
BLDAG:
Generalization of the Blockchain into Bi-Layered

Directed Acyclic Graph

Atsuki Momose1,a) Jason Paul Cruz2 Yuichi Kaji3

Abstract: A consensus protocol in a permission-less model is crucial in realizing cryptocurrencies and smart
contracts. Nakamoto Consensus uses a Proof of Work (PoW) to form a blockchain, and it is adopted in many
applications including Bitcoin and Ethereum. The blockchain is a convenient structure, but it is so simple
that some inflexibility is brought to the system. As the result, problems such as the security-scalability
tradeoff and wastes of energy have been pointed out for Nakamoto Consensus. Some researchers study a
blockDAG instead of a blockchain, but it is not easy to reach a consensus on the total order of possibly
concurrent blocks in the DAG sturucture. This study proposes a two-step hash puzzle, and extends the
blocks to have two types of hash references. The hash references define a DAG structure and, additionally,
an expectedly chain struture that plays essentially the same role as the blockchain of Nakamoto Consensus.
A novel consensus protocol, Bi-Layered DAG (or BLDAG), is then developed on the two-step hash puzzle and
the extended blocks. BLDAG inherits many favorable properties of Nakamoto Consensus, while problems
such as security-scalability tradeoff and wastes of energy are avoided in BLDAG.

Keywords: blockchain, blockDAG, Proof-of-Work, scalability, cryptocurrency

1. Introduction

1.1 Background

Nakamoto Consensus[1] is widely recognized as a base

component of Bitcoin, but we can regard Nakamoto Consen-

sus as a general protocol for the state machine replication

in the permission-less model (permission-less SMR)[2]. A

state machine replication is an abstraction which bring au-

tonomous nodes in a network to reach a single consensus of

a state machine. The abstraction is said to be permission-

less if nodes can participate to and leave from the network

arbitrary. This means that nobody knows the current mem-

bership of the network, and each node does not know how

many nodes are indeed participating to the network. Be-

cause of its simplicity and versatility, Nakamoto Consensus

is used in many applications including the smart contract

platform such as Ethereum[3], cryptocurrencies[4], access-

control[5], [6], e-voting[7] and a business usecase in a per-

missioned model[8].

In Nakamoto Consensus, distributed nodes form an au-

thenticated data structure that is called a blockchain[9], [10],

[11]. The blockchain is the log of the state machine that is

agreed by nodes, and defines the total order of blocks, and

1 Graduate School of Informatics, Nagoya University
2 Graduate School of Information Science and Technology,

Osaka University
3 Graduate School of Informatics, Nagoya University
a) momose@sqlab.jp

hence the total order of transactions that are recorded in

blocks. For the consistency of transactions, it is desired that

the blockchain does not have any fork. This means that

concurrent creation of blocks should be prevented as far as

possible, and Nakamoto Consensus utilizes Proof-of-Work

(PoW) to control the block creation rate. The amount of

”work” needed to create a block is controlled by a parameter

that is called PoW difficulty. The PoW difficulty is adjusted

so that the average interval of block creation is much more

than the predetermined estimation of the maximum commu-

nication delay in the underlying P2P network. The problem

in practice is that the estimation of the delay tends to be too-

conservativeq if one tries to avoid security issues. The use

of overestimated delay increases PoW difficulty more than

actually needed, which sacrifices the transaction throughput

for the expense for the increased security. This phenomena

is known as the security-scalability tradeoff, and is regarded

as one of most critical problems of Nakamoto Consensus.

Several efforts have been made to mitigate the security-

scalability tradeoff of Nakamoto Consensus. One approach

is to extend or utilize a classical solution for “permis-

sioned” consensus[12], [13], [14] to permission-less model as

in [2], [15], [16]. In these studies, a permissionless consen-

sus (or an initial agreement) is used to select several nodes,

and the committee that consists of those selected nodes pro-

cessses transactions using a permissioned consensus proto-

col. This approach is advantageous to achieve the property

that is called responsiveness, but the framework requires

Computer Security Symposium 2019
21 - 24 October 2019

© 2019 Information Processing Society of Japan －531－

committee members to do their job for certain time of pe-

riod, and spoils the permission-less nature of the network.

The framewrok is not favorable from the viewpoint of se-

curity also; important decisions are made in a centralized

manner by the committee which is a small subset of nodes.

Smaller in number means more risk to be corrupted. Once

the committee is corrupted and hijacked, then there is no

way to recover the security of the system.

Some reseacrhers challenge the security-scalability trade-

off by extending the blockchain to more general structure.

For example, SPECTRE[17] consider a structure that is

called blockDAG. As the name suggests, blockDAG is a DAG

(directed acyclic graph) of blocks which allows branches

(forks) in the graph structure. This means that blocks can

be constructed concurrently, which improves the scalability

of the protocol. However, the DAG structure brings an ob-

vious problem; it does not define a total order of blocks. If

two blocks in a blockDAG are connected by a directed path,

then the blocks are naturally ordered. On the other hand,

blocks that do not have a directed path (sibling blocks, for

example) cannot be ordered solely by blockDAG. SPECTRE

tries to solve this problem by developping an algorithm to

decide the order of arbitrary two blocks, but it does not de-

termine a total order of blocks and hence not a full solution

of the state machine replication problem. PHANTOM[18]

is another mechanism that utilizes the blockDAG and tries

to determine a total order of blocks, but it is not clear if the

computational result of the algorithm is well-defined or not.

