
Proof of data distribution based on trusted
hardware

Batnyam Enkhtaivan1,a) Pooja Dhomse1,b)

Abstract: We consider a scenario where two parties prove to the third party that a communication between
them happened. This can be seen in a case of advertisement where the data is distributed by a distributor
on behalf of owner to the user. Specifically, we address the possibility of collusion between the distributor
and the user in which the owner is deceived to pay for false claim of distribution. In our protocol, the
distributor and the user are equipped with trusted hardware. The data is encrypted and decrypted by the
trusted hardware of the distributor and the user, respectively, with shared secret key. When decrypting the
data, user’s hardware generates a proof and sends it to the distributor. This proof is used as the proof of
distribution to show to the owner for payment. In such way, we prevent the collusion with the help of the
trusted hardware. Moreover, we use the blockchain technology as a method for the ID management and
payment.

Keywords: Trusted hardware, Blockchain, Data distribution

1. Introduction

The internet traffic is increasing greatly in the recent years

due to more people sharing data - music, images, videos, and

etc. - on the internet[1]. And it is expected to increase more

as the 5G era arrives with a numerous IoT devices commu-

nicating with each other[2], autonomous car connected to

the internet, and 8K video streaming[3]. In correspondence

with this trend, companies are deploying their services in-

cluding video streaming on the cloud services such as AWS,

Google Cloud, Microsof Azure, and etc. reducing the cost to

maintain servers by themselves[4]. Similarly, “information

bank” is being considered to be used for collecting, storing

and sharing of personal data[5], Roughly saying, the “infor-

mation bank” is a third party that manages the customers’

data similar to the banks who manages their customers’ de-

posit.

In contrast to relying on the centralized cloud and “in-

formation bank” services for sharing data, utilization of the

distributed network technologies are proposed as another so-

lution to avoid single point of failure and bandwidth costs.

IPFS[6] is a peer to peer version controlled file system where

each node acts as a server and file is referred by the base-

58 encoded hash of the content. Combining IPFS with the

blockchain technology[7], Filecoin[8] is a decentralized stor-

age network in which the miners earn the filecoins by pro-

viding storage services to clients and thus on the contrary,

clients spend the filecoins to miners for storing and distribut-

1 Security Research Laboratories, NEC Corporation
a) b-enkhtaivan@bc.jp.nec.com
b) p-dhomse@cj.jp.nec.com

ing the data. Specifiying in video, Videocoin[9] provides a

decentralized video encoding, storage, and content distribu-

tion network in the form of peer to peer algorithmic mar-

ket. Videocoin uses proof of retrievability for storage min-

ing, proof of transcoding for compute mining, and a simple

messaging protocol for distribution mining. Theta[10] is an-

other network protocol which provides incentive mechanism

for decentralized video delivery and streaming by allowing

the individual users to share their redundant computing and

bandwidth resources. It uses a resource oriented micropay-

ment pool which allows a viewer to do chunk-wise payment

for video content pulled from multiple nodes.

Such reliance on the third party shifts the cost of stor-

ing and distributing from the customer to the third party.

We consider that the cost of distributing includes the us-

age of the bandwidth which is a limited resource against the

increasing traffic as mentioned above. In some aspect, the

online advertising industry can be a good example of moneti-

zation of the usage of the bandwidth. Advertising platforms

earn money from the owners who are willing to advertise

their products or services for playing the corresponding ad-

vertisements on their distribution platform. This money is

paid as per the number of views the advertisement has re-

ceived[11]. In this scheme, the owners trust the distributors

for reporting the correct number of views.

However, there is no trusted way for the owners to verify

how many users have actually received the advertisement.

In such situations, it is common to use the digital signature

of the receiver as a proof that the data is transferred from

the distributor to the user[10], [12]. But, it does not prevent

the fraud case where the distributor and the user collude to

Computer Security Symposium 2019
21 - 24 October 2019

© 2019 Information Processing Society of Japan －1218－

earn money without actually using the distributor’s band-

width for sending data.

