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Abstract: In this paper, we propose an efficient non-interactive privacy-preserving algorithm for the set-
maximal match problem. The set-maximal match problem is, given a pattern string and a set of strings,
to enumerate all of the maximal segments in which the pattern and some string in the set have the same
substring. The motivation of this problem arises from genetics. We show our method runs asymptotically
faster than the existing method in both of theoretical time complexity and experiments.
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1. Introduction
String problems are often of interest in genetic research

because many important problems in this field can be for-
mulated as a string problem, considering genetic sequences
as strings. The SMM problem is one of such problems
drawing attention. The goal of the problem is, given a
string called pattern and a set of strings called dictionary,
to find the set of longest substrings which occur in both
of the pattern and some string in the dictionary. These
substrings are called set-maximal matches (SMMs).

In genetics, a DNA segment shared by two or more peo-
ple is called identical-by-decent (IBD) if it is inherited from
a common ancestor without recombination. The detection
of IBD segments has a broad range of applications, includ-
ing genotype imputation [17, 21], haplotype phasing [17],
heritability estimation [26, 6], and inferring demographic
history [7, 16].

The SMM problem arises from these motivations for
finding IBD segments; that is, SMMs among aligned ge-
netic sequences are candidates for IBD segments.

The naive algorithm of enumerating all of the SMMs has
a time complexity quadratic in the length of strings. This
tends to be the crucial bottleneck of performance because
the length of genetic sequences of interest often becomes
more than tens of thousands. Up to the present, some
algorithms running faster than the naive one have been
proposed for the SMM problem [18, 19, 11]. In particular,
Durbin proposed an optimal algorithm, offering the data
structure called positional BWT (PBWT) [11].

When we apply the SMM problem to genetic studies,
naturally possible is the situation where two different par-
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ties have a pattern and a dictionary, respectively, and the
party who possesses the pattern would like to inquire of
the other party all of the SMMs. In other words, we con-
sider the particular case where a client queries an exter-
nal genome database with his genetic sequence to obtain
SMMs. These circumstances would occur, for example, in
studies involving multiple institutions or in the direct-to-
consumer services of DNA testing. For convenience, we
call this problem setting as the two-party SMM problem.

Nowadays it is widely known that personal genome is so
sufficient personal information as to identify individuals
[20, 13], and what is worse, it has the exclusive charac-
teristic of conceivably disclosing more confidential infor-
mation such as the disease risk and blood relationship of
individuals or even their progenitors and progeny [14, 3].
These concerns indicate that it is desirable to provide the
way of solving the two-party SMM problem in a privacy-
preserving manner.

Since this peril also threatens other topics concerning
genome, several groups have engaged in the similar works
of protecting genomic data privacy so far. Blanton and
Aliasgari developed a protocol for securely searching a
DNA sequence against DNA profiles represented by finite
automata [4]. Similarly, Sasakawa et al. proposed oblivi-
ous protocols for NFA evaluation and showed as an exam-
ple the privacy-preserving detection of viral infection with
regular expression [29]. As to GWAS, there have already
been many works devoted on securely performing statis-
tics, including Kamm et al. [15], Lu et al. [23], Tkachenko
et al. [32].

We call the following problem setting the privacy-
preserving SMM problem (the pp-SMM problem). There
are a server holding a dictionary and a client holding a
pattern. As the same as the regular two-party SMM prob-
lem, the two parties communicate messages until the client
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Table 1 Complexities of algorihtms for the SMM problem (provided that the size of al-
phabet is constant)

Durbin [11] Ours in plaintext Shimizu et al. [30] Ours in ciphertext
time complexity amortized O(n) O(n) O(n2m) O(nm(1 + log n

log m
))

space complexity O(nm) O(nm) O(nm) O(nm(1 + log n
log m

))
round complexity — — O(n2) O(1)

gets all of the SMMs between the dictionary and pattern.
In addition, we require that during the whole process,all
of the information, including the resultant SMMs must be
kept secret to the server. Similarly, the client should ob-
tain nothing but the information which can be deduced
from the SMMs.

In this problem setting, we assume that both parties are
“honest-but-curious”, which means they are cooperative
and genuinely perform the assigned operations, but might
still try to retrieve any information they should not be able
to acquire.

