable since

it can hide private data in the enclave, but its security is

based on the trust to Intel hardware, not based on the trust

to cryptography.

3.2 Hawk

Hawk [2] is a smart contract protocol to provide privacy

on smart contract. There are one manager and several play-

ers. It assume manager will never disclose any information

submitted by player, in other words manager is a TTP.

Different from Town Crier, Hawk use non-interactive zero

knowledge proof (NIZK) as its cryptographic primitive.

Both player and manager can to use NIZK to generate proof

for smart contract validation without revealing their private

data.

It provides an example of how to use this protocol to build

a rock-paper-scissors game. The work flow is showed in

figure 2. First, player 1 and player 2 choose their input

rock, paper or scissor respectively and encrypt it by man-

ager’s public key. Then compile the whole operation then

into NIZK proof π1 and π2 and submit to smart contract

for validation. Second, manager calculate the result based

on players’ input and submit it with the NIZK proof π3 of

the whole calculation to smart contract. Therefore, smart

contract can validate the whole process by π1, π2 and π3

without knowing players’ choice.

－1225－



Player1 Player2 Manager Smart Contract

NIZK proof π1 and encrypted input ENCpkM
(in1)

NIZK proof π2 and encrypted input ENCpkM
(in2)

Fetch π1, ENCpkM
(in1), π2, ENCpkM

(in2)

Compare in1 and in2

NIZK proof πM and the result

Validate result by

π1, π2, πM
Fetch the result

Fetch the result

Fig. 2 Hawk protocol

The design of Hawk protocol seems perfect, but still based

on a strong assumption that manager will not disclose any

player’s information. In other words, manager will not col-

lude with any other player or even pretend as a player by

himself.

4. Difficulties

4.1 Financial Fairness

In a gambling game, players need to pay money to partic-

ipate it. Not only player pays money, both player and man-

ager needs to pay transaction fee to send messages to smart

contract. If either player or manager violates the protocol

or aborts the game, they need to be punished financially.

In the design of Ethereum smart contract, the smart

contract itself includes an account. To ensure the finan-

cial fairness, before the game starts, player and manager

are required to deposit money in to the smart contract ac-

count. The deposit amount is larger than or equal to another

party’s maximum loss.

Ethereum smart contract also includes an incremental

counter. Based on the timer, if any player or manager didn’t

respond within a given time window, they will be financially

punished. The deposits stored in the smart contract will be

transferred to others as compensation.

4.2 Preserving Privacy

As described in section 2.2, a Blockchain system with

smart contract can ensures the output of the game binds

with monetary transfer in a decentralized manner. This pro-

cedure will be verified by all full nodes over the Blockchain

network. However, spread information to all full node means

there are no secrets on Blockchain. One way to preserve pri-

vacy is to limit the information we put into the smart con-

tract. However, limited information makes full nodes hard

to understand the work flow and cannot verify it for us.

To protect the confidentiality of critical information, tra-

ditional solution is TTP. TTP promise the correctness of

the execution results and ensures that they will not disclose

critical information to others.

4.2.1 TTP Disadvantage : Correctness of Execu-

tion Result

Even though zero knowledge proof can ensure the verifia-

bility by smart contract, the usage of stack is still necessary.

To encourage TTP generate correct results, one common

way is to ask them to lock some stacks in smart contract.

The usage of stack can not only make up loss to their clients,

but also punish these third party for giving incorrect results.

However, excessive stack might actually reduce the efficiency

of the services provided by trusted third party since they

only have limited amount of money.

4.2.2 TTP Disadvantage : Information Leakage

Information leakage is critical especially TTP can make

profit from it. For example, a gambling game includes many

participants with conflicting of interest. If TTP leak any

critical information to any player, the fairness of the game

can broke easily. Even though zero knowledge proof can en-

sure the correctness of execution result, it still cannot ensure

that TTP will not leak information to others.

4.3 Transaction Fee (Gas)

As we mentioned in section 2, in order to maintain the

efficiency of the Blockchain system and prevent some mali-

cious contracts from occupying the computation resources,

the gas on Ethereum smart contract is determined by the

amount of computation resources used by the transaction.

Thus, reducing gas usage is an important issue especially

when the protocol includes complicated cryptographic tech-

niques.