1.2 Our Approach and Contribution

In the recognition of the authors, a block in Nakamoto

Consensus plays two different roles; the notarization of

transactions, and the ordering of transactions. In Nakamoto

Consensus, transactions are publicly notarized when they

are included in a block with a valid PoW nonce. The cre-

ation of a block simultaneously defines the order of transac-

tions because every block has a reference to a preceding

block, and the references are expected to define a linear

structure of the blockchain. In this framework, we need

to avoid that two or more blocks are created concurrently,

because such blocks bring a fork in the blockchain. There-

fore, the block creation rate is intentionally suppressed in

Nakamoto Consensus, which also suppresses the throughput

of transactions and causes the security-scalability tradeoff.

The motivating idea of this study is to split the two roles

of blocks to two different structures. For the notarization

of transactions, we consider a framework in which blocks

are created with relatively small PoW, and the blocks form

a blockDAG instead of a blockchain. This framework con-

tributes to scale the transaction throughput, but blocks are

not ordered totally due to the DAG structure. To comple-

ment this drawback of DAG, we consider to form another

structre, or a layer, of blocks that is used for the ordering

of blocks (transactions). A key point in this construction is

that not all blocks participate to the second layer of blocks.

Only qualified blocks form the second layer, and contributes

to define the total order of blocks.

To implement the above idea, we first introduce a two-step

hash puzzle, which is a generalization of a hash puzzle that is

commonly used in many state machine replication protocols.

The two-step hash puzzle has two types of solutions, L1 -

solutions and L2 -solution where the latter is a small subset

of the former. The difference of solutions brings a difference

of blocks, L1-blocks and L2-blocks, again the latter is a sub-

set of the former. A block is also modified to have two types

of references, L1-references that are used to form a DAG of

L1-blocks, and an L2-refernce that is used to form a (ex-

pected) chain of L2-blocks. Everything has two layer, and

we name this protocol a Bi-Layered DAG or BLDAG. The

DAG of the L1-block layer constributes to fast creation of

blocks, while the expected chain of L2-blocks contributes to

robust convergence of the computation of the total order of

blocks and transactions, and in total, the security-scalability

tradeoff is resolved in BLDAG. It is also noted that BLDAG

is more energy efficient than Nakamoto Consensus, and the

security of BLDAG can be discussed formally through a

problem reduction to the security of Nakamoto Consensus.

Basic notions of the state machine replication are intro-

duced in Section 2. In Section 3, blockDAG and Nakamoto

Consensus are briefly reviewed. The two-step hash puzzle

and BLDAG are introduced in Section 4, together with re-

lated discussion.

2. Preliminary

2.1 Terms and Symbols

We consider a peer-to-peer network that consists of nodes,

and assume that all nodes agree on a consensus protocol P.

A node is either of a honest node that always follows the pro-

tocol P, or a malicious (or corrupt) node that may violate

the rule of the protocol. The set of all nodes is denoted by

N , and the sets of honest and malicious nodes are denoted

by Nβ and Nα, respectively (we have N = Nα ∪Nβ).

Each node has the ability to compute a cryptographic

hash function H that maps an arbitrary input to an integer

in [0,M − 1]. The computational power differ from node to

node, and we write hp(v) for the number of hash compu-

tation that a node v ∈ N can perform in a unit time (in

a second, for example), and call hp(v) the hash power of

v. We extend the notation and write hp(V) =
∑

v∈V hp(v)

for a set V of nodes. The malicious fraction of hash power

is defined as hp(Nα)/hp(N) and denoted by α. The hon-

est fraction of hash power is defined as hp(Nβ)/hp(N) and

denoted by β.

A hash puzzle is a game to find a value m that makes

H(m) satisfy a certain condition. For general discussion,

we formalize hash puzzles in terms of oracle. In this study,

an oracle is written by a predicate with two arguments as

O(d,m). The first argumet is called a difficulty level and

chosen to satisfy 0 ≤ d ≤ M − 1. The boolean value of

O(d,m) is randomly assigned for each m, but the assign-

ment is controlled so that the fraction of m that makes

O(d,m) true is 1/d. In Nakamoto Consensus, for example,

－532－

O(d,m) is true if and only if H(m) < M/d.

The communication between nodes are made in a peer-

to-peer manner, and a certain time is needed for a data

to travel from one node to another. The time needed for

communication is commonly called a delay. We write δ for

the maximum delay that can occur in a considered peer-to-

peer network. In practice, it is difficult to determine the

actual value of δ because it depends on many factors such

as the network topology, the diameter of the network, and

employed communication technologies. A protocol designer

may introduce a safely estimated upper bound ∆ that sat-

isfies δ ≤ ∆.

2.2 Consensus Protocol

To discuss important properties of consensus protocols,

several notions and aspects in [2] are briefly reviewed.

In a certain circumstance, anyone can join a peer-to-peer

network with no authentication of a designated administra-

tor. A node can come, and a node can leave arbitrarily, and

nobody can say how many nodes are actually participating

to the network. This is called a permissionless model of a

network.

Consider that every honest node receives one or more

transactions in each time step, and outputs a log which is

a total order of a subset of transactions that the node has

received so far. We write LOGv
t for the log of a honest node

v ∈ Nβ at time t. The rule for the computation of logs is

determined by a consensus protocol. A consensus protocol

should accomplish complicated tasks, and several properties

of consensus protocols have been proposed and discussed.