Table 1 shows the comparison of complexities among the
algorithms related to our work, where n is the length of
strings and m is the number of strings in the dictionary.
We notice that the algorithms for the SMM problem and
pp-SMM problem are put together in the table for the
sake of explanation. The row of round complexity shows
the asymptotic number of communication two parties ex-
change during the algorithm. Since this complexity is con-
cerned only in the scope of secure computation, we omit
the round complexities of plain-text algorithms.

To the best of our knowledge, despite the fact that there
exists an optimal algorithm for the SMM problem, there
is no known algorithm for the pp-SMM problem, which
runs as fast as the optimal one of the SMM problem [11].
The only existing method for the pp-SMM problem is pro-
posed by Shimizu et al. [30]. They represented PBWT and
some parts of Durbin’s algorithm in secure computation,
applying oblivious transfer [27] recursively. Its time com-
plexity is, however, quadratic in n, while Durbin’s one is
linear. This difference comes from the difficulty of fitting
plain-text algorithms to secure computation keeping their
time complexity the same. To be more precise, Durbin’s
algorithm almost certainly cannot be expressed efficiently
in secure computation due to its dependence on amorti-
zation. Generally, amortized algorithms achieve their ef-
ficiency taking advantage of the fact that not every oper-
ation takes the worst-case cost. On the other hand, such
cost saving is impossible in secure computation. Since we
cannot know the concrete values of input in secure compu-
tation, there is no way to find out which operation takes
the worst-case running time and we have no choice but to
assume all the operations are the worst case. This would
be the exact reason why the algorithm by Shimizu et al.
suffered the degradation of time complexity compared to
Durbin’s one. This quadratic factor is non-negligible when
the length of strings becomes large, and thus their algo-
rithm is far from being optimal as for n. Because genetic
studies often require, and call for the ability of, analyzing

large DNA sequences [19, 31], it is unpreferable to have
such heavy factor.

Another issue in the existing algorithm lies in its multi-
round protocol (i.e., the algorithm offers interactive secure
computation). Shimizu et al. solved the problem com-
bining PBWT with oblivious transfer, which inevitably
causes the communication between the two parties many
times. The number of the communications scales quadrat-
ically with the length of the strings. This could result
in inefficiency when the client and server need to spend
a high cost for communication. Furthermore multi-round
algorithms require the synchronization between the two
parties; clients must participate in the computation and
hold their system resources available during it, which could
make it difficult for them to make effective use of such com-
puting services.

The goal of this work is to eliminate these two is-
sues. With regard to time complexity, we first modify
and “deamortize” Durbin’s algorithm. Introducing an-
other data structure called compact trie, we succeed in
“deamortization”, namely, proposing the plain-text algo-
rithm which does not depend on amortized complexity
analysis, different from Durbin’s one. Moreover, through
this “deamortization”, we find the existence of automaton
which enables enumerating all of the SMMs. This achieve-
ment can be formally stated with the following theorems.
▶ Theorem 1. Given a dictionary D of m strings of length
n over an alphabet of size σ, there exists a deterministic
finite automaton of size O(nmσ), with which one can enu-
merate all of the SMMs between D and any given pattern
where σ is the alphabet size. The time complexity of eval-
uating the automaton is O(n).

▶ Theorem 2. The automaton described in Theorem 1 can
be constructed in O(nmσ) time for a dictionary D of m
strings of length n given.

In order to resolve the second issue of round complex-
ity, we present the first non-interactive algorithm, which
solves the pp-SMM problem in a single round. Our idea
is to employ fully homomorphic encryption (FHE) (e.g.,
[12]). FHE is a form of encryption supporting addition
and multiplication on ciphertexts. In recent years, FHE is
gaining significant attention as a promising candidate for
solutions to privacy preservation issues. For example, FHE
is very applicable in the sphere of outsourcing statistical
calculation or machine learning [33, 25, 22].

Some of FHE schemes particularly allow any party to
evaluate an arbitrary Boolean circuit for a given input
without the party learning the input and output, that is,
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Figure 1 An example for SMMs and SRMMs. Each arrow start-
ing at the i-th character of P represents the SRMM
starting at position i. The red arrows are the SMMs
between D and P . Red substrings starting at position
i on texts represents the matched string by the SMM
starting at the same position. X8 represents the SMM
starting at position 8.

with the input and output encrypted. This implies that
Boolean circuits outputting the SMMs for a given pattern
can solve the pp-SMM problem in a single round. Com-
bining this implication with the above theorems, we finally
produce such a circuit from the automaton in order to re-
alize the efficient solution of the pp-SMM problem. Later
we show our algorithm runs asymptotically faster than the
algorithm by Simizu et al. in both of theoretical time com-
plexity and experiments.

