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Abstract: This paper describes a scalable method of vulnerability detection for binary code based on the similarity between 

binaries. Every binary procedure is decomposed to several comparable strands, and those strands will be transformed into a 

normalized form by the optimizer, which allows determining similarity between two binary procedures through hash value 

comparison. The similarity based on hash value makes it possible to find semantic equivaluence in strands without using any debug 

information. Due to the low computational complexity of hash value comparison, analyzing binaries compiled from million lines 

of source code is feasible within an acceptable time. The high accuracy of vulnerability detection is achieved by using IR re-

optimization and normalization method to eliminate the binary difference introduced by compile configurations. We have 

implemented our method and applied it to detect several existed vulnerabilities, including Heartbleed and Shellshock. 
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1. Introduction   

 For a security researcher, it always takes plenty of time to 

identify a procedure from a binary since a binary can dramatically 

change when it is compiled using a different configuration like a 

different compiler and optimization level. Every small change in 

setting will bring vast differences into the assembly code.  

Generally, those differences don't affect a program's behavior but 

impede the process that researchers analyze a binary. 

 For some situations like locating a newly discovered zero-day 

threat, it can be susceptible to the time researchers spend on 

binary analysis because one more hour late may cause substantial 

economic losses. For example, the Heartbleed bug disclosed in 

2014 is a severe vulnerability in a widely used implementation of 

the Transport Layer Protocol named OpenSSL. In the case, some 

traditional time-consuming binary analysis methods may not 

suitable for fast address the vulnerable code in binaries. 

 We propose a scalable method of vulnerability detection for 

binary code named Razor-V. This method is based on the 

similarity between binary procedures through hash value 

comparison and was first proposed in the paper [1]. We made 

some modifications to this technique to allow it works on pure 

VEX-IR and combine several metrics to enhance the detection 

result. The instrument consists of three fundamental parts. 

The first part is re-optimizing the assembly code to the highest 

optimization level, which aims to unify the binaries' optimization 

levels. The second part is responsible for program slicing. Every 

procedure's assembly code will be sliced to several comparable 

strands according to the data dependence. The third part 

processes the strands to a standardized form by normalization and 

canonicalization. Furthermore, to get a more precise detection 

result with a low false-positive rate, we apply the TFIDF method 

on hash value to assign every strand with a suitable weight that 
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can correctly reflect every strand's rarity. 

We address the following research questions. 

RQ1 Is VEX-IR a suitable language for re-optimization 

based vulnerability detection? 

RQ2 Can mismatch be solved without introducing another 

tool? 

RQ3 Can Razor-V provide a high-speed detection without 

loss of accuracy? 

2. Background and Problem 

In this section, we note several existed approaches to detect 

vulnerabilities and introduce three main types of problems we 

have met in research.  

Generally，the existed sliced-based detect approaches can be 

classified by the way they define the similarity between two 

procedures. Some of them evaluate similarity by using a program 

solver to compare two procedures' behavior. The problem with 

this method is the time-efficiency.  Detecting vulnerability in a 

real binary usually requires the tool to search thousands of 

procedures, which a program solver may take tens of hours to 

finish. Others use an optimizer to transform slices into a 

uniformed representation and directly compare their hash values. 

However, it is hard to select a proper kind of IR (Intermediate 

Representation) to achieve that. LLVM-IR is the most widely 

used, but it does not have an official lifter, which means some 3rd 

party lifters have to be introduced, which cannot ensure the 

correctness of the lifted result. VEX-IR has its official lifter, but 

it does not have a powerful optimizer compared with LLVM-IR. 

A compromise is lifting the binary to VEX-IR, then translate it to 

LLVM-IR, which takes time and there is not any widely used 

translator proved to be reliable. 

The main goal of this paper is to eliminate the differences that 

are introduced by compile configurations using pure VEX-IR.  
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Figure 1. An overview of our vulnerability detection chain. Taking a query procedure as an input, the similarity between procedures can  

be evaluated through a lift, re-optimization, normalization, and rarity estimation. Once the features of the query procedure have been 

calculated, it will be compared with all procedures' features to evaluate the matching score and match proportion for each procedure. 

 

As shown in Figure 2, the assembly codes compiled from the 

same source code become significantly different with each other 

in register address and instruction selection, but keep 

semantically consistent. The forms of those differences may be 

vast, but generally, they can be classified into three types. 