In a general framework of distributed programming, those

properties can be categorized to either of the safety or the

liveness[19]. The safety is the category of properties that

must be satisfied for all the time. A violation to the prop-

erty in this category cannot be recovered, and brings fatal

disruption of the protocol. The liveness (in a broader sense)

is the category of properties that should be realized at a

certain time in the future. With focusing on the security as-

pects of distributed programming and consensus protocols,

we discuss the consistency which is categorized to the safety,

and the liveness (in a narrow sense) which is categorized to

the (broader) liveness.

Definition 1 (Consistency)

A consensus protocol P has consistency if the following two

conditions are satisfied.

(1) For honest nodes v and v′, and times t and t′, either

LOGv
t ≺ LOGv′

t′ or LOGv′

t′ ≺ LOGv
t holds, where

A ≺ B means that A is a prefix of B.

(2) For a honest node v and times t and t′ with t < t′, we

always have LOGv
t ≺ LOGv

t′ .

Intuitively, the first condition means that there is no dis-

agreement of the the total order of transactions among hon-

est nodes. The second condition means that a log is never

modified once it is determined.

Definition 2 (Liveness)

A consensus protocol P has liveness if there is a constant

Tconfirm such that, for any time t, a transaction that is given

to any of honest nodes is included in LOGv
t′ for every honest

node v ∈ Nβ and every time t′ with t′ > t+ Tconfirm.

This means that a transaction propagates to all nodes and

confirmed after certain confirmation time Tconfirm.

Definition 3 (Responsiveness)

A consensus protocol P with the liveness property is said

to be responsive if the confirmation time Tconfirm depends

only on the actual maximum delay δ of the network, (i.e.

it does not depend on the upper bound ∆ that has been

chosen by a protocol designer).

3. Graphs of blocks

3.1 BlockDAG

For a general discussion, we define a block as a data ob-

ject that has hash references (or simply references) to other

blocks. A block with no hash reference is designated as a

genesis block. Consider a set G of blocks whose hash refer-

ences are closed in G, and G can be regarded as a directed

graph where an edge from b1 ∈ G to b2 ∈ G is defined if and

only if b1 has a hash reference to b2. The set G is called a

blockDAG if G defines a directed acyclic graph. For a block

b ∈ G, we write past(b) for the set of blocks that are reach-

able from b with the directed edges in G, and tips(G) for

the set of blocks to which no block has hash references. In

other words, past(b) is the set of ancestors of b and tips(G)

is the set of leaves of the DAG.

In the consensus protocols SPECTRE[17] and PHAN-

TOM[18], a blockDAG is formed and maintained by nodes

in the peer-to-peer network. For a node v ∈ N and a time

t, we write Gv
t for the blockDAG that is possessed by v at

time t. The blockDAG of each node is updated through the

operations of mining and propagation.

• In a mining, a node v tries to create a new block b that

contains fresh transactions (or the root of the Merkle

hash tree of transactions), hash references to all blocks

in tips(Gv
t), and a PoW nonce. The PoW nonce r must

be selected so that it makes O(d, b(r)) true, where d

is the PoW difficulty that is agreed by all nodes, and

b(r) is the block with a nonce r. It is noted that

past(b(r)) = Gv
t because b has hash references to all

blocks in tips(Gv
t). The block b(r), if successfully cre-

ated, is appended to the blockDAG Gv
t of the node v,

and transmitted to all neighbor nodes in the peer-to-

peer network.

• In a propagation, a node v receives a block b from its

neighbor node, and verifies that b is not included in Gv
t

and that O(d, b) is true. If two conditions hold, then

the node v appends the block b to its blockDAG Gv
t ,

and transmits b to all neighbor nodes in the peer-to-

peer network. A block propagates to all honest nodes

within the maximum delay δ, and therefore Gv
t ⊂ Gv′

t+δ

－533－

holds for any v, v′ ∈ Nβ .

3.2 Nakamoto Consensus

In Nakamoto Consensus[1], a block has only one hash ref-

erence, and the PoW difficulty is controlled so that two or

more blocks are hardly created concurrently. In this setting,

a newly created block is expected to propagate to all hon-

est nodes before somebody else creates another block. In

the most ideal scenario, the directed graph that is defined

by the blocks becomes a chain that is called a blockchain,

and tips(G) contains only one block that is the “tail” of the

blockchain. In practice, however, there is chance that two

or more blocks are created concurrently. If this happens un-

fortunately, then a fork is brought to the blockchain and

the structure becomes a tree. In case there is a fork in the

blockchain, honest nodes select the series of blocks that lead

to the longest chain. The mining operation is then explained

as follows.

• In a mining, a node v tries to create a new block b

that contains fresh transactions, a hash references to

the tail of the blockchain, and a PoW nonce. The PoW

nonce r must be selected so that it makes O(d, b(r))

true, where d is the PoW difficulty that is agreed by all

nodes. Noted that past(b(r)) = Gv
t . The block b(r), if

successfully created, is appended to the blockchain Gv
t

of the node v, and transmitted to all neighbor nodes in

the peer-to-peer network.

The propagation of blocks are made similarly to the

blockDAG case.