The following theorem describes our final result.

▶ Theorem 3. Given a dictionary D of m strings
of length n, there exists a Boolean circuit of size
O( nm log σ log (nm log σ)

log m ) which outputs all of the SMMs for
any given pattern.

Considering the fact that circuits without memory are nat-
urally data-oblivious (i.e., do not change their behavior de-
pending on input), Theorem 3 implies that the pp-SMM
problem can be solved in O( nm log σ log (nm log σ)

log m ) by eval-
uating such a circuit over FHE schemes.

2. Preliminaries
2.1 Strings

Let Σ be an ordered alphabet of size σ. For a string
T of length n over Σ, let |T | be the length of T , T [i]
be the i-th character of T , and T [i..j] be the substring
of T that begins at position i and ends at position j.
The T [i..] denotes the suffix of T beginning at position
i, i.e., T [i..n]. Let [i, j] be {i, i + 1, . . . , j} for two in-
tegers i and j (i ≤ j). For two strings T1 and T2, let
T1 · T2 be the concatenated string of T1 and T2, i.e.,
T1 · T2 = T1[1], T1[2], . . . , T1[|T1|], T2[1], T2[2], . . . , T2[|T2|].

2.2 The SMM problem
Let D = T1, . . . , Tm be m strings of each length n over

Σ called dictionary, and P be a string of length n over Σ
called pattern. We say that an interval [a..b] on [1..n] is a
set match between D and P if there exists a string T in D
such that T and P match on [a..b], i.e., T [a..b] = P [a..b]
holds. Then we call the substring P [a..b] matched string.
We also say that a set match [a..b] is a set-right-maximal

match (SRMM) between D and P if we cannot extend the
set match to the right, i.e., b = n holds or [a..b + 1] is
not set match between D and P . We also say that the
set match [a..b] is a set-maximal match (SMM) between D
and P if the match cannot extend to both sides, i.e., the
set match satisfies following two conditions: (1) a = 1 or
[a − 1..b] is not a set match, and (2) b = n or [a..b + 1] is
not a set match. Figure 1 depicts SRMMs and SMMs for
a dictionary D = T1, T2, T3, T4 such that T1 = 00000110,
T2 = 11011011, T3 = 11110001, and T4 = 00010010, and
pattern P = 00111000. The SRMMs between D and P are
[1..2], [2..2], [3..4], [4..6], [5..6], [6..7], [7..7] and [8..8]. The
SMMs between D and P are [1..2], [3..4], [4..6], [6..7] and
[8..8].

The SMM problem is to construct an index for a given
dictionary D and threshold k supporting SMM queries.
The SMM query for a given pattern P , denoted by
smm(D,P, k) = Y1, Y2, . . . , Yn, asks n SMMs starting at
each position between D and P with threshold k. For-
mally, for a position i ∈ [1, n], Yi is the SMM starting
at position i between D and P if the SMM exists and
the length of the SMM is longer than k; otherwise Yi

is the empty interval ∅. For the example in Figure 1,
smm(D,P, 2) = ∅, ∅, ∅, [4..6], ∅, ∅, ∅, ∅.

For a dictionary D and an integer i ∈ [1, n], let i-
suffixes, denoted by Suffix(D, i), be the set of suffixes
starting at position i in the dictionary, i.e., Suffix(D, i) =
{Tx[i..] | x ∈ [1,m]}. Similarly, let i-substrings, de-
noted by Substr(D, i), be the set of substrings starting at
position i in the dictionary and an empty string ε, i.e,
Substr(D, i) = {Tx[i..j] | x ∈ [1,m], j ∈ [i, n]} ∪ {ε}.
Let Substr(D,n + 1) = {ε}. For a string s, let the i-
text collection for s, denoted by set(D, i, s), be the set
of texts in D such that each text T has s as the sub-
string starting at position i, i.e., set(D, i, s) = {Tx | x ∈
[1, n], Tx[i..i + |s| − 1] = s}. We call an i-substring s i-
substring of T for a text T ∈ set(D, i, s), respectively.
For example, let D be the dictionary of Figure 1. Then
Suffix(D, 4) = {0001, 0010, 0110, 1011} and Substr(D, 2) =
{ε, 0, 1, 01, 10, 11}.