In this paper, we present a protocol which addresses both

the issues - paid distribution on the network and mutual

distrust between the distributor and the owner. We use

the blockchain for the identity management and the pay-

ment process, and the hardware based Trusted Execution

Environment (TEE) to prevent the collusion between the

distributor and the user.

The paper is organized as follows. In Sec. 2, we pro-

vide general description of the hardware-based TEE. The

overview of our protocol is presented in Sec. 3. Then, in

Sec. 4, we describe the protocol in details. The experiment

results are provided in Sec. 5. Finally, we conclude in Sec.

6

2. Preliminaries: TEE

TEE is an execution environment which is tamper resis-

tant and provide the protected memory and isolated execu-

tion space to prevent the regular operating system or appli-

cations from controlling or observing the data being stored

or processed inside them. Though there are several hardware

based trusted execution environments available, we utilize

Intel’s Software Guard Extensions (SGX)[13], [14] for our

implementation because of its wide availability.

Intel SGX is a set of security architecture extensions that

enables a Trusted Execution Environment (TEE). The TCB

(trusted computing base) of SGX is very small and it only

constitutes the CPU’s package boundary and software com-

ponents related to SGX. It allows the creation of secure

enclaves that can keep secret. Enclaves are nothing but

isolated execution units with encrypted code and data. In

addition to this, Intel SGX also has two attestation services

- local attestation and remote attestation. Local attestation

is a mechanism with which enclave can prove its authenticity

to another enclave running on the same platform. Remote

attestation is a process through which a client can prove to

the service provider that an enclave is running on the SGX

compatible machine at the given security level.

In this paper, we use enclave to generate and share the

secret encryption key between the trusted hardwares of dis-

tributor and user. The trusted hardware on both the ends

confirm trustworthiness to each other using remote attesta-

tion.

3. Overview

We consider an example of advertising industry where

there are three entities - a service provider whom we call

as an owner, an advertiser whom we call as a distribu-

tor, and a viewer to whom we call as a user. Owner is

an individual/organization who owns a particular commer-

cial video of the product or service. Distributor is an indi-

vidual/organization who is responsible for distributing this

commercial to maximum number of users and receive the

corresponding distribution fees from the owner. User is an

individual who views this commercial and get the knowledge

Fig. 1 Setup

about a particular product or service. Owner pays the dis-

tributor according to the number of views his commercial

has got. But the fundamental problem for the owner is to

find the exact number of users who have actually watched

or received his commercial. Owner cannot simply trust the

distributor as there can be a case of collusion between dis-

tributor and user in which they both can cheat owner and

obtain the maximum monetary benefit.

We propose a protocol where the user and distributor are

equipped with SGX compatible machines SGX1 and SGX2

respectively. SGX1 generates an encryption key and shares

with SGX2. SGX2 encrypts the data and send it to SGX1.

SGX1 decrypts the data and generates the proof of decryp-

tion which is sent to SGX2. SGX2 shares the proof of distri-

bution with the owner. Owner pays the corresponding fees

to the distributor.

4. Details

We do not trust the distributor and user for following

the protocol. Therefore we use trusted hardware to create

digitally signed payloads. Then, if the trusted hardware is

not compromised the payload should be correct. We trust

the trusted hardware to securely store the secret key. We

trust that the symmetric key encryption is appropriately

used such as renewing the secret key regularly. We do not

consider the recently reported side channel attacks on In-

tel SGX[15], [16], [17]. We also assume that the ownership

of the enclave and the necessary information for attesta-

tion and signature verification are registered properly be-

forehand.