 

Figure 2. Differences brought by compile configurations 

 Semantically equivalent code: It is mainly caused by different 

instruction selection. For example, when a compiler tries to 

compile a conditional jump, it has to use some instructions 

corresponding to compare functionality to check if its condition 

is satisfied. For the most widely-used instruction set, they all 

provide many alternative compare instructions like cmp and cmn 

for direct compare and compare negative. Each compiler with a 

different setting has its instruction selection preference, then 

binary difference generates. 

Arbitrary register use: For different compilers, vast register 

allocation strategies will be applied in various scenarios. 

Different architectures also affect the registers that compilers use; 

each of them has a unique register naming method and hardware 

resources. For example, x86-64 name its register by the r follows 

a number, but ARMⓇ prefers x follows a number. 

Optimization level variance: Optimization level variance can 

be found in different scenarios. Binaries from a development 

environment usually have a low optimization level, which is more 

convenient to understand the relationship between assembly code 

and programming language. Released binaries are usually highly 

optimized to get an efficient performance. Generally, binaries are 

compiled with a suitable optimization level to fit designers' 

requirements, which will dramatically affect the generated 

assembly code. 

3. Proposed approach 

We proposed a scalable method for detecting procedures that 

are compiled from the same source code in binaries. Moreover, 

by combining several different metrics, we correct mismatched 

cases that are due to insufficient re-optimization. Figure 1 gives 

an overview of our vulnerability detection chain. Given a 

procedure from a binary as a query procedure and a set of binaries 

as search areas, we aim to detect all procedures in binaries that 

are close to the query procedure by evaluating the similarity 

between them. Several essential steps are described as follows： 

Step1, lifting assembly code into VEX-IR & Re-optimization. 

We use the existed tool name Angr to lift binaries into VEX-IR. 

The main reason for using VEX-IR is that it has an official lifter, 

which can ensure the correctness of the lifting result and Angr 

provides full functional toolchains to analyze VEX-IR. Moreover, 

VEX-IR has been widely used in some industrial level products 

like Valgrind, which proves its dependability. 

Step2, decomposing procedure into comparable strands. 

Directly using the whole query procedure to match always 

requires some heavyweight program verifier and is very easy to 

fail due to the fact that many compile configurations can differ 

the output binaries. Then to achieve a fast speed detection method, 

the only viable method is to decompose the query procedure to 

several comparable units, each has isolated semantic information. 

We use the slicing method based on data dependency, which is 

fully discussed in paper [4]. For each strand, it gives every 

variable a complete data dependency with a backward direction 

until strands can cover all the code of the procedure. 

Step3, normalizing strands into a standardized form. Strands 

cannot be directly used for matching because they still contain 

several types of differences that are introduced by compile 

configuration. There are several steps of normalization that have 

to be applied onto strands, including variable name, address, 

offset, function name normalizations. After all these steps, 

strands are qualified to match. 

Step4, evaluating similarity score. Two procedures' matching 

score can be expressed as the sum of all matched strands. 

However, giving every strand with the same weight can result in 
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a false detection result due to that common strands contribute too 

much score. A suitable solution for this is assigning every strand 

with a weight to limit the effect brought by common strands. The 

weight can be defined by TFIDF (Term Frequency-Inverse 

Document Frequency), which reflects the rarity of the strand. 

After applying the weighted score method, strands can contribute 

different scores corresponding to its rarity. 

For VEX-IR, in some cases, due to insufficient re-optimization, 

it is hard to transform semantically equivalent strands into a 

syntactically equivalent form. In this case, many procedures are 

not completely matched, which means those procedures contains 

rare strand by coincidence may mismatch even if there is a huge 

gap between the size of the two procedures. Taking matched 

proportion into account can effectively decrease mismatch cases 

due to poor re-optimization. 

4. Implementation details 

4.1 Program Slicing 

The slicing method used in this paper is first proposed in this 

paper [4]. This method aims to construct several unrelated strands 

each give one variable a complete data dependence. Cause the 

method's decomposing sequence is from the end of the code to 

the beginning of the code, it is named as backward slicing. There 

are some other slicing algorithms like forward slicing, backward 

slicing with partial data dependence, and isomorphic subgraph, 

which is described in the paper [5].  For decomposing a 

procedure into several comparable units, backward slicing 

performs well and avoid generating too many tiny strands. The 

detail of backward slicing is shown in Figure 3. 