Our computation model is a unit-cost word RAM with
a machine word size of Ω(log2 nm) bits. We evaluate the
space complexity in terms of the number of machine words.
A bitwise evaluation of space complexity can be obtained
with a log2 nm multiplicative factor.

3. SMM automata
In this section, we present two automata outputting

SMMs between a dictionary D and any pattern P with
a threshold k. The former and latter SMM automata use
O(n2mσ) and O(nmσ) space respectively, and hence we
call those naive and compact SMM automata. First, we
introduce two lemmas used in the following subsections.
▶ Lemma 4. Let Xi and si be the i-th SRMM between D

and P , and the matched string by Xi, respectively. (1) For
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Algorithm 1: An algorithm outputting the set of
SMMs using SMM automaton.

Data: A dictionary D, pattern P , and threshold k.
Result: smm(D, P, k) = Y1, Y2, . . . , Yn.

1 vn+1 ← ε; /* vi is the node of the matched string by
Xi */

2 ℓn+1 ← 0; /* ℓi is the length of Xi */
3 for i← n; i ≥ 1; i← i− 1 do
4 vi ← Zi(vi+1, P [i]); /* Compute vi using i-SMM

sub-automaton */
5 ℓi ← the length of the string of vi;
6 if ℓi+1 ≥ ℓi and ℓi+1 > k then output

Yi+1 ← [i + 1..i + ℓi+1] ;
7 else output Yi+1 ← ∅ ;
8 if ℓ1 > k then output Y1 ← [1..ℓ1];
9 else output Y1 ← ∅ ;

Figure 2 The 4-SMM sub-automaton for Figure 1. Black and
red arrows are the edges labeled by the characters 0
and 1 respectively. Solid and dotted arrows are suc-
cess and failure edges respectively. The left and right
substrings are 3-substrings and 4-substrings in D.

an integer i ∈ [2, n], a SRMM Xi is one of SMMs between
D and P if and only if Xi is not shorter than the preced-
ing SRMM Xi−1 (i.e., |Xi| ≤ |Xi−1|). (2) X1 is one of
SMMs between D and P . (3) For an integer i ∈ [1, n− 1],
if Xi ̸= ∅, si = P [i] · K holds, where K is the P [i]-prefix
of si+1; (4) If |Xi| > |Xi+1| holds, K = si+1 holds (i.e.,
s = P [i] · si+1); otherwise |K| ≤ |si+1| holds.

▶ Lemma 5. For two i-substrings s and s′ having the
same text collection (i.e., set(D, i, s) = set(D, i, s′)). For
a character c, let q and q′ be the c-next substrings of s and
s′ with boundary. Then the following statements hold: (1)
q and q′ have the same text collection, and (2) if q ̸= c · s
or q′ ̸= c · s′ holds, q = q′ holds.

3.1 The naive SMM automaton
3.1.1 Automaton based on Durbin’s algorithm

We define the naive SMM automaton using Lemma 4.
SMM automaton consists of n sub-automata and each i-
th sub-automaton is called i-SMM sub-automaton. The
i-th sub-automaton is a finite directed graph with labeled
edges representing the relation between i-substrings and
(i+ 1)-substrings on D. Each node corresponds a distinct
i-substring or (i + 1)-substring in D. Nodes of (i + 1)-

0
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0
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0001

0010

0110

1011

ε
0

00

Figure 3 The compact trie for F = {0001, 0010, 0110, 1011}.

substrings and i-substrings only have outgoing and incom-
ing edges, respectively. Therefore we call the former and
latter nodes input and output nodes, respectively. We also
call (i + 1)-substrings and i-substrings input and output
substrings, respectively.

Every input node has σ outgoing edges with a distinct
character. The edge labeled by a character c from an input
node points to the output node of c·K if c is in i-substrings;
otherwise it points to the output substring ε, where K is
the c-prefix of the input substring. We call the output
substring c-output substring. In addition, we call the edge
success edge if the c-prefix of the input substring is equal
to itself; otherwise we call it failure edge.