Table 1 Summary of notations

Notation Description
dataID data ID
i data chunk index
n total number of data chunks
Hash() hash function
hashi hash of data chunk i
〈· · · 〉σsgx payload signed by SGX
payload output of the SGX2 (distributor’s SGX)
dataChunki data chunk with index i
enChunki encrypted data chunk i
prevHash cumulated hash upto previous data chunk
proof output of the SGX1 (user’s SGX)

4.1 TEE-hosted functionalities

The below Fig.1 shows the pseudo code for the TEE

－1219－

Algorithm 1 TEE-hosted functionalities

1: variables

2: sk . secret key for encryption and decryption

3: end variables

4: function DivideData(dataID, n)

5: return dataChunk1, dataChunk2, ..., dataChunkn

6: end function

7: function Encrypt(dataChunki)

8: return enChunki

9: end function

10: function Decrypt(enChunki)

11: return dataChunki

12: end function

13: function ProcessSGX2 (dataChunki, i, n)

14: enChunki=Encrypt(dataChunki)

15: hashi=Hash(dataChunki)

16: payload=〈enChunki||dataID||i||n||hashi〉σSGX2

17: return payload

18: end function

19: function ProcessSGX1 (enChunki, prevHash)

20: dataChunki = Decrypt(enChunki)

21: hashi = Hash(dataChunki)

22: prevHash = (prevHash||hashi)

23: proof=〈prevHash〉σSGX1

24: return dataChunki, proof

25: end function

hosted functionalities. Each TEE is equipped with certified

keypairs to generate signature. We assume that the verifica-

tion keys are published to the public bulletin board such as

the blockchain. Also, the user’s SGX generates a secret key

sk for symmetric encryption that is shared with the distrib-

utor SGX via secure channel. Such secure channel can be

established during the remote attestation between them as

described in the manual[13]. We describe each TEE function

in the following.

DivideData: divides the data into the number of chunks

given to it.

Encrypt: encrypts the input data with the secret key sk

using symmetric encryption.

Decrypt: decrypts the input data with the secret key sk

using symmetric encryption.

ProcessSGX2: takes in a data chunk, index, the number

of division, and returns payload signed with the signing

key of the distributor’s SGX.

ProcessSGX1: takes in an encrypted data chunk and

cumulated hash, and returns the data chunk and the

proof , which is the cumulated hash signed with the

signing key of the user’s SGX.

4.2 Process description

The Fig.2 shows the overall sequence diagram for the pro-

tocol. We provide the protocol details stepwise as follows:

Step 1 Owner, distributor, and user register their identi-

fying information on the blockchain. Additionally, dis-

Fig. 2 Sequence diagram

tributor and user register the ownership of their respec-

tive SGX enclaves and public key on blockchain. Let the

user’s SGX be SGX1 and distributor’s SGX be SGX2.

SGX1 generates a secret key sk for symmetric encryp-

tion, and then sends the sk to SGX2. The sk is then

used for encryption and decryption of the data. Then

the user requests for the data corresponding to dataID.

We assume that the dataID corresponding to the data

is publicly available.

Step 2 The distributor divides the data into n data

chunks using DivideData(dataID, n) and then exe-

cutes ProcessSGX2 as explained in step 3. There are

reasons for deviding this data into chunks. The first

reason is to prevent the scenario in which the user re-

ceives the data but does not send the proof back to

the distributor. In such case, the distributor cannot get

paid by the owner. This is similar to the reason pro-

vided by Theta[10] protocol. The second reason is due

to size limit of the protected memory used for the SGX

enclave. It has limit of 128 MB as described in the Intel

Software Guard Extensions SDK for Linux OS[18].

Step 3 The distributor executes

ProcessSGX2(dataChunk1, 1, n) to obtain payload

for dataChunk1. Then, the distributor sends the

payload,

〈enChunk1||dataID||1||n||hash1〉σSGX2, (1)

－1220－

to the user.

Step 4 The user then executes ProcessSGX1 in which

the SGX1 first decrypts enChunki and retrieves

dataChunki. Then the SGX1 calculates the hash for

this dataChunki. This hash is combined with the

prevHash and stored as new prevHash. Then, the user

obtains the proof as signed cumulated hash prevHash.

and the dataChunki. The user sends the proof to the

distributor to receive the next payload for dataChunk2.