4.4 Security Issues

Even though blockchain and smart contract already pro-

vides reliable access control and protect the protocol from

many common security issues such as replay attacks. There

are still several security issues need to take care about.

4.4.1 Security Issues Caused by Manager

4.4.1.1 Manager pretends as a player

Manager knows all secrets. In the scratch-off lottery ticket

case, he can pretend himself as one of the players to join the

game and buy all winning tickets. This attack is hard to

identify and is one of the most critical problem needs to be

solved.

4.4.1.2 Manager changes gaming parameters

Manager is the only person who knows secret gaming pa-

rameter, for example, the winning probability. In order to

attract players to join the game, manager might set high

winning probability at first. After several rounds, manager

then lower the probability to make profit.

4.4.1.3 Manager aborts the game

In most cases, manager make profit by operating the

smart contract, providing service to players. However, in

some cases, if manager predict that he will lose money, he

might want to abort the game temporarily.

4.4.2 Security Issues Caused by Player

Different from manager, player cannot play so many

tricks. However, player can still aborts the game if he pre-

－1226－



dict that he will lose money.

5. Our Protocol

5.1 Overview

In this section, we will explain the simplified slot game

model, the roles in the protocol, the smart contracts which

provide services, the tokens used by the smart contract, the

life cycle of the game and two different design philosophies.

5.1.1 Slot game

As explained in section 2.1.3, slot game is a common gam-

bling game in casino. To simplify the game and make the

rule more clear, we made following assumptions.

• The winning probability of each slot machine will not

changed during the same day.

• Only the manager can change the winning probability

before the start of each day.

5.1.2 Life cycle

In order to better describe the life cycle, we need to define

the game day.

Game Day Game day is a time period. In the same game

day, the probability between each round of games will

not be changed.

In each game day, the basic life cycle is as follows.

( 1 ) Game day start.

( 2 ) Manager set probability and do necessary operation.

( 3 ) Manager start the game.

( 4 ) Players join the game.

( 5 ) Manager close the game.

( 6 ) Game day ends.

5.1.3 Roles

Manager Manager is the person who own the smart con-

tract. He needs to decide the winning probability of

the slot machine smart contract and keep the probabil-

ity privately until it is necessary to reveal.

Manager2 Manager2 is the person who do the permuta-

tion of encrypted tokens. We assume he will not share

any information with Manager.

Player Player is the person who want to play the game.

He needs to choose which lucky number he wants and

communicate with the manager through smart contract.

Slot machine smart contract Slot machine contract is

the contract which manager provide the service. As de-

scribed in section 2.2.3, smart contract can be treated

as a TTP with no privacy. Smart contract is a fixed

program which control stacks and verify if participants

follows the protocol. It is also the platform which play-

ers and manager communicate with each others.

Financial manager smart contract Financial man-

ager contract is the contract which handles financial

related affairs. It provides three main functionality.

( 1 ) Issues tokens for the operation of the slot machine

contract.

( 2 ) Exchange token and ether used by the slot machine

contract.

( 3 ) A shuffling service for the players who want to pre-

serve their privacy.

5.1.4 Tokens

Ether, a currency created by ethereum team, is the token

designed for the reward of mining new blocks. It is cre-

ated by the beginning of the ethereum blockchain and can

not generated as our wish. In order to create more financial

flexibility and follow the convention of real world casino. In-

stead of using ethers to play the game, issuing new tokens

is necessary. Financial manager smart contract is the smart

contract which provides this functionality.

5.1.5 Different design philosophies

In real world, the winning probability is always hidden

from players. In order to maintain the fairness of the game,

there are some international gambling institutions which cer-

tifies the fairness of the machine, and do spot checks peri-

odically.

There are two different design philosophies depends on

the needs of manager.

Disclose private parameter In this design, the win-

ning probability will eventually be disclosed to the pub-

lic. Every player wants to know the real winning prob-

ability especially after they lose the game. If a man-

ager sets an extremely low winning probability, there

might be no players to join the game anymore. A good

manager will set winning probabilities in a reasonable

range to maintain the relationship with players. After

the winning probability be disclosed to the public, ev-

ery player can verify if the probability is really used

in the past games. If the manager lies to the players,

he will be punished by giving his stacks to players as

compensation.