The number of the i-th sub-automaton is |Substr(D, i)|
+|Substr(D, i + 1)|, and the number of edges is
σ|Substr(D, i + 1)|. Since |Substr(D, i)| ≤ (n − i + 1)m ∈
O(nm) holds for i ∈ [1, n], the number of edges and nodes
in the naive SMM automaton is O(n2mσ). Figure 2
depicts the 4-SMM sub-automaton for Figure 1. For
example, the input node of the string 011 has the failure
edge labeled by the character 0 and the success edge
labeled by the character 1, and the failure edge points
to the output node of the string 001 because output
substrings do not contain the string 0011 but they contain
the string 001.
3.1.2 Algorithm

We can compute SRMMs in the right-to-left order us-
ing the naive SMM automaton. Algorithm 1 is the pseudo
code outputting SMMs with threshold k using SMM au-
tomaton. Let Zi(v, c) be the function outputting the node
of the c-output substring of a given input node v in the
naive i-SMM sub-automaton. In Line 4, the algorithm ob-
tains the node of the matched string by Xi from the node
of the matched string by Xi+1 and the character P [i] using
the i-SMM sub-automaton Zi for each integer i ∈ [1, n].
In Lines 6-7, the algorithm checks if Xi+1 is one of SMMs
and the length of Xi+1 is larger than k using Lemma 4.
Therefore, Algorithm 1 outputs smm(D,P, k).

3.2 The compact SMM automaton
3.2.1 Automaton based on compact tries

We define the compact SMM automaton using Lemma 5
and compact tries. The compact trie for a set of strings
is the trie for the set such that every internal node which
has a single child is removed from the trie and the incom-
ing and outcoming edges of the node are merged into a
single edge, i.e., every internal node of the compact trie
has at least two children. Each node represents the string
by concatenating labels on the path from the root to the
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Figure 4 The compact 4-SMM sub-automaton for Figure 1.
Black and red arrows are the edges labeled by the char-
acters 0 and 1 respectively. Solid and dotted arrows are
success and failure edges respectively. The upper and
lower trees are the compact tries for 3-suffixes and 4-
suffixes of the dictionary in Figure 1. We omit length
labels of failure edges.

node. We say that a node v is the locus node of a string s
if v is the lowest node such that s is a prefix of the string
represented by v. Figure 3 is the compact trie for the set
of strings F = {0001, 0010, 0110, 1011}. For example, the
locus node of 011 is the node 0110.

The compact SMM automaton consists of compact
1, 2, . . . , n-SMM sub-automata as the naive SMM automa-
ton. Nodes of each (i+1)-SMM sub-automaton correspond
to nodes in the compact tries for (i+1)-suffixes or i-suffixes.
We call nodes for an (i + 1)-suffix and i-suffix input node
and output node respectively. Each input node has σ out-
going labeled edges with a distinct character to an output
node in the i-th sub-automaton.

The edge labeled by a character c from the node points
to the locus node of c ·K in the compact trie for i-suffixes,
which is also an output node in the sub-automaton, if c is
in i-suffixes, where K is the c-prefix of the string by the
input node in the naive i-SMM sub-automaton. Other-
wise, the edge points to the root of the compact trie for
i-suffixes. If the c-prefix of the input node is equal to the
string of the input node, we call it success edge; otherwise
we call it failure edge. In the compact SMM automaton,
each failure edge stores the length of the string represented
by the outcoming node. Figure 4 depicts the compact 4-
SMM sub-automaton for Figure 1.

The number of nodes in each compact i-SMM sub-
automaton is O(m) because the number of nodes in the
compact trie for i-suffixes is O(m). Therefore, The num-
ber of nodes and edges in the compact SMM automaton is
O(nmσ).
3.2.2 Algorithm

Actually, if we keep a record of the length of Xi in
addition to the state of the automaton, we can use the
compact SMM automaton for the SMM problem, instead
of the naive SMM automaton. We obtain the output by
the compact i-SMM sub-automaton as follows. The input
node X ′

i+1 has the outgoing edge labeled by the character
P [i] to an output node If the edge is success, the output is
the output node and the integer |Xi+1| + 1; otherwise the
output is the output node and the integer associated with

Algorithm 2: The modified main loop in Algo-
rithm 1.