Different from blockDAG, all blocks are naturally ordered

in Gv
t as a blockchain. One small caution is that Gv

t is the

information that is local to the node v at time t. The node v

should remind that there can be some other blocks that are

not yet delivered to v, and some tail blocks in the blockchain

might be pushed out from the longest chain. For the sake

of safety, we should keep s tail blocks in the blockchain

in “pending”; the total order of blocks and transactions in

these s pending blocks are delayled until they get sufficiently

aged.

We write Nakamoto Consensus with difficulty level d and

pending margin s by Pnak(d, s).

4. Bi-Layered DAG

4.1 Two-Step Hash Puzzle

In a PoW-based consensus protocol, the mining operation

requires a search of a nonce that makes an oracle true. The

oracle is commonly implemented by a cryptographic hash

function, and the nonce is regarded as a solution of a cer-

tain hash puzzle. The rate of block creation is controlled by

adjusting the difficulty level of the hash puzzle, but it is not

good idea to control everything with only one parameter. To

bring a better trade-off relation in a consensus protocol, we

consider a two-step hash puzzle that can have two different

difficulty levels.

Definition 4 (two-step hash puzzle)

A two-step hash puzzle is defined by two independent ora-

cles O1 and O2 with two difficulty levels d1 and d2. Write a

block that is equipped with a nonce r by b(r). A nonce r is

said to be a L1-solution if it makes O1(d1, b(r)) true, and a

L2-solution if it makes both ofO1(d1, b(r)) andO2(d2, b(r))

true. A block is an L1-block (resp. L2-block) if the nonce

of the block is an L1-solution (resp. L2-solution).

In practice, the oracles can be implemented by using a cryp-

tographic hash function H with range [0,M − 1]: O1(d1, b)

is true if and only if H(b) < M/d1 (H(b) is considered

as a binary integer), and O2(d2, b) is true if and only if

H(H(b)) < M/d2. A randomly chosen nonce is a L1-

solution with probability 1/d1, and a L2-solution with prob-

ability 1/(d1d2). We will choose difficulty levels d1 and d2

so that it is not very difficult to find an L1-solution, but it is

extremely difficult to find an L2-solution (thus it is unlikely

that L2-blocks are created concurrently).

4.2 BLDAG

4.2.1 Basic Idea

A blockDAG is advantageous to scale transaction process,

but there is difficulty in handling blocks that are incom-

parable in the DAG structure. To overcome the difficulty,

the authors consider to use L2-blocks as “milestones” in the

DAG structure, and sort L1-blocks to groups that are sepa-

rated by milestone L2-blocks. The computation of the total

order is closed in each group, which leads fast convergence

of the computation. The creation of milestone L2-blocks

is controled in such a way that the L2-blocks form a vir-

tual blockchain that is embedded in the DAG of blocks. In

other words, the DAG of blocks has another layer of a chain

of blocks, and we call this structure a Bi-Layered DAG or

BLDAG. To realize BLDAG, we let blocks have two types

hash references, and utilize the two-step hash puzzle in the

mining procedure.

4.2.2 Blocks in BLDAG

Blocks in BLDAG have two types of hash references. Ref-

erences of the first type are called L1-references or DAG

references and used to point L1-blocks. References of the

second type are called L2-references or chain references

and used to point L2-blocks. A block has one or more L1-

references and only one L2-reference.

Honest nodes in the network possesses a set of blocks,

and the set is updated through the operations of mining and

propagation. We write Gv
t for the set of blocks that a node

v possesses at time t. With the L1-references (DAG refer-

ences) of the blocks, Gv
t defines a DAG of blocks, which we

call an L1-DAG. We write past1(b) for the set of blocks that

are reachable from a block b in the L1-DAG, and tips1(G
v
t)

for the set of leaf blocks in the L1-DAG.

Besides L1-DAG, Gv
t defines another graph structure by

regarding L2-references (chain references) as directed edges.

The L2-tree that is induced from Gv
t consists of the set of

L2-blocks in Gv
t and directed edges that are defined from

－534－

L2-references in the L2-blocks. The graph is indeed a tree

because a block has only one L2-reference. For a block b,

we write past2(b) for the set of L2-blocks that are reach-

able from b with L2-references only, and tips2(G
v
t) for the

set of L2-blocks to which no L2-block has an L2-reference.

In other words, past2(b) is the set of ancestors of b in the

L2-tree, and tips2(G
v
t) is the set of leaves of the L2-tree. A

chain in an L2-tree is a sequence of L2-blocks [b1, . . . , bl]

such that b1 is the root of the L2-tree, and bi with i > 1

has an L2-reference to bi−1. The last block bl in the chain

is the tail of the chain, and l is the length of the chain. A

chain with the largest length is called the longest chain.

We will manage so that the L2-tree rarely has a fork, and

prepare a procedure that utilizes the “longest-chain princi-

ple” of Nakamoto Consensus to determine the trunk of the

tree in case a fork is created by an accident.

4.2.3 Mining in BLDAG

The mining protocol of BLDAG has both flavors of SPEC-

TRE and Nakamoto Consensus. In the preparation of a new

block, a node (miner) v includes the block with fresh trans-

actions (or the root of the Merkle has tree of transactions),

L1-references to all blocks in tips1(G
v
t), and an L2-reference

to the tail of the longest chain in the L2-tree. When L2-tree

has no fork, tips2(G
v
t) contains only one L2-block and that

block is the tail of the longest chain. If tips2(G
v
t) contains

two or more L2-blocks, then the node v chooses the one

that leads the longest chain in the L2-tree. For the pre-

pared block b, the node v tries to search a PoW nonce r

that is an L1- or L2-solution of the two-step hash puzzle. If

the node v succeeds to find a solution r, then v includes the

block b(r) in Gv
t , and propagate b(r) to all neighbor nodes

in the peer-to-peer network.