Never disclose private parameter In this design, the

winning probability will never be disclosed to the pub-

lic. Even though disclose winning probability might cre-

ate better user experience, some managers might still

want to keep the winning probability privately to pro-

tect their interests. In this case, it needs more compli-

cated ways to ensure the hidden winning probability is

identical between each rounds. This might cause more

gas since it needs more computation resources.

In the following section, we proposed two scheme. Scheme

A adopts “disclose private parameter” design philosophy

and scheme B adopts “never disclose private parameter” de-

sign philosophy.

5.2 Features

• Manager can refuse to accept some player’s enrollment

request.

• The protocol doesn’t use trusted third party (TTP).

• The protocol doesn’t use trusted execution environment

(TEE).

• The protocol doesn’t use zero knowledge proof.

• The historical data, such as winning probabilities, of

each smart contract is public.

5.2.1 Financial fairness

• Both players and manager needs to deposit stacks into

smart contract to ensure financial fairness.

－1227－



5.2.2 Preserving privacy

• The privacy of the winning probability is protected by

the additive homomorphic encryption.

• Depends on if the manager wants to decrypt all tokens

or not, it can achieve both “disclose private parameter”

and “never disclose private parameter” design philoso-

phy.

• Before the acceptance of an enrollment, manager cannot

know the content of the request.

5.2.3 Security

• Manager cannot increase the statistic value of the win-

ning probability by pretending as a player.

• Manager cannot get take advantage by pretending as a

player.

• Smart contract can verify if manager changes the win-

ning probability or not in each round.

• If necessary, smart contract can compensate player in

each round.

• Both manager and player cannot take advantage by

aborting the game.

5.3 Assumptions

5.3.0.1 Cryptographic hash function assumption:

There is a one-way function, which is practically unfeasi-

ble to invert and can keep strong collision resistance.

5.3.0.2 Assumption of digital signature:

There exists a secure digital signature algorithm, which

can deterministically generate signature from each messages.

5.3.0.3 Assumption of probabilistic additive ho-

momorphic encryption:

There exists a secure probabilistic additive homomorphic

encryption algorithm. Such that ∀a, b ∈ Fp, E(a) + E(b) ≡
E(a+b) and E(a) ̸= E(b) if a = b, where Fp is a finite field.

5.3.0.4 Assumption of secure permutation

There exists a secure permutation algorithm.

5.4 Life cycle of each game day

We assume the smart contract is already deployed on

blockchain before initialization, and will not be destroyed

by the end of the life cycle.

( 1 ) Initialization phase

( 2 ) Game phase (repeat multiple times)

( a ) Initialization phase

( b ) Enrollment phase

( c ) Reveal phase

( 3 ) Reveal phase (optional)

5.5 Notations

5.5.1 Cryptographic functions

• H() : cryptographic hash function.

• Sign() : deterministic digital signature function.

• pkM , skM : manager’s public and secret key pair used

for signature.

• E() : probabilistic additive homomorphic encryption

function.

• Perm() : secure permutation algorithm.

5.5.2 Game parameters

• N : number of tokens in each round.

• M ≤ N : number of winning tokens in each round.

• Ti : Ti = 1 if it is a winning token, Ti = 0 if it is a

losing token, where i is the ith token.

• f : fine.

• Z : Z ≤ f × (number of rounds in game phase) stack

deposited by manager when game day starts.

• dmin, dmax : the range of bet.

• d : dmin ≤ d ≤ dmax amount of money player want to

bet.

• r : odds. Player get r × d if he wins.

• tw : time window to accept enrollment.

• hG = H(N, f, dmin, dmax, r, tw).

5.6 The protocol

5.6.1 Initialization phase

( 1 ) Manager initialize smart contract with pkM .

( 2 ) Manager decideN,M,Z, f, dmin, dmax, r, tw and calcu-

late hG.

( 3 ) Manager deposit stack Z and use game parameter

N, f, dmin, dmax, r, tw, hG to initialize the game.

5.6.2 Game phase

5.6.2.1 Initialization phase

( 1 ) Manager generate N tokens T1, T2, ..., TN and encrypt

them as E(T1), E(T2), ..., E(TN ). There are exactly M

winning token and N −M losing tokens.

