

Similarity Based Binary Vulnerability Detection

Zeming Tai1 Hironori Washizaki1 Yoshiaki Fukazawa1 Yurie Fujimatsu2

Jun Kanai2 Yoshikazu Hanatani2

Abstract: This paper describes a scalable method of vulnerability detection for binary code based on the similarity between

binaries. Every binary procedure is decomposed to several comparable strands, and those strands will be transformed into a

normalized form by the optimizer, which allows determining similarity between two binary procedures through hash value

comparison. The similarity based on hash value makes it possible to find semantic equivaluence in strands without using any debug

information. Due to the low computational complexity of hash value comparison, analyzing binaries compiled from million lines

of source code is feasible within an acceptable time. The high accuracy of vulnerability detection is achieved by using IR re-

optimization and normalization method to eliminate the binary difference introduced by compile configurations. We have

implemented our method and applied it to detect several existed vulnerabilities, including Heartbleed and Shellshock.

Keywords: binary analysis, binary code search, binary similarity, static analysis

1. Introduction

 For a security researcher, it always takes plenty of time to

identify a procedure from a binary since a binary can dramatically

change when it is compiled using a different configuration like a

different compiler and optimization level. Every small change in

setting will bring vast differences into the assembly code.

Generally, those differences don't affect a program's behavior but

impede the process that researchers analyze a binary.

 For some situations like locating a newly discovered zero-day

threat, it can be susceptible to the time researchers spend on

binary analysis because one more hour late may cause substantial

economic losses. For example, the Heartbleed bug disclosed in

2014 is a severe vulnerability in a widely used implementation of

the Transport Layer Protocol named OpenSSL. In the case, some

traditional time-consuming binary analysis methods may not

suitable for fast address the vulnerable code in binaries.

 We propose a scalable method of vulnerability detection for

binary code named Razor-V. This method is based on the

similarity between binary procedures through hash value

comparison and was first proposed in the paper [1]. We made

some modifications to this technique to allow it works on pure

VEX-IR and combine several metrics to enhance the detection

result. The instrument consists of three fundamental parts.

The first part is re-optimizing the assembly code to the highest

optimization level, which aims to unify the binaries' optimization

levels. The second part is responsible for program slicing. Every

procedure's assembly code will be sliced to several comparable

strands according to the data dependence. The third part

processes the strands to a standardized form by normalization and

canonicalization. Furthermore, to get a more precise detection

result with a low false-positive rate, we apply the TFIDF method

on hash value to assign every strand with a suitable weight that

 1 Waseda University.

can correctly reflect every strand's rarity.

We address the following research questions.

RQ1 Is VEX-IR a suitable language for re-optimization

based vulnerability detection?

RQ2 Can mismatch be solved without introducing another

tool?

RQ3 Can Razor-V provide a high-speed detection without

loss of accuracy?

2. Background and Problem

In this section, we note several existed approaches to detect

vulnerabilities and introduce three main types of problems we

have met in research.

Generally，the existed sliced-based detect approaches can be

classified by the way they define the similarity between two

procedures. Some of them evaluate similarity by using a program

solver to compare two procedures' behavior. The problem with

this method is the time-efficiency. Detecting vulnerability in a

real binary usually requires the tool to search thousands of

procedures, which a program solver may take tens of hours to

finish. Others use an optimizer to transform slices into a

uniformed representation and directly compare their hash values.

However, it is hard to select a proper kind of IR (Intermediate

Representation) to achieve that. LLVM-IR is the most widely

used, but it does not have an official lifter, which means some 3rd

party lifters have to be introduced, which cannot ensure the

correctness of the lifted result. VEX-IR has its official lifter, but

it does not have a powerful optimizer compared with LLVM-IR.

A compromise is lifting the binary to VEX-IR, then translate it to

LLVM-IR, which takes time and there is not any widely used

translator proved to be reliable.

The main goal of this paper is to eliminate the differences that

are introduced by compile configurations using pure VEX-IR.