A crucial point in the above algorithm is that a node suc-

ceeds to create a new block if it can find an L1-solution r

of the two-step hash puzzle. By definition, the search of

L1-solutions is easier than the search of L2-solutions. This

allows quick creation of L1-blocks, and contributes to scale

the transaction processing. The newly created L1-block b(r)

is included in the L1-DAG, but b(r) is not included in the L2-

tree unless the PoW nonce r happens to be an L2-solution of

the two-step hash puzzle. Because L2-solutions are difficult

to find, it is unlikely that two or more L2-blocks are cre-

ated concurrently or in a short period of time, which means

that the L2-tree rarely has a fork, and thus the tree is in a

chain-like form.

Figure 1 illustrates L1-references and L2-references of a

certain set of blocks. In the figure, L1-blocks are shown

in rectangles and L2-blocks are shown in pentagons. A

block has multiple L1-references to L1-blocks that were in

tips1(G
v
t), and the L1-references define a DAG structure.

On the other hand, a block has only one L2-reference to the

tail L2-block of the L2-tree, and L2-references define a tree

in general. Delete L1-blocks from the tree, and we obtain

the L2-tree that consists of L2-blocks only. In this example,

The L2-tree has only three nodes; gen, d and l, which forms

a chain of length three. In the next mining, a new block

Fig. 1 Bi-Layered DAG

should have L1-references to blocks j and m which are in

tips1(G
v
t), and an L2-reference to the block l which is the

tail of the L2-tree.

4.2.4 Ordering Protocol

The L1-DAG defines a topological order of blocks, but it

is a partial order and inadequate for the consensus protocol.

We make use of L2-blocks in the L1-DAG to separate sub-

sets of blocks, and introduce some additional rules to define

a total order of blocks. In this section, the order of blocks

are written b1 � b2 for simplicity.

Basically, the order � is determined according to four

principles. The first principle is that the order � is com-

patible with the topological order that is defined by the

L1-DAG. This means that if b ∈ past1(b
′) for blocks b

and b′, then we must have b � b′. The second principle

of the order � is that an L1-block cannot “jump over” in-

comparable L2-blocks. To explain this principle, consider a

chain [b1, . . . , bl] of L2-blocks in the L2-tree. We must have

past1(bi−1) ⊂ past1(bi) by definition, and we can define

diff 1 = past1(b1) = ∅ (because b1 is the genesis block) and

diff i = past1(bi) − past1(bi−1) for i ≥ 2. In constructing

the order �, we require that

bi−1 � (blocks in diff i)� bi (i ≥ 2).

The above two principles are not sufficient to determine

the order among blocks in diff i. To tackle this problem, the

third principle is utilized: a block in diff i is given a pre-

ceding position in the order � if it has more descendants

in diff i. For an L2-block bi in the chain and an L1-block

b ∈ diff i, define P [b, bi] as the number of blocks b′ ∈ diff i

satisfying b ∈ past1(b
′) (thus P [b, bi] is the number of de-

scendants of b within the set diff i). For blocks b,
′ b ∈ diff i,

we let b� b′ if P [b, bi] > P [b′, bi]. In case P [b, bi] = P [b′, bi]

for b,′ b ∈ diff i, we let b � b′ if H(b) > H(b′) as the final

fourth principle, where hash values are regarded as binary

integers.

The above described principles are described as Algorithm

1 that determines an ordered list Λ of blocks. In the algo-

rithm, we keep s blocks in the end of the longest chain from

participating to the computation, where s is a safety mar-

－535－

gin that is determined by a system designer, because there

is small risk that those fresh s blocks get pushed out from

the longest chain (see the section of Nakamoto Consensus).

Algorithm 1 OrderDAG

Input: Gv
t - the set of blocks that a node v possesses at time t

Output: Λ - an ordered list of blocks in Gv
t

1: construct a chain γ = [b1, . . . , bl] of L2-blocks by trimming the

last s L2-blocks from the longest chain in the L2-tree.

2: initialize Λ = ∅
3: for i = 1, 2, . . . , l do

4: sort all blocks in diff i in the descending order and construct

a list λi of blocks in diff i, where the sorting is made according

to the main-key P [b, bi] and the sub-key H(b) for a block b.

5: append λi and bi to Λ

6: return Λ

To illustrate the computation in Algorithm 1, remind the

example in Figure 1. For simplicity, we do not trim the

tail of L2-blocks, namely we assume s = 0. In this case,

the chain γ = [gen, f, l], and diff 1 = ∅, diff 2 = {a, b},
and diff 3 = {c, d, e, g, i}. To order blocks in diff i, assume

here for simplicity that a block with the smaller alphabet

has the smaller hash value. As a result of the computa-

tion, the final order that is determined by the algorithm

is Λ = [gen, a, b, f, c, d, e, g, i, l]. The remaining blocks

{h, j, k,m} are not included in the order at this moment

since they are not referenced by any L2-blocks yet.