 

 

Figure 3. The implementation of backward slicing. 

 

The algorithm starts to slicing the program at the end of code 

and iterate all instructions backward. The instruction referred 

variables and defined variables can determine whether the 

instruction is included in a new strand or not. When the algorithm 

generates one strand for one loop, and it keeps iterating all 

instructions until there are none unused instructions in the 

procedure. Figure 4 shows an example of backward slicing. 

The drawback of backward slicing is that the size of strands is 

usually larger than the size of the original procedure due to that 

occasionally some instruction in different strands refers to the 

same previous instruction, then two strands contain duplicated 

code. This case can be solved by making a small modification on 

the original algorithm to iterate not all instructions but unused 

instructions in the procedure, then the size of strands is strictly 

equal to the size of the original procedure. However, after that, 

not all the strands contain complete data dependence, some of it 

only have partial data dependence to remove duplicated code. 

 

 

Figure 4. An example of backward slicing. 

 

4.2 Strand Normalization 

Strands normalization aims to eliminate the difference in 

variable naming, address, register, and datatype selection. 

Different compilers and compile configurations can result in 

different compile strategies, which can be reflected in the VEX-

IR. Figure 4 gives an example of the compile difference. 

The strands shown in Figure 4 are compiled from the same 

source code but with different compilers and optimization levels. 

Those differences result in different variable names, addresses, 

and data types. The semantical equivalence between two strands 

indicates that it is possible to normalize them to a uniformed 

representation. 

 

Figure 5. VEX-IR from different configurations 

 

By renaming variable names, addresses, and data types by the 

sequence they appear in the code, a strand can be transformed 

into a normalized form, which eliminates all the difference 
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introduced by compilers and configurations. A comparison 

between the original VEX-IR strand and the normalized strand is 

shown in Figure 5. 

 

 

Figure 6. Strand Normalization 

 

4.3 Similarity Evaluation 

Benefit from the previous steps performed to re-optimize and 

normalize the strands, we can implement an efficient comparison 

between strands based on hash values. We can use a set of hashed 

strands to represent a given procedure p: 

𝑅(𝑝) = {𝑀𝐷5(𝑁𝑜𝑟𝑚𝑎𝑖𝑧𝑒(𝑠𝑝))|𝑠𝑝 ∈ 𝑝} 

The initial definition of similarity between the query procedure 

p and the target procedure q is that the similarity equals the 

intersection of R(p) and R(q). However, the problem of this 

method is that common strands, and rare strands contribute the 

same to the similarity score, which makes it possible that some 

unrelated procedures can mismatch with the query procedure 

because of the same common strands they have. Therefore, it is 

necessary to introduce a new method to evaluate the significance 

of a strand. A common solution is TFIDF  which provide a fair 

way to estimate the probability that a term appears in a document. 

Follows this idea, we can give our definition of similarity and 

significance: 

𝑆(𝑝, 𝑞) = ∑
1

𝑃𝑟(𝑠)
𝑠∈𝑅(𝑝)∩𝑅(𝑞)

(1) 

where: 

𝑃𝑟(𝑠) =
𝑓(𝑠)

|𝑃|
(2) 

f(s) = {
|{𝑝 ∈ 𝑃|𝑠 ∈ 𝑅(𝑝)}|, s ∈ P

1, else
(3) 

  We determine the significance of each strand by inverse 

probability in equation (1). Then as defined in equation (2), the 

probability of a strand can be estimated by its frequency f(s) 

divided by the number of all target procedures P. To get a more 

accurate estimate result, it is better to estimate the significance 

using a set of randomly selected procedures. Then the equation 

(1) and (2) can be updated to (4) and (5), which gives the 

equations a specific estimate field W. 

𝑆𝑊(𝑝, 𝑞) = ∑
1

𝑃𝑟𝑊(𝑠)
𝑠∈𝑅(𝑝)∩𝑅(𝑞)

(4) 

𝑃𝑟𝑊(𝑠) =
𝑓(𝑠)

|𝑃|
(5) 

According to the paper [1], setting the size of W to 1K is enough 

to get an accurate estimation of Pr(s). 