 2 Toshiba Corporation.

Computer Security Symposium 2019
21 - 24 October 2019

© 2019 Information Processing Society of Japan －940－

Figure 1. An overview of our vulnerability detection chain. Taking a query procedure as an input, the similarity between procedures can

be evaluated through a lift, re-optimization, normalization, and rarity estimation. Once the features of the query procedure have been

calculated, it will be compared with all procedures' features to evaluate the matching score and match proportion for each procedure.

As shown in Figure 2, the assembly codes compiled from the

same source code become significantly different with each other

in register address and instruction selection, but keep

semantically consistent. The forms of those differences may be

vast, but generally, they can be classified into three types.

Figure 2. Differences brought by compile configurations

 Semantically equivalent code: It is mainly caused by different

instruction selection. For example, when a compiler tries to

compile a conditional jump, it has to use some instructions

corresponding to compare functionality to check if its condition

is satisfied. For the most widely-used instruction set, they all

provide many alternative compare instructions like cmp and cmn

for direct compare and compare negative. Each compiler with a

different setting has its instruction selection preference, then

binary difference generates.

Arbitrary register use: For different compilers, vast register

allocation strategies will be applied in various scenarios.

Different architectures also affect the registers that compilers use;

each of them has a unique register naming method and hardware

resources. For example, x86-64 name its register by the r follows

a number, but ARMⓇ prefers x follows a number.

Optimization level variance: Optimization level variance can

be found in different scenarios. Binaries from a development

environment usually have a low optimization level, which is more

convenient to understand the relationship between assembly code

and programming language. Released binaries are usually highly

optimized to get an efficient performance. Generally, binaries are

compiled with a suitable optimization level to fit designers'

requirements, which will dramatically affect the generated

assembly code.

3. Proposed approach

We proposed a scalable method for detecting procedures that

are compiled from the same source code in binaries. Moreover,

by combining several different metrics, we correct mismatched

cases that are due to insufficient re-optimization. Figure 1 gives

an overview of our vulnerability detection chain. Given a

procedure from a binary as a query procedure and a set of binaries

as search areas, we aim to detect all procedures in binaries that

are close to the query procedure by evaluating the similarity

between them. Several essential steps are described as follows：

Step1, lifting assembly code into VEX-IR & Re-optimization.

We use the existed tool name Angr to lift binaries into VEX-IR.

The main reason for using VEX-IR is that it has an official lifter,

which can ensure the correctness of the lifting result and Angr

provides full functional toolchains to analyze VEX-IR. Moreover,

VEX-IR has been widely used in some industrial level products

like Valgrind, which proves its dependability.

Step2, decomposing procedure into comparable strands.

Directly using the whole query procedure to match always

requires some heavyweight program verifier and is very easy to

fail due to the fact that many compile configurations can differ

the output binaries. Then to achieve a fast speed detection method,

the only viable method is to decompose the query procedure to

several comparable units, each has isolated semantic information.

We use the slicing method based on data dependency, which is

fully discussed in paper [4]. For each strand, it gives every

variable a complete data dependency with a backward direction

until strands can cover all the code of the procedure.

Step3, normalizing strands into a standardized form. Strands

cannot be directly used for matching because they still contain

several types of differences that are introduced by compile

configuration. There are several steps of normalization that have

to be applied onto strands, including variable name, address,

offset, function name normalizations. After all these steps,

strands are qualified to match.

Step4, evaluating similarity score. Two procedures' matching

score can be expressed as the sum of all matched strands.

However, giving every strand with the same weight can result in

－941－

a false detection result due to that common strands contribute too

much score. A suitable solution for this is assigning every strand

with a weight to limit the effect brought by common strands. The

weight can be defined by TFIDF (Term Frequency-Inverse

Document Frequency), which reflects the rarity of the strand.

After applying the weighted score method, strands can contribute

different scores corresponding to its rarity.