We write BLDAG with difficulty level (d1, d2) and pend-

ing margin s by Pbld(d1, d2, s).

4.3 Evaluation

4.3.1 Security

A consensus protocol is designed to satisfy several require-

ments, and it is not appropriate to discuss its security based

on a single criteria. It is important to investigate a proto-

col from diffirent viewpoints, and the consistency and the

liveness that have been defined in Definitions 1 and 2 are

especially significant for that sake. Intuitively saying, the

consistency is the property that the order of blocks (trans-

actions) that has been agreeded by honest nodes cannot be

overwritten by malicious nodes, and the liveness is the prop-

erty that transactions are processed in some reasonable time.

It is known that Nakamoto Consensus has these propoerties

under some environments [20],[21],[22], and we show that

BLDAG also possesses the properties.

Lemma 1 (consistency of BLDAG)

If Pnak(d1d2, s), Nakamoto Consensus with difficulty

level d1d2 and pending margin s has consistency, then

Pbld(d1, d2, s), BLDAG with difficulty level (d1, d2) and

pending margin s also has consistency.

Proof The notion of consistency has been originally de-

fined for transactions in Definition 1, but it can be extended

to blocks in a natural manner because a block defines an

ordered list of transactions. The consistency with respect

to blocks is called a block consistency in this proof. We

can also regard consensus protocols output total orders of

blocks rather than transactions. Consensus protocols viewed

in this regard are called block consensus protocols, and we

can consider a block Nakamoto Consensus protocol PBnak

and a block BLDAG PBbld. Due to obvious correspon-

dence, we can show that if Pnak(d1d2, s) has consistency,

then PBnak(d1d2, s) has block consistency.

The block consistency of PBnak(d1d2, s) brings the block

consistency of L2-blocks in PBbld. Remind that an L2-block

in BLDAG is a data object that has a single hash reference to

another L2-block, and the creation of an L2-block is accom-

plished if an L2-solution of a two-step hash puzzle is found.

The discovery of an L2-solution of a two-step hash puzzle

can be regarded as a discovery of a solution to the usual

hash puzzle with difficulty level d1d2, and the creation of L2-

blocks in block BLDAG and the creation of blocks in block

Nakamoto Consensus can be regarded as the same stochas-

tic process. This guarantees that the if PBnak(d1d2, s) has

block consistency, then PBbld(d1, d2, s) also has block con-

sistency for L2-blocks. In block BLDAG, the order of blocks

in the set diff i, and the order between blocks in diff i and L2-

blocks are uniquely determined (see Algorithm 1). There-

fore, if block consistency is guaranteed for L2-blocks, then

the property also applies to all L1-blocks in block BLDAG.

Because transactions are contained in blocks with totally

oredered manner, the block consistency of PBbld(d1, d2, s)

implies the consistency of Pbld(d1, d2, s). 2

Lemma 2 (liveness of BLDAG)

If Pnak(d1d2, s), Nakamoto Consensus with difficulty level

d1d2 and pending margin s has liveness, then Pbld(d1, d2, s),

BLDAG with difficulty level (d1, d2) and pending margin s

also has liveness.

Proof If Pnak(d1d2, s) has liveness, then, a transaction x

that is given to a honest node propagates to the network

and is included in a block that is created by a certain hon-

est node. It is derived immediately that at least one block

is created by honest nodes at every time period Tconfirm in

PBnak(d1d2, s), which can be replaced with the context of

L2-blocks in PBbld(d1, d2, s). When a honest node creates

a L2-block after the transaction x has been given to any

of honest nodes, there are two cases; the transaction x has

been included in a certain L1-block, or there is no block

that includes x. If x has been included in an L1-block, then

the L1-block has been appended to the L1-DAG and refer-

enced by the L2-block. At this moment, the transaction x

is included in the log that is defined from the total order

of blocks. As for the second case, if there is no block that

includes x, then the L2-block must include x. All transac-

tions in the L2-block are included in the log immediately,

and in either cases, the transaction x is included in the log.

The duration to the creation of the L2-block is controlled

by the difficulty level d1d2. If the duration in Pnak(d1d2, s)

is Tconfirm, then the duration in Pbld(d1, d2, s) is Tconfirm
also. This proves the liveness of Pbld(d1, d2, s). 2

－536－

4.4 Scalability

In theory, an arbitrary number of transactions can be in-

cluded in a single block. In practice, however, the number of

transactions in a block is limited by a certain constant which

we denote by k. Therefore the number of transactions that

can be processed in a unit time equals to k times the num-

ber of blocks that are created in a unit time. The total

hash power in the peer-to-peer network is hp(N), and the

expected number of blocks that are created in a unit time is

obtained by dividing hp(N) by a difficulty level of the hash

puzzle. In Nakamoto Consensus with difficulty level d, the

number of transactions that can be processed in a unit time

is

σ = k
hp(N)

d
.

In BLDAG, this number is given as

σ′ = k
hp(N)

d1
.

where d1 is the difficulty level for the L1-solution of the

two-step hash puzzle. The two equations seem the same,

but the two consensus protocols have different constraints

for the choice of the difficulty levels.

In Nakamoto Consensus, the difficulty level d is adjusted

so that the interval of block creation is expectedly greater

than ∆, which is a predetermined constant upperbound of

the maximum network delay of the peer-to-peer network.