  Using the similarity score discussed above as the only metric 

for vulnerability detection can achieve an accurate and robust 

performance when most of the strands can correctly match with 

the target procedure. However, for VEX-IR, there are not many 

usable re-optimize tools. A general reason for the failure of a 

vulnerability detection is the insufficient re-optimization that 

makes the strands cannot be correctly matched even after 

normalization. For those cases, one procedure that contains a 

rare strand may get a comparable high similarity score by 

accident, then a false positive happens. To solve this problem, 

we are going to introduce a new metric that can be used to avoid 

false positives by filtering the match result. Generally, although, 

a false positive case can get a comparably high score, its size 

can be very different from the query procedure. Therefore, a 

metric that can reflect the matched proportion can help us 

distinguish false-positive cases. We define the matched 

proportion in an intuitive form as follows: 

𝑃(𝑝, 𝑞) =  
|𝑅(𝑝) ∩ 𝑅(𝑞)|

|𝑅(𝑝) ∪ 𝑅(𝑞)|
(6) 

The similarity score combined with the matched proportion 

can give an accurate detecting performance even in a poorly 

matched environment with a slightly increased computational 

cost. 

5. Evaluation 

In this section, we evaluate our methods' performance, 

including how matched proportion improves the detection 

accuracy in a poorly matched environment, how our methods 

perform when detects a real vulnerability and a comparison with 

the program solver based tool ESH. 

5.1 Hybrid Metrics 

  The metric similarity score can be reliable when the vulnerable 

procedure can match most of its strands. However, in some cases, 

the poor performance of re-optimizer makes it possible to 

generate several false positive. 

 

Table 1. A comparison of similarity score and filtered similarity 

score in a detect experiment over 6000 procedures 

Vulnerability Similarity Score Filtered Similarity Score 

#FPs #PFPs #FPs #PFPs 

Heartbleed 0 2 0 0 

Shellshock 2 12 0 0 
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As shown in Table 1, #FPs are for false positives, and #PFPs 

are for potential false positives, which those cases may be false-

positive depending on the threshold for distinguishing vulnerable 

procedures against normal procedures. After using the matched 

proportion to filter the target procedures, we focus on finding 

vulnerable procedures in those procedures that get a high matched 

proportion by similarity scores. Benefit from the filtration, we 

exclude the effects of procedures contains rare strands on 

coincidence. We can draw this conclusion due to the fact that both 

of the FPs and PFPs decrease when the proportion filter method 

is applied to target procedures. It is acceptable to get a more 

accurate performance with slightly increased computational cost. 

This show that pure VEX-IR without introducing other language 

is enough for vulnerability detection (RQ1). Moreover, with 

taking an additional metric into account, the mismatched cases 

are significant decreased (RQ2). 

5.2 Vulnerability Detection 

Finding Heartbleed: We are going to use our methods to detect 

the vulnerability Heartbleed. The query procedure is the 

vulnerable procedure named tls1_process_heartbeat from the 

binary OpenSSL -1.01. The detail of this experiment is shown in 

Table 2. 

 

Table 2. The configuration for #1 experiment. 

 Name Compiler 

Query Procedure tls1_process_heartbeat Clang -O1 

Detect Area OpenSSL GCC -O3 

 

The detect area is the binary OpenSSL compiled by GCC with 

a different optimization level. For this experiment, we expect our 

method can detect two vulnerable functions for the binary, one is  

tls1_process_heartbeat and dtls1_process_heartbeat from the 

binary. Both of them are the cause of Heartbleed and share most 

of the code. Therefore, our method should detect both of them 

with only tls1_process_heartbeat as a query procedure. The result 

of detection shown as follows: 

 

Figure 7. Result for Heartbleed 

Due to our filter rules, we only find the vulnerable procedures 

at the rightmost side of the proportion axis and can easily find 

out two outliers corresponding to two vulnerable functions. 

Finding Shellshock: The query procedure for Shellshock is 

parse_and_execute. We are going to detect the vulnerable 

function from the binary Bash which contains over 2000 

functions. The configuration of this experiment is shown in 

Table 3. 

 

Table 3. The configuration for #2 experiment. 

 Name Compiler 

Query Procedure parse_and_execute Clang -O1 

Detect Area Bash GCC -O3 

 

The result of the detection is shown as follows: 

 

Figure 8. Result for Shellshock 

 

Also, we can easily find the vulnerable procedure at the top of 

the rightmost side of Figure 7. 