For VEX-IR, in some cases, due to insufficient re-optimization,

it is hard to transform semantically equivalent strands into a

syntactically equivalent form. In this case, many procedures are

not completely matched, which means those procedures contains

rare strand by coincidence may mismatch even if there is a huge

gap between the size of the two procedures. Taking matched

proportion into account can effectively decrease mismatch cases

due to poor re-optimization.

4. Implementation details

4.1 Program Slicing

The slicing method used in this paper is first proposed in this

paper [4]. This method aims to construct several unrelated strands

each give one variable a complete data dependence. Cause the

method's decomposing sequence is from the end of the code to

the beginning of the code, it is named as backward slicing. There

are some other slicing algorithms like forward slicing, backward

slicing with partial data dependence, and isomorphic subgraph,

which is described in the paper [5]. For decomposing a

procedure into several comparable units, backward slicing

performs well and avoid generating too many tiny strands. The

detail of backward slicing is shown in Figure 3.

Figure 3. The implementation of backward slicing.

The algorithm starts to slicing the program at the end of code

and iterate all instructions backward. The instruction referred

variables and defined variables can determine whether the

instruction is included in a new strand or not. When the algorithm

generates one strand for one loop, and it keeps iterating all

instructions until there are none unused instructions in the

procedure. Figure 4 shows an example of backward slicing.

The drawback of backward slicing is that the size of strands is

usually larger than the size of the original procedure due to that

occasionally some instruction in different strands refers to the

same previous instruction, then two strands contain duplicated

code. This case can be solved by making a small modification on

the original algorithm to iterate not all instructions but unused

instructions in the procedure, then the size of strands is strictly

equal to the size of the original procedure. However, after that,

not all the strands contain complete data dependence, some of it

only have partial data dependence to remove duplicated code.

Figure 4. An example of backward slicing.

4.2 Strand Normalization

Strands normalization aims to eliminate the difference in

variable naming, address, register, and datatype selection.

Different compilers and compile configurations can result in

different compile strategies, which can be reflected in the VEX-

IR. Figure 4 gives an example of the compile difference.

The strands shown in Figure 4 are compiled from the same

source code but with different compilers and optimization levels.

Those differences result in different variable names, addresses,

and data types. The semantical equivalence between two strands

indicates that it is possible to normalize them to a uniformed

representation.

Figure 5. VEX-IR from different configurations

By renaming variable names, addresses, and data types by the

sequence they appear in the code, a strand can be transformed

into a normalized form, which eliminates all the difference

－942－

introduced by compilers and configurations. A comparison

between the original VEX-IR strand and the normalized strand is

shown in Figure 5.

Figure 6. Strand Normalization

4.3 Similarity Evaluation

Benefit from the previous steps performed to re-optimize and

normalize the strands, we can implement an efficient comparison

between strands based on hash values. We can use a set of hashed

strands to represent a given procedure p:

𝑅(𝑝) = {𝑀𝐷5(𝑁𝑜𝑟𝑚𝑎𝑖𝑧𝑒(𝑠𝑝))|𝑠𝑝 ∈ 𝑝}

The initial definition of similarity between the query procedure

p and the target procedure q is that the similarity equals the

intersection of R(p) and R(q). However, the problem of this

method is that common strands, and rare strands contribute the

same to the similarity score, which makes it possible that some

unrelated procedures can mismatch with the query procedure

because of the same common strands they have. Therefore, it is

necessary to introduce a new method to evaluate the significance

of a strand. A common solution is TFIDF which provide a fair

way to estimate the probability that a term appears in a document.

Follows this idea, we can give our definition of similarity and

significance:

𝑆(𝑝, 𝑞) = ∑
1

𝑃𝑟(𝑠)
𝑠∈𝑅(𝑝)∩𝑅(𝑞)

(1)

where:

𝑃𝑟(𝑠) =
𝑓(𝑠)

|𝑃|
(2)

f(s) = {
|{𝑝 ∈ 𝑃|𝑠 ∈ 𝑅(𝑝)}|, s ∈ P

1, else
(3)

 We determine the significance of each strand by inverse

probability in equation (1). Then as defined in equation (2), the

probability of a strand can be estimated by its frequency f(s)

divided by the number of all target procedures P. To get a more

accurate estimate result, it is better to estimate the significance

using a set of randomly selected procedures. Then the equation

(1) and (2) can be updated to (4) and (5), which gives the

equations a specific estimate field W.