Roughly saying, there is correlation between d and ∆. Us-

ing large ∆ contributes to the security because a fork in

a blockchain is less likely to occur with large ∆, but such

a choice of ∆ increases the difficulty level d and thus de-

grades the transaction processing rate. This is the security-

scalability tradeoff of Nakamoto Consensus.

In BLDAG, a fork in the L2-tree should be avoided for the

same reason, and the difficulty level d1d2 for creating L2-

blocks should be adjusted in a similar manner to Nakamoto

Consensus. Because we have two parameters, it is possible to

choose d1 small while keeping the product d1d2 sufficiently

large. This means that the transaction processing rate is

not sacrificed for the security, and both of the security and

scalability are achieved in BLDAG.

4.5 Energy Efficiency

In Nakamoto Consensus, many nodes (miners) compete

for creating a new block but there is only one winner. Once

a winner is decided, all the efforts and resources that were

consumed by other miners come to nought. With the wide

spread of cryptcurrencies, quite a lot energy is needed to

solve a hash puzzle today. This means that vast amounts

of energy is being wasted just to decide a winner in the

mining competition but nothing else. In BLDAG, it is al-

lowed that multiple L1-blocks are created concurrently. The

energy that was used to solve a two-step hash puzzle con-

tributes to create a new L1-block and thus contributes to

the transaction process. In this sense, BLDAG is much pref-

ered for the aspect of greener energy efficiency. This feature

motivates more nodes to participate to the mining process,

because their efforts are likely to be rewarded even if they

did not participate to a big mining pool. Such a tendency

increases the total hash power in the peer-to-peer network,

and also increases honest fraction of hash power, making the

protocol more robust against the control of malicious nodes.

4.6 Confirmation Time

Another performance concern in consensus protocols is

the latency of the confirmation of transactions. In Nakamoto

Consensus, all blocks are ordered on a blockchain. This

means that a transaction is given a position in the total or-

der immediately it is included in a certain block. On the

other hand, newly created L1-blocks, and transactions that

are included in those L1-blocks, are not ordered promptly

in BLDAG. A new L1-block b is placed in the topological

order of the L1-DAG, but the total order with respect to b

is not determined until b has an L2-block descedant. Since

the creation rate of L2-blocks in BLDAG is almost the same

as the block creation rate in Nakamoto Consensus, the la-

tency of the confirmation of transactions is expected to be

the same between two protocols. Similar to Nakamoto Con-

sensus, it is conjectured that BLDAG is not resonpsiveness

(Definition 3).

4.7 Relation to Other Consensus Protocols

BLDAG can be considered as a generalization of

Nakamoto Consensus in several aspects;

(1) the hash references of blocks are augmented,

(2) two layers are introduced for blocks and references, and

(3) the ordering algorithm is refined based on the chain-like

structure of L2-blocks.

Conversely, Nakamoto Consensus can be regarded as a spe-

cial (or constrained) BLDAG in which a block is allowed to

have only one hash reference, there is no distinction of layers,

and thus there is no need of a sophisticated ordering algo-

rithm. The constraints make the protocol simpler, but the

simplicity brings some inflexibility including the security-

scalability tradeoff. The blockDAG-based protocols such

as SPECTRE and PHANTOM try to generalize Nakamoto

Consensus by solely augmenting hash references of blocks,

but a DAG is a too general structure and we face to dif-

ficulty to define a total order of blocks and transactions.

In this study, we avoided the problem by introducing L2-

blocks, and let L2-blocks constitute a chain-like structure in

the DAG. The L2-blocks are helpful to determine the total

order of other L1-blocks and transactions included in them,

and make an essential contribution to the well-defined or-

dering algorithm.

We conjecture that the ordering alghorithm is versatile,

and can be used in a DAG in which a chain-like structure is

defined by a certain means. Consider for example a partially

generalized Nakamoto Consenus in which hash references are

augmented but there is no distinction of L1 and L2 blocks.

The hash references of blocks define a chain structure mostly,

but there may exist some forks in the chain as in the original

Nakamoto Consensus. In the original Nakamoto Consensus,

－537－

Fig. 2 partial generalization

a block is marked “loser” and ignored if the block gets off

from the longest chain. On the other hand, the loser blocks

have the chance to be refered by trailing blocks (see Fig-

ure 2) in the above partially generalized protocol, and given

a position in the total order of blocks by the ordering al-

gorothm. We note that this partially genralized Nakamoto

Consensus is just to illustrate the contribution of our inves-

tigation. The energy efficiency of Nakamoto Consensus can

be improved in this partial generalization, but it does not

fully scale because we have only one difficulty level.

5. Concluding Remark

A novel consensus protocol BLDAG (Bi-Layered DAG) is

presented in this study. BLDAG has no security-scalability

tradeoff which has been a big obstacle in using Nakamoto

Consensus in a practical, open and globally distributed cir-

cumstances. Besides the absense of the tradeoff, BLDAG is

favorable from the viewpoint of energy efficiency. All the en-

ergy that is used to solve a hash puzzle fuels the system, and

contributes to process transactions. This motivates more

nodes to participate to mining, which increases the total

hash power of the network and makes the system robust

against malicious nodes. The study also investigates the se-

curity proof of BLDAG. The consistency and the liveness

of BLDAG are reduced to those of Nakamoto Consensus,

which have been proven in literature.