5.3 Performance Comparison 

  The main advantage of the search method based on 

comparisons of hash values is that the search efficiency is 

significantly higher than those search methods based on 

comparison using some program solvers. In this section, we will 

show some comparison between Razor-V and the ESH, a search 

tool which also takes strands as basic search units, but does a 

comparison using a program solver. We use the same test dataset 

with ESH which includes OpenSSL, Bash and so on. The detail 

of the data set can be found in the paper [2] and the home page pf 

ESH. All experiments have been performed on a machine with 

one IntelⓇ  i7-4870HQ (2.5GHz) processor (4 cores) running 

WindowsⓇ 10.  

  To keep the consistency of experimental with paper [1], we 

randomly pick up 1000 procedures from our dataset and use their 

strands to draw estimation of a strand's rarity. According to paper 

[1], 1000 procedures are enough amount to give every strand a 
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proper weight when evaluating similarity. In Table [4], we show 

two experiments where two real vulnerability are used as query 

functions and detect against 1500 procedures. 

 

Table 4. The comparison between Razor-V and the ESH. 

CVE Alias Razor-V ESH 

ACC Time ACC Time 

2014-0160 Heartbleed 1 46s 1 19h 

2014-6271 Shellshock 1 43s 0.998 15h 

 

  Since our hardware cannot afford a heavyweight task like ESH, 

each of the ESH performance tests takes more than two days to 

finish. In Table 4, we directly reference the accuracy and running 

time from paper [1] to avoid the suspicion that we degrade the 

ESH's performance. From the results of experiments, it is hard to 

conclude that re-optimization based hash value comparison is 

more accurate than the comparison based on a program solver. 

However, one thing is clear that our approach is much faster than 

the ESH without any accuracy losses, benefit from the fast speed 

matching (RQ3). The main reason for that is although nowadays 

program solvers are quite efficient, they still not suitable for some 

task that requires fast speed. On our hardware, match each 

procedure pair may take time varies from several minutes to 

several tens of minutes depending on the size of the procedure. 

Prefiltering the impossible pair by the difference of size can 

slightly improve the performance. However, the search speed is 

still slow compared with matching hash values. 

6. Related work 

This paper mainly concentrates on code re-optimization, 

slicing, and normalization. We have already mentioned some of 

the related works like the pioneer of using re-optimization to 

eliminate the difference caused by compile configuration [1]. [1] 

proposed a method of vulnerability detection using both VEX-IR 

and LLVM-IR. The approach described in [1] first lift binary to 

VEX-IR and then translate it to LLVM-IR to avoid the matching 

performance being limited by the lack of VEX-IR re-optimizer.  

  Compared with merely slicing a program by the data 

dependence, there are several advanced slicing methods, 

including tracelets and isomorphic subgraphs. The concept of 

tracelets can be described as continuous, partial traces of an 

execution path. In paper [3], it fully discussed how to use tracelets 

to build a similarity between procedures which is a more robust 

metric when compiles optimize the control flow of a program. 

This method combined both data dependency and control flow to 

improve slicing accuracy. Another method is using isomorphic 

graphs which can be regarded as an improved version of the 

traditional slicing method based on data dependence. In paper [5], 

data dependence graphs are constructed in which maximal 

isomorphic subgraphs will be detected to use as procedures 

matching proof. Several different methods to detect isomorphic 

subgraphs have been discussed in paper [5]. 

7. Conclusion and Future work 

  We proposed an approach to detecting vulnerable code in 

executable.  This approach can be applied onto cross compilers, 

optimization levels scenario. We decompose procedures to 

comparable strands and achieve a fast speed matching using a 

hash function. To avoid false positives due to insufficient re-

optimization, we introduce to a new metric to filter those strands 

that have a significant difference in size. Furthermore, we 

compare our approach with the ESH, which showing that 

compare with using program solvers to match strands, using hash 

values can provide a much faster performance without any 

accuracy losses. 

  VEX-IR has its official lifter, which ensures the correctness of 

the lifted result, but it doesn't have a powerful re-optimizer that 

supports out-of-context re-optimization. This requires some 

supplemental methods like adding more metrics to deal with 

insufficient re-optimization. Meanwhile, LLVM-IR as another 

backend language with multiple optimization tools is expected to 

work better than VEX-IR in re-optimization. As our future work, 

we plan to perform several experiences to compare VEX-IR and 

LLVM-IR in all aspects of procedures matching. 
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