𝑆𝑊(𝑝, 𝑞) = ∑
1

𝑃𝑟𝑊(𝑠)
𝑠∈𝑅(𝑝)∩𝑅(𝑞)

(4)

𝑃𝑟𝑊(𝑠) =
𝑓(𝑠)

|𝑃|
(5)

According to the paper [1], setting the size of W to 1K is enough

to get an accurate estimation of Pr(s).

 Using the similarity score discussed above as the only metric

for vulnerability detection can achieve an accurate and robust

performance when most of the strands can correctly match with

the target procedure. However, for VEX-IR, there are not many

usable re-optimize tools. A general reason for the failure of a

vulnerability detection is the insufficient re-optimization that

makes the strands cannot be correctly matched even after

normalization. For those cases, one procedure that contains a

rare strand may get a comparable high similarity score by

accident, then a false positive happens. To solve this problem,

we are going to introduce a new metric that can be used to avoid

false positives by filtering the match result. Generally, although,

a false positive case can get a comparably high score, its size

can be very different from the query procedure. Therefore, a

metric that can reflect the matched proportion can help us

distinguish false-positive cases. We define the matched

proportion in an intuitive form as follows:

𝑃(𝑝, 𝑞) =
|𝑅(𝑝) ∩ 𝑅(𝑞)|

|𝑅(𝑝) ∪ 𝑅(𝑞)|
(6)

The similarity score combined with the matched proportion

can give an accurate detecting performance even in a poorly

matched environment with a slightly increased computational

cost.

5. Evaluation

In this section, we evaluate our methods' performance,

including how matched proportion improves the detection

accuracy in a poorly matched environment, how our methods

perform when detects a real vulnerability and a comparison with

the program solver based tool ESH.

5.1 Hybrid Metrics

 The metric similarity score can be reliable when the vulnerable

procedure can match most of its strands. However, in some cases,

the poor performance of re-optimizer makes it possible to

generate several false positive.

Table 1. A comparison of similarity score and filtered similarity

score in a detect experiment over 6000 procedures

Vulnerability Similarity Score Filtered Similarity Score

#FPs #PFPs #FPs #PFPs

Heartbleed 0 2 0 0

Shellshock 2 12 0 0

－943－

As shown in Table 1, #FPs are for false positives, and #PFPs

are for potential false positives, which those cases may be false-

positive depending on the threshold for distinguishing vulnerable

procedures against normal procedures. After using the matched

proportion to filter the target procedures, we focus on finding

vulnerable procedures in those procedures that get a high matched

proportion by similarity scores. Benefit from the filtration, we

exclude the effects of procedures contains rare strands on

coincidence. We can draw this conclusion due to the fact that both

of the FPs and PFPs decrease when the proportion filter method

is applied to target procedures. It is acceptable to get a more

accurate performance with slightly increased computational cost.

This show that pure VEX-IR without introducing other language

is enough for vulnerability detection (RQ1). Moreover, with

taking an additional metric into account, the mismatched cases

are significant decreased (RQ2).

5.2 Vulnerability Detection

Finding Heartbleed: We are going to use our methods to detect

the vulnerability Heartbleed. The query procedure is the

vulnerable procedure named tls1_process_heartbeat from the

binary OpenSSL -1.01. The detail of this experiment is shown in

Table 2.

Table 2. The configuration for #1 experiment.