( 2 ) Manager submit E(T1), E(T2), ..., E(TN ) and

ZKP
[∑N

i=1 Ti =
∑N

i=1 T̂i

∣∣∣E (∑N
i=1 Ti

)
, E

(∑N
i=1 T̂i

)]
to smart contract.

( 3 ) Smart contract verify the E(
∑N

i=1 Ti) equals to

E(
∑N

i=1 T̂i)

5.6.2.2 Enrollment phase

( 1 ) Player fetch game parameterN, f, dmin, dmax, r, tw, hG

from smart contract to check if he wants to join or not.

( 2 ) Player fetch all tokens E(T1), E(T2), ..., E(TN ) from

smart contract.

( 3 ) Player choose lucky number s.

( 4 ) Player sends enrollment request Comm(s), d to smart

contract.

( 5 ) If manager doesn’t have enough stack Z ≤ f , smart

contract will not accept the request.

( 6 ) Manager fetch the request and accept enrollment.

( 7 ) Smart contract verify the validity and lock d × r, the

maximum reward for player from stack Z.

5.6.2.3 Reveal phase

( 1 ) Player reveal s to smart contract.

( 2 ) Manager fetch s from smart contract, reply s′ =

SignpkM
(H(R + s)) and send T(s′ mod N)+1 to smart

contract.

( 3 ) Smart contract verify T(s′ mod N)+1 by

E(T(s′ mod N)+1).

( 4 ) If it is a winning token, smart contract sends (d × r)

to player. Otherwise, smart contract unlock manager’s

stack (d× r).

－1228－



Player Manager Smart Contract

Initilize with parameter pkM

Deposit Z, Game parameter N, f, dmin, dmax, r, tw, hG

Fetch N, r, f, dmin, dmax, tw, hG

Game Phase

(Repeat multiple times)

Reveal
∑N

i=1 T̂i

Verify
∑N

i=1 T̂i by E(
∑N

i=1 T̂i)

Reveal Phase (Optional)

Fig. 3 Game day

Player Manager Manager2 Smart Contract

E(T1), E(T2), ..., E(TN )

ZKP
[∑N

i=1 Ti =
∑N

i=1 T̂i

∣∣∣E (∑N
i=1 Ti

)
, E

(∑N
i=1 T̂i

)]

Verify the ZKP of
∑N

i=1 Ti and
∑N

i=1 T̂i

Fetch E(T1), E(T2), ..., E(TN )

Perm(E(T1), E(T2), ..., E(TN ))

Initialization Phase

Fig. 4 Initialization phase of game phase

Player Manager Smart Contract

Fetch E(T1), E(T2), ..., E(TN )

Enrollment request Comm(s), deposit d

Fetch Comm(s), d

Accept enrollment

Lock d× r from Z

Enrollment Phase

Fig. 5 Enrollment phase of game phase

5.6.3 Reveal phase (optional)

The reveal phase is optional. Manager can decide if he

wants to reveal true winning probability or not by himself.

( 1 ) Announce
∑N

i=1 T̂i by revealing E(
∑N

i=1 T̂i)

( 2 ) Smart Contract checks if it is a valid proof.

( 3 ) If manager lies, he will be punished by

f × (number of rounds).

6. Discussion

6.1 Financial fairness

The design of timeout tw, stack Z and fine f are used for

prevent both manager and player aborts the game or violate

the protocol. Since smart contract can verify all behavior

of manager in each round, the stack pool Z doesn’t need

to contain large amount of money. It only needs to contain

Player Manager Smart Contract

Fetch enrollment status

Announce 1 ≤ s ≤ N

Fetch s

ZKP [Ts]

Verify the ZKP of Ts

Transfer d× r to player if

it is the winning token

Fetch the result

Reveal Phase

Fig. 6 Reveal phase of game phase

－1229－



dmax × r × n for manager to maintain the operation of at

least n rounds.

6.2 Preserving privacy

The usage of probabilistic additive homomorphic en-

cryption algorithm makes it possible to proof the sum

of all tokens are same between each rounds. Such that∑N
i=1 E(Ti) ≡ E(

∑N
i=1 Ti) and E(Ti) ̸= E(Tj) if Ti = Tj .