1 for i← n; i ≥ 1; i← i− 1 do
/* v̂i is the locus node of Xi */

2 v̂i ← Ẑi(v̂i+1, P [i]); /* Compute v̂i using compact
i-SMM sub-automaton */

3 if Ẑi(v̂i+1, P [i]) passes a failure edge then
4 ℓi ← the length associated with the failure edge;
5 if ℓi+1 > k then output Yi+1 ← [i + 1..i + ℓi+1] ;
6 else output Yi+1 ← ∅ ;
7 else
8 ℓi ← ℓi+1 + 1;
9 output Yi+1 ← ∅;

the edge.
Algorithm 2 is the pseudo-code using compact SMM au-

tomaton instead of the main loop in Algorithm 1, and in
the main loop, it computes the locus node X ′

i using the
compact i-SMM sub-automaton and the locus node X ′

i+1.
Ẑi(v, c) is the function which returns the output node ob-
tained by the input node v with a label c in the compact
i-SMM sub-automaton. The algorithm computes SRMMs
between the dictionary and pattern, and hence it can out-
put SMMs with threshold k as Algorithm 1. Therefore we
get Theorem 1.

4. Finding SMMs over FHE
In this section we show the way of solving the pp-SMM

problem in the complexity stated in Theorem 3. To this
end, we utilize fully homomorphic encryption (FHE) as a
building block for secure computation. FHE is a form of
encryption supporting addition and multiplication on ci-
phertexts. Some of FHE schemes particularly allow any
party to evaluate an arbitrary Boolean circuit for a given
input without the party learning the input and output.
This implies that Boolean circuits outputting the SMMs
for a given pattern can solve the pp-SMM problem in a
single round. Combining this implication with Theorem
1, we finally produce such a circuit from the automaton
in order to realize the efficient solution of the pp-SMM
problem.

In the following subsections, we first explain the frame-
work of FHE. Next, we introduce Lupanov representation,
a way of representing Boolean function in circuit. For
most of Boolean functions, this representation achieves the
lower bound of the size of circuits equivalent to the func-
tions. Then we show the outline of how we apply Lupanov
representation to our case, describe the entire algorithm,
and analyze its circuit-size complexity to prove Theorem
3. In the last two subsections, as a supplement, we refer
to bootstrapping, which would be a concern in the actual
implementation of our algorithm, and TFHE as one possi-
ble remedy for this concern. We omit the discussion about
the formal protocol of our method and its security since
those are trivial once we utilize FHE.
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Algorithm 3: The modified main loop in Algo-
rithm 2.

1 for i← n; i ≥ 1; i← i− 1 do
/* ṽi is the locus node of Xi represented in

binary */
2 ṽi ← Z̃i(ṽi+1, P [i]);
3 Li ←Wi(ṽi+1, P [i]);
4 if Li ̸= −1 then ℓi ← Li;
5 else ℓi ← ℓi+1 + 1;
6 if Li ̸= −1 and ℓi > k then output

Yi+1 ← [i + 1..i + ℓi];
7 else output Yi+1 ← ∅;

4.1 Fully homomorphic encryption (FHE)
FHE scheme (e.g., [12]) allows any party to execute addi-

tion and multiplication over ciphertexts, without the party
learning the actual values of them.

FHE scheme consists of five algorithms (KeyGen, Enc,
Dec, Add, Mult) working as follows:
KeyGen(λ) Return a secret key sk and public key pk us-

ing a given security parameter λ.
Enc(pk, π) Return the ciphertext ψ corresponding to π ∈

Zq under a given public key pk.
Dec(sk, ψ) Return the plaintext π recovered from

a ciphertext ψ using the secret key sk, i.e.,
Dec(sk,Enc(pk, π)) = π holds.

Add(pk, ψ1, ψ2) Return the ciphertext ψ such that
Dec(sk, ψ) = Dec(sk, ψ1) + Dec(sk, ψ2) holds.

Mult(pk, ψ1, ψ2) Return the ciphertext ψ such that
Dec(sk, ψ) = Dec(sk, ψ1) × Dec(sk, ψ2) holds.