 Name Compiler

Query Procedure tls1_process_heartbeat Clang -O1

Detect Area OpenSSL GCC -O3

The detect area is the binary OpenSSL compiled by GCC with

a different optimization level. For this experiment, we expect our

method can detect two vulnerable functions for the binary, one is

tls1_process_heartbeat and dtls1_process_heartbeat from the

binary. Both of them are the cause of Heartbleed and share most

of the code. Therefore, our method should detect both of them

with only tls1_process_heartbeat as a query procedure. The result

of detection shown as follows:

Figure 7. Result for Heartbleed

Due to our filter rules, we only find the vulnerable procedures

at the rightmost side of the proportion axis and can easily find

out two outliers corresponding to two vulnerable functions.

Finding Shellshock: The query procedure for Shellshock is

parse_and_execute. We are going to detect the vulnerable

function from the binary Bash which contains over 2000

functions. The configuration of this experiment is shown in

Table 3.

Table 3. The configuration for #2 experiment.

 Name Compiler

Query Procedure parse_and_execute Clang -O1

Detect Area Bash GCC -O3

The result of the detection is shown as follows:

Figure 8. Result for Shellshock

Also, we can easily find the vulnerable procedure at the top of

the rightmost side of Figure 7.

5.3 Performance Comparison

 The main advantage of the search method based on

comparisons of hash values is that the search efficiency is

significantly higher than those search methods based on

comparison using some program solvers. In this section, we will

show some comparison between Razor-V and the ESH, a search

tool which also takes strands as basic search units, but does a

comparison using a program solver. We use the same test dataset

with ESH which includes OpenSSL, Bash and so on. The detail

of the data set can be found in the paper [2] and the home page pf

ESH. All experiments have been performed on a machine with

one IntelⓇ i7-4870HQ (2.5GHz) processor (4 cores) running

WindowsⓇ 10.

 To keep the consistency of experimental with paper [1], we

randomly pick up 1000 procedures from our dataset and use their

strands to draw estimation of a strand's rarity. According to paper

[1], 1000 procedures are enough amount to give every strand a

－944－

proper weight when evaluating similarity. In Table [4], we show

two experiments where two real vulnerability are used as query

functions and detect against 1500 procedures.

Table 4. The comparison between Razor-V and the ESH.

CVE Alias Razor-V ESH

ACC Time ACC Time

2014-0160 Heartbleed 1 46s 1 19h

2014-6271 Shellshock 1 43s 0.998 15h

 Since our hardware cannot afford a heavyweight task like ESH,

each of the ESH performance tests takes more than two days to

finish. In Table 4, we directly reference the accuracy and running

time from paper [1] to avoid the suspicion that we degrade the

ESH's performance. From the results of experiments, it is hard to

conclude that re-optimization based hash value comparison is

more accurate than the comparison based on a program solver.

However, one thing is clear that our approach is much faster than

the ESH without any accuracy losses, benefit from the fast speed

matching (RQ3). The main reason for that is although nowadays

program solvers are quite efficient, they still not suitable for some

task that requires fast speed. On our hardware, match each

procedure pair may take time varies from several minutes to

several tens of minutes depending on the size of the procedure.

Prefiltering the impossible pair by the difference of size can

slightly improve the performance. However, the search speed is

still slow compared with matching hash values.

6. Related work

This paper mainly concentrates on code re-optimization,

slicing, and normalization. We have already mentioned some of

the related works like the pioneer of using re-optimization to

eliminate the difference caused by compile configuration [1]. [1]

proposed a method of vulnerability detection using both VEX-IR

and LLVM-IR. The approach described in [1] first lift binary to

VEX-IR and then translate it to LLVM-IR to avoid the matching

performance being limited by the lack of VEX-IR re-optimizer.

 Compared with merely slicing a program by the data

dependence, there are several advanced slicing methods,

including tracelets and isomorphic subgraphs. The concept of

tracelets can be described as continuous, partial traces of an

execution path. In paper [3], it fully discussed how to use tracelets

to build a similarity between procedures which is a more robust

metric when compiles optimize the control flow of a program.

This method combined both data dependency and control flow to

improve slicing accuracy. Another method is using isomorphic

graphs which can be regarded as an improved version of the

traditional slicing method based on data dependence. In paper [5],

data dependence graphs are constructed in which maximal

isomorphic subgraphs will be detected to use as procedures

matching proof. Several different methods to detect isomorphic

subgraphs have been discussed in paper [5].