Step 5 The distributor verifies the signature of the cu-

mulated hash value. Also, the distributor checks if the

value of the cumulated hash is correct. If both the con-

ditions are satisifed, the distributor sends the payload

with the dataChunk2.

Step6 After repeating the step 3 - 6 for for all the data

chunks, the distributor has the last proof .

Step7 The distributor register the last proof on

blockchain and the smart contract for payment is

executed.

4.3 Role of blockchain

In above mentioned protocol, we propose to use

blockchain for below three purposes. Permissioned

blockchain or permissionless blockchain, any of them can be

used. It depends on the application requirements in which

the protocol will be used.

• ID management: it can be done by recording the

registration IDs of owner, distributor and user. Also,

distributor and user record their indivisual public keys

and enclave identifiers on blockchain

• Proof logging: the distributor can submit the final

proof of distribution on blockchain. This can be ver-

ified by the owner before making any payment to the

distributor. Since, the number of such proofs in case

of large number of users will be more, the owner might

not be able to check all the proofs. In such case, a

trusted third party can be allocated to do this job. Al-

ternatively, the owner can opt to randomly sample the

proofs and verify only those proofs

• Payment process: either the owner verifies the proof

and pays, or a smart contract for payment be executed

to do the corresponding payment to the distributor is

possible.

5. Experiment

We implement this protocol on SGX compatible machine

for the different values of data size. We used Intel(R)

Xeon(R) CPU E3-1270 v6 @ 3.80GHz, 32 GB RAM. The OS

is Ubuntu 16.04.4. As to the cryptographic protocols, we uti-

lize AES-GCM 128 bit for symmetric encryption, SHA256

for hashing umplemented in the SDK of the Intel’s SGX.

We have measured execution time for these operations. The

Fig.3 shows relation between the execution time and the

chunk sizes.

In a general observation, it seems unusual that hashing

time is larger than encryption and decryption time. How-

Fig. 3 The measured time for encryption, decryption (AES-
GCM 128 bit) and hashing (SHA256) against varying data
chunk sizes.

ever, we find that similar result is presented by D. Harnik[19]

comparing different implementations of these functions on

the Intel’s SGX. Such reversing of the execution time of the

encryption and hashing seems to be due to the implementa-

tion of the SGX SDK.

The execution time increases linearly as the data chunks

size increases. We find that even for 50 MB size chunks the

execution times are in the order of 100 ms. Therefore, to

transfer 1 TB file (2000 data chunks), our protocol takes few

minutes. This is similar to the network transfer time for 10

GB ethernet network if we apply simple calculation. So, we

think our protocol is feasible in the real application.

We find that if the data chunk size goes beyond 50 MB,

the program can be executed, but the output is incorrect.

This happens because the data size is larger than the en-

clave memory size. The allowed memory size for SGX is 128

MB. However, the actual memory size seems to be around

100 MB as this blog states[20].

So, if we allocate several enclaves, the memory size for

each enclave would be smaller. However, we find that this

size limit can be increased on a system that supports paging

such as linux as discussed in this forum[21].

6. Conclusion

It is important that data transfer on the network should

be charged as it consumes the network bandwidth. How-

ever, in scenarios where the distribution of the data is done

by a third party on behalf of the owner - a case of advertising

domain, it is necessary to prove that the user has actually re-

ceived the commercial. To accomplish this, we have utilized

digital signature and trusted hardware technology of Intel

SGX to generate the proof of data distribution. Due to this,

the trust is moved from human to hardware. If there are

auditing requirements in a particular application, the same

protocol can be enhanced by using blockchain technology for

logging the several operations which can later be audited by

the auditor.