Particularly, when q = 2 (i.e., the plaintext space is
restricted to 1 bit), Add(pk, ψ1, ψ2) and Mult(pk, ψ1, ψ2)
correspond to the bitwise XOR operation and the bitwise
AND operation, respectively. Since it is known that those
operations are sufficient to express any Boolean function,
in this case FHE schemes permit evaluating an arbitrary
Boolean circuit, keeping the input and output encrypted.
This fact implies that we can achieve an algorithm for
the pp-SMM problem by simply translating into a circuit
plain-text algorithms of the SMM problem. Among the
algorithms of the SMM problem, particularly our plain-
text algorithm, Algorithm 2 is suitable for this purpose
because this algorithm is as fast as Durbin’s algorithm,
and “deamortized”.

4.2 Circuit representation of the algorithm
4.2.1 Outline of our representation and analysis

of complexity
In order to achieve a smallcircuit, we leverage the fact

that any logical function f : {0, 1}r → {0, 1} can be rep-
resented as a Boolean circuit of size O( 2r

r ) for an integer
r by Lupanov representation [24], and hence any mapping
f : {0, 1}r → {0, 1}t can be computed with a Boolean
circuit of size O( 2r

r t) for two integers r and t.
The key idea for efficiently utilizing Lupanov representa-

tion is that the transition induced by each character input

is a mapping Ẑi : {1, O(m)} × {1, σ} → {1, O(m)} when
we number the states of the compact sub-automata from
1 to O(m). By analogy with binary representation, one
can see this could be regarded as Z̃i : {0, 1}O(log (mσ)) →
{0, 1}O(log m). Then it immediately follows that each tran-
sition can be described with O( mσ

log (mσ) logm) circuit ele-
ments. In total, this results in O(nmσ log m

log (mσ) ) circuit el-
ements for expressing the whole transitions. Likewise, the
conditional branch in Algorithm 2 can be realized in size
O(nmσ log n

log mσ ).
The entire procedures of our algorithm are shown in Al-

gorithm 3. One can see that the bottleneck of the com-
plexity should be the parts where Lupanov representation
is used. Thus, in total, Algorithm 3 can be described in the
circuit of size O( nmσ log (nm)

log mσ ). Splitting input characters
with binary representation, we can decrease the complex-
ity to O( nm log σ log (nm log σ)

log m ), and obtain Theorem 3.
4.2.2 Bootstrapping

For the purpose of ensuring security, FHE scheme usu-
ally embeds noise in its ciphertexts. The noise grows each
time of applying homomorphic operations, until ultimately
it becomes a non-negligible amount to correctly decrypt
the ciphertext. Therefore, such FHE schemes are originally
unable to perform an infinite number of homomorphic op-
erations, especially multiplication. In brief, bootstrapping
is a method to reduce such noise.

Bootstrapping is an indispensable procedure for the un-
limited use of homomorphic operations, but at the same
time the procedure is notorious for its heavy computa-
tional cost. Due to this disadvantage, formerly FHE was
usually considered to be unusable for algorithms which re-
quire a large number of homomorphic operations. Our
algorithm is no exception because the number of boot-
strappings required in our circuit is in proportion to the
length of strings.
4.2.3 TFHE

In order to overcome the difficulty of bootstrapping, we
especially adopt TFHE [9] as the underlying foundation in
the implementation of our algorithm. TFHE is a FHE
scheme, and it also indicates the library based on the
scheme, which provides addition and multiplication over
ciphertexts of Z2. TFHE is known for its fast bootstrap-
ping and already has various applications [5, 28, 8].

We note that our algorithm can be implemented also
with other FHE schemes than TFHE as long as they en-
able us to evaluate Boolean circuits of any depth. There-
fore, if the improvement of efficiency in such FHE schemes
is made, then our algorithm can immediately enjoy the
improvement.

5. Experiments
In this section, we show the performance of our algo-

rithm by measuring its actual run time. For this purpose,
we carried out two experiments of comparing our algorithm
with the existing one on the randomly produced dataset
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and on actual genome data.

5.1 Setups
5.1.1 Datasets

In the first experiment, we would like to show the differ-
ence of complexities between ours and the existing method
proposed by Shimizu et al. [30]. To this end, as a dataset,
we fixed the number of strings as 1000, and randomly gen-
erated strings with Mersenne Twister, varying the length
of strings from 300 to 1500.