7. Conclusion and Future work

 We proposed an approach to detecting vulnerable code in

executable. This approach can be applied onto cross compilers,

optimization levels scenario. We decompose procedures to

comparable strands and achieve a fast speed matching using a

hash function. To avoid false positives due to insufficient re-

optimization, we introduce to a new metric to filter those strands

that have a significant difference in size. Furthermore, we

compare our approach with the ESH, which showing that

compare with using program solvers to match strands, using hash

values can provide a much faster performance without any

accuracy losses.

 VEX-IR has its official lifter, which ensures the correctness of

the lifted result, but it doesn't have a powerful re-optimizer that

supports out-of-context re-optimization. This requires some

supplemental methods like adding more metrics to deal with

insufficient re-optimization. Meanwhile, LLVM-IR as another

backend language with multiple optimization tools is expected to

work better than VEX-IR in re-optimization. As our future work,

we plan to perform several experiences to compare VEX-IR and

LLVM-IR in all aspects of procedures matching.

References

[1] David Y, Partush N, Yahav E, et al. Similarity of binaries through

re-optimization[J]. programming language design and

implementation, 2017, 52(6): 79-94.

[2] David Y, Partush N, Yahav E, et al. Statistical similarity of

binaries[J]. programming language design and implementation,

2016, 51(6): 266-280.

[3] David Y, Yahav E. Tracelet-based code search in executables[J].

programming language design and implementation, 2014, 49(6):

349-360.

[4] Weiser M. Program Slicing[J]. IEEE Transactions on Software

Engineering, 1984, 10(4): 352-357.

[5] Avetisyan A, Kurmangaleev S, Sargsyan S, et al. LLVM-based

code clone detection framework[C]// Computer Science &

Information Technologies. IEEE Computer Society, 2015.

[6] Sargsyan S, Kurmangaleev S, Belevantsev A, et al. Scalable and

accurate detection of code clones[J]. Programming & Computer

Software, 2016, 42(1):27-33.

[7] Yan S, Wang R, Salls C, et al. SOK: (State of) The Art of War:

Offensive Techniques in Binary Analysis[C]// Security & Privacy.

2016.

[8] Ball T, Larus J R. Efficient path profiling[J]. international

symposium on microarchitecture, 1996: 46-57.

[9] Bellon S , Koschke R , Antoniol G , et al. Comparison and

Evaluation of Clone Detection Tools[J]. IEEE Transactions on

Software Engineering, 2007, 33(9):577-591.

－945－

[10] Comparetti P M, Salvaneschi G, Kirda E, et al. Identifying

Dormant Functionality in Malware Programs[J]. ieee symposium

on security and privacy, 2010: 61-76.

[11] Khoo W M, Mycroft A, Anderson R J, et al. Rendezvous: A search

engine for binary code[C]. mining software repositories, 2013:

329-338.

[12] Rosenblum N E, Miller B P, Zhu X, et al. Extracting compiler

provenance from program binaries[C]. workshop on program

analysis for software tools and engineering, 2010: 21-28.

[13] Bruschi D, Martignoni L, Monga M, et al. Detecting self-mutating

malware using control-flow graph matching[J]. international

conference on detection of intrusions and malware and

vulnerability assessment, 2006: 129-143.

[14] Baker B S. On finding duplication and near-duplication in large

software systems[C]. working conference on reverse engineering,

1995: 86-95.

[15] Ducasse S, Rieger M, Demeyer S, et al. A language independent

approach for detecting duplicated code[C]. international

conference on software maintenance, 1999: 109-118.

[16] Kaur R , Singh S . Clone detection in software source code using

operational similarity of statements[J]. ACM SIGSOFT Software

Engineering Notes, 2014, 39(3):1-5.

[17] Komondoor R, Horwitz S. Using Slicing to Identify Duplication in

Source Code[C]// International Symposium on Static Analysis.

2001.

－946－