－1221－

References

[1] Cisco Visual Networking Index: Fore-
cast and Trends, 2017-2020, available from
〈https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-
741490.pdf〉

[2] available from 〈https://www.gartner.com/en/newsroom/press-
releases/2017-02-07-gartner-says-8-billion-connected-
things-will-be-in-use-in-2017-up-31-percent-from-2016〉

[3] available from 〈https://www.gartner.com/en/newsroom/press-
releases/2018-12-18-gartner-survey-reveals-two-thirds-of-
organizations-in〉

[4] available from 〈https://www.gartner.com/en/newsroom/press-
releases/2019-04-02-gartner-forecasts-worldwide-public-
cloud-revenue-to-g〉

[5] available from 〈https://www.dac.co.jp/english/press/2018/20180910 ib〉
[6] IPFS is the Distributed Web, available from

〈https://github.com/ipfs/ipfs〉 (2019.07.29).
[7] Satoshi, N.: Bitcoin: A Peer-to-Peer Electronic Cash

System, available from 〈https://bitcoin.org/bitcoin.pdf〉
(2008).

[8] Protocol Labs.: Filecoin; A Decentralized Storage Network,
available from 〈https://filecoin.io/filecoin.pdf〉 (2017).

[9] Devadutta, G.: VideoCoin - A Decentralized Video
Encoding,Storage, and Content Distribution Network,
available from 〈https://storage.googleapis.com/videocoin-
preico/VideoCoin-Whitepaper.pdf〉 (2017).

[10] Theta: A Decentralized Video Delivery
and Streaming NetworkPowered by a New
Blockchain, available from 〈https://s3.us-east-
2.amazonaws.com/assets.thetatoken.org/Theta-white-
paper-latest.pdf?v=1564378087.136〉 (2018).

[11] Ebtessam, E; The effectiveness of the Pay Per
Click PPC model in today’s business, available from
〈https://www.academia.edu/29728426/〉 (2015).

[12] Król, M; Sonnino, A; Al-Bassam, M; Tasiopoulos, A;
Psaras, I; Proof-of-Prestige: A Useful Work Reward Sys-
tem for Unverifiable Tasks, IEEE International Conference
on Blockchain and Cryptocurrency, (2019).

[13] Intel Corporation; Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Sep 2015. Reference no. 325462-
056US.

[14] Costan, V; Devadas, S; Intel SGX Explained, Published
in IACR Cryptology ePrint Archive 2016, available from
〈https://eprint.iacr.org/2016/086.pdf〉.

[15] Lipp, M; Schwarz, M; Gruss, D; Prescher, T; Haas, W;
Fogh, A; Horn, J; Mangard, S; Kocher, P; Genkin, D;
Yarom, Y; Hamburg, M; Meltdown: Reading Kernel Mem-
ory from User Space, 27th USENIX Security Symposium,
(2018).

[16] Bulck, J. V; Minkin, M; Weisse, O; Genkin, D; Kasikci,
B; Piessens, F; Silberstein, M; Wenisch, T. F; Yarom, Y;
Strackx, R; FORESHADOW: Extracting the Keys to the
Intel SGX Kingdom withTransient Out-of-Order Execution,
27th USENIX Security Symposium, (2018).

[17] Kocher, P; Horn, J; Fogh, A; Genkin, D; Haas, W; Ham-
burg, M; Lipp, M; Mangard, S; Prescher, T; Schwarz, M;
Yarom, Y; Spectre Attacks: Exploiting Speculative Execu-
tion, available from 〈https://meltdownattack.com/〉 (2018)

[18] Intel Software Guard Extensions
SDK for Linux OS, available from
〈https://01.org/sites/default/files/documentation/ in-
tel sgx sdk developer reference for linux os pdf.pdf〉
(2016).

[19] Harnik, D; Impressions of Intel SGX performance, available
from 〈https://medium.com/danny harnik/impressions-of-
intel-sgx-performance-22442093595a〉 (2017).

[20] Machida, T; Yamamoto, D; Morikawa, I; A Survey and
Analysis on Intel SGX and Its Demonstrations, SCIS,
(2017).

[21] available from 〈https://software.intel.com/en-
us/forums/intel-software-guard-extensions-intel-
sgx/topic/670322〉 (2016).

－1222－