We did not employ actual genome data as the dataset of
the first experiment. In order to use genome data in this
experiment, we needed to cut out the haplotype sequences
in the data, to obtain the substrings of the desired lengths.
However, genome data has bias in its values and the run
times could be much smaller than on random datasets and
dependent on the range in which we cut out the strings.
This may result in an inaccurate result, where we cannot
see the correct aymptotic proportions of the run times. For
this reason, we decided that we did not employ genome
data in the first experiment.

Since the first experiment was performed with the ran-
dom dataset, we need to show our method runs faster
than the method by Shimizu et al. even on genome data,
given that the length of strings is large enough. There-
fore, in contrast, the second experiment was carried out
with genome data brought from the 1000 Genomes Project
phase 1 data release [10]. However, because the raw
genome data is too large to complete the measurement,
helplessly we choose 1000 haplotype sequences, randomly
choose a range, and cut out the haplotype sequences in
the data in that range, in order to obtain the substrings
of length 1000 and of length 1200. We assume that we
achieved the goal of this experiment with the result of those
lengths.
5.1.2 Implementation and environment

We implemented the proposed algorithm in C++ with
the open source library of TFHE [2]. The parameter of
TFHE λ was set to provide at least 128-bit security level.
At the stage of converting a given dictionary into circuits,
we also utilized Succinct Data Structure Library [1] to im-
plement PBWT and compact trie. Our implementation is
available on https://github.com/ykoike-MDL/NISMM.

We compared our method with the method proposed
by Shimizu et al. . Their method is based on oblivious
transfer, and requires communications between server and
client. For a fair comparison, we launched their server pro-
gram and client program locally in order to ignore their
communication cost. We measured the “end-to-end” run
times of both methods with a high resolution clock (i.e.,
the standard chrono library). In other words, we consid-
ered not only the run time of server program, but also the
one of client program.

We performed experiments on a 6-core machine with a
3.70 GHz Intel Core i7-8700 processor and 32 GB mem-
ory. All the programs were compiled by gcc-7.4.0 with the

Figure 5 The plot of run time of our method and the existing
one (PBWT-sec) on 1000 strings.

optimization flag -O3, and run on Ubuntu 18.04. We also
parallelized all the programs to make them use 4 threads.

5.2 Results
The result of the first experiment is shown in Figure

5. The observed run time of ours is almost linear in the
length of strings, while the method by Shimizu et al. shows
quadratic growth. This result fits the theoretical complex-
ity described in Table 1. Since the run times of both meth-
ods are well proportional to their theoretical complexity,
it is possible to estimate their run time even in the case
where the strings of greater lengths are given. When the
lengths are 104 and 105, then at the most our method
would take 3 days and 1 month, respectively. Thus, our
method would report answers in a realistic period of time
even for larger datasets which are often provided as actual
genome data.

Table 2 shows the result of the second experiment. For
the sake of comparison, we put on the same table the run
times of both methods on the random dataset. As de-
scribed in Section 5.1.1, there are noticeable differences be-
tween the run time of ours on the random dataset and the
one on the genome dataset. This is attributed to the size
of the resultant PBWT and SMM automaton. Due to the
bias of values of the genome data, the sizes of those data
structures become relatively small. PBWT-sec, however,
shows little difference. In fact, in their method, the size of
PBWT is not likely to influence the run time much. This
result would suggest that, on genome data, our method is
expected to run faster than its average performance esti-
mated by the result on the random dataset.

Moreover, we note that the run time of our method can
be improved by reducing the size of circuits since the run
time of our method is directly affected by the size of the
circuit we evaluate. Lupanov representation is the method
of producing circuits which achieves the lower bound only
in the worst cases, not in every case (i.e, Lupanov rep-
resentation is not a minimization method). Therefore, if
we adopt another method which produces smaller circuits
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Table 2 Running times of ours and the existing method (PBWT-sec) on two datasets,
with the concrete size of the circuits ours produced.

PBWT-sec(sec) Ours(sec) Ours(number of circuit elements)
Genome (length = 1000) 17290.7 3651.27 1994378
Genome (length = 1200) 24960.7 4571.59 2443029
Random (length = 1000) 17282.90 16845.62 9032524
Random (length = 1200) 24873.81 20199.96 10855608

than Lupanov representation, we can immediately see the
improvement of the performance, probably at the expense
of efficiency in preprocessing.
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