BLDAG inherits many aspects from Nakamoto Consen-

sus, but that means that some of unfavorable properties of

Nakamoto Consensus still remain in BLDAG. Consider for

example the problem of selfish mining [23], in which a mali-

cious node withhold a mined block in a short period of time

before delivering it to the network. With selfish minining,

the malicious node can make a “flying start” for investigat-

ing the next block, allowing the node have more control of

the system than its actual hash power. The selfish mining is

known to be a problem of fairness in Nakamoto Consensus,

and a problem of the same kind may arise in the L2-tree of

BLDAG. Despite this issue, the authors conjecture that the

mechanism of L1-DAG may deter the attack. If a block is

withhold by a malicious node, then the block loses the op-

portunity to be refered from other blocks. This brings some

disadvantage to the block because having more descendants

gives the block more significant position in the system. The

authors will addressed this conjecture more in detail in the

future study.

References

[1] Nakamoto, S. et al.: Bitcoin: A peer-to-peer electronic cash
system (2008).

[2] Pass, R. and Shi, E.: Hybrid consensus: Efficient consensus
in the permissionless model, 31st International Symposium
on Distributed Computing (DISC 2017), Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2017).

[3] Wood, G. et al.: Ethereum: A secure decentralised gen-
eralised transaction ledger, Ethereum project yellow paper,
Vol. 151, No. 2014, pp. 1–32 (2014).

[4] Team, Z. et al.: The ZILLIQA Technical Whitepaper, Re-
trieved September, Vol. 16, p. 2019 (2017).

[5] Cruz, J. P. and Kaji, Y.: The bitcoin network as platform
for trans-organizational attribute authentication (2015).

[6] Cruz, J. P., Kaji, Y. and Yanai, N.: RBAC-SC: Role-based
access control using smart contract, IEEE Access, Vol. 6, pp.
12240–12251 (2018).

[7] Hanifatunnisa, R. and Rahardjo, B.: Blockchain based e-
voting recording system design, 2017 11th International
Conference on Telecommunication Systems Services and Ap-
plications (TSSA), IEEE, pp. 1–6 (2017).

[8] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Chris-
tidis, K., De Caro, A., Enyeart, D., Ferris, C., Laventman,
G., Manevich, Y. et al.: Hyperledger fabric: a distributed
operating system for permissioned blockchains, Proceedings
of the Thirteenth EuroSys Conference, ACM, p. 30 (2018).

[9] Devanbu, P., Gertz, M., Martel, C. and Stubblebine, S. G.:
Authentic third-party data publication, Data and Applica-
tion Security, Springer, pp. 101–112 (2002).

[10] Naor, M. and Nissim, K.: Certificate revocation and certifi-
cate update, IEEE Journal on selected areas in communica-
tions, Vol. 18, No. 4, pp. 561–570 (2000).

[11] Tamassia, R.: Authenticated data structures, European sym-
posium on algorithms, Springer, pp. 2–5 (2003).

[12] Castro, M., Liskov, B. et al.: Practical Byzantine fault tol-
erance, OSDI, Vol. 99, No. 1999, pp. 173–186 (1999).

[13] Dwork, C., Lynch, N. and Stockmeyer, L.: Consensus in the
presence of partial synchrony, Journal of the ACM (JACM),
Vol. 35, No. 2, pp. 288–323 (1988).

[14] Martin, J.-P. and Alvisi, L.: Fast byzantine consensus, IEEE
Transactions on Dependable and Secure Computing, Vol. 3,
No. 3, pp. 202–215 (2006).

[15] Abraham, I., Malkhi, D., Nayak, K., Ren, L. and Spiegel-
man, A.: Solidus: An incentive-compatible cryptocur-
rency based on permissionless byzantine consensus, CoRR,
abs/1612.02916 (2016).

[16] Liu, Z., Tang, S., Chow, S. S., Liu, Z. and Long, Y.: Fork-
free hybrid consensus with flexible proof-of-activity, Future
Generation Computer Systems, Vol. 96, pp. 515–524 (2019).

[17] Sompolinsky, Y., Lewenberg, Y. and Zohar, A.: SPECTRE:
A Fast and Scalable Cryptocurrency Protocol., IACR Cryp-
tology ePrint Archive, Vol. 2016, p. 1159 (2016).

[18] Sompolinsky, Y. and Zohar, A.: PHANTOM, IACR Cryp-
tology ePrint Archive, Report 2018/104 (2018).

[19] Cachin, C., Guerraoui, R. and Rodrigues, L.: Introduction
to Reliable and Secure Distributed Programming, Springer
(2011).

[20] Pass, R., Seeman, L. and Shelat, A.: Analysis of the
blockchain protocol in asynchronous networks, Annual In-
ternational Conference on the Theory and Applications of
Cryptographic Techniques, Springer, pp. 643–673 (2017).

[21] Garay, J., Kiayias, A. and Leonardos, N.: The bitcoin back-
bone protocol: Analysis and applications, Annual Interna-
tional Conference on the Theory and Applications of Cryp-
tographic Techniques, Springer, pp. 281–310 (2015).

[22] Rosenfeld, M.: Analysis of hashrate-based double spending,
arXiv preprint arXiv:1402.2009 (2014).

[23] Eyal, I. and Sirer, E. G.: Majority is not enough: Bitcoin
mining is vulnerable, Communications of the ACM, Vol. 61,
No. 7, pp. 95–102 (2018).

－538－