Also, the winning probability equals to (
∑N

i=1 Ti)/N .

6.3 Security issue : Manager may pretends as a

player

The design of using new set of tokens in each round can

prevent the manager from taking advantages by pretend as

a player, in other words, prevent manager from buying all

winning tokens by himself as the scratch-off ticket case ex-

plained in section 4.4.1.1.

However, manager can still pretend as a player to join

the game and buy winning tokens to increase the statisti-

cal winning probability. Including secure random source R,

such as block header, in the selection of token can increase

the difficulty for manager to buy winning token by himself.

Prevent manager from creating an illusion that the winning

probability is high. Without this mechanism, by pretend-

ing as a player, manager can always buy winning tokens to

increase the statistic value of winning probability.

6.4 Security issue : Manager may abort the game

In the protocol, it adopts a commitment scheme to hide

the lucky number s chosen by player. The purpose of this

mechanism is to provide a opportunity for manager to refuse

some player’s enrollment before knowing the player’s selec-

tion. Without the commitment scheme, even though we in-

cluded random source R, there are still some possibility for

manager to calculate s′ before the acceptance of enrollment

and refuse it if he is tending to lose the game.

6.5 Comparison with Town Crier

As described in section 3.2, Town crier is a system which

use TEE to construct TTP to fullfill the gap between smart

contract and HTTPS enabled websites. Compared with

Town Crier’s financial derivative game, the design of our

protocol has following advantages.

• This protocol doesn’t rely on TEE such as Intel SGX.

• Before the acceptance of an enrollment, manager cannot

know the content of the request.

• Manager cannot take advantages by pretending as a

player such as buying all winning token or increasing

the statistical value of winning probability. In Town

Crier, manager can pretend as a player to join the game

and do these things as their wish.

6.6 Comparison with Hawk

Another relative work, Hawk, a smart contract protocol

used NIZK to preserve privacy of player’s request and proof

the correctness of manager’s execution result, provides an

Table 2 Compare with relative works

Our Protocol Hawk Town Crier
TTP No Yes Yes
TEE No Optional Yes
Trusted Hardware No Optional Yes

example of rock-paper-scissors game. Compared with Hawk,

the design of our protocol has following advantages.

• This protocol doesn’t need TTP. In hawk, manager is a

TTP, trusted not spreading information to other play-

ers.

• Before the acceptance of an enrollment, manager cannot

know the content of the request.

• Manager cannot take advantages by pretending as a

player such as buying all winning token or increasing

the statistical value of winning probability. In Hawk,

manager can pretend as a player to join the game and

do these things as their wish.

7. Conclusion

In this work, we proposed a smart contract protocol for

a slot game and achieves all features explained in section

5. In our design, we used cryptographic primitives such as

probabilistic additive homomorphic encryption to make the

validation of winning probability in each round possible. We

also considered several malicious behavior of manager and

player in section 4. However, we still have many future works

need to be done.

8. Future Works

• Comparison of several probabilistic additive homomor-

phic encryption algorithm.

• Optimization of the encryption algorithm.

• Implementation of the web interface for player.

• Implementation of the server used by manager.

• Implementation of the smart contract.

References

[1] Daira Hopwood et al. “Zcash protocol specification”.

In: Tech. rep. 2016–1.10. Zerocoin Electric Coin

Company, Tech. Rep. (2016).

[2] Ahmed Kosba et al. “Hawk: The blockchain model

of cryptography and privacy-preserving smart con-

tracts”. In: 2016 IEEE symposium on security and

privacy (SP). IEEE. 2016, pp. 839–858.

[3] Satoshi Nakamoto et al. “Bitcoin: A peer-to-peer elec-

tronic cash system”. In: (2008).

[4] Gavin Wood et al. “Ethereum: A secure decentralised

generalised transaction ledger”. In: Ethereum project

yellow paper 151 (2014), pp. 1–32.

[5] Fan Zhang et al. “Town crier: An authenticated data

feed for smart contracts”. In: Proceedings of the 2016

aCM sIGSAC conference on computer and commu-

nications security. ACM. 2016, pp. 270–282.

－1230－


