
Cryptanalysis of Subterranean-SAE

Fukang Liu1,3,a) Takanori Isobe2,3

Abstract: Subterranean 2.0 designed by Daemen, Massolino and Rotella is a Round 1 candidate of the NIST
Lightweight Cryptography Standardization process. In the official document of Subterranean 2.0, the designers have
made a cryptanalysis of the state collisions in unkeyed absorbing by reducing the number of rounds to absorb the mes-
sage from 2 to 1. However, no cryptanalysis of the authenticated encryption scheme Subterranean-SAE is made. For
Subterranean-SAE, the designers introduce 8 blank rounds to separate the controllable input and output, and expect
that 8 blank rounds can achieve a sufficient diffusion. Therefore, it is meaningful to investigate the security by reducing
the number of blank rounds. By reducing the number of blank rounds to 4, we can mount a key-recovery attack with
time complexity 2122 and data complexity 269.5.

Keywords: AEAD, Subterranean 2.0, key-recovery attack, conditional cube tester

1. Introduction
The National Institute of Standards and Technology (NIST)

started a public lightweight cryptography competition project in
as early as 2013 and initiated the call for submissions in 2018,
with the hope to select a lightweight cryptographic standard by
combining the efforts of both academia and industry. The 56
Round 1 candidates of the NIST Lightweight Cryptography Stan-
dardization project became public on April 18, 2019.

Benefiting from the development in cryptanalysis in these
years, some submitted primitives have been well analyzed by the
designers. However, to have a better understanding, the third-
party cryptanalysis is important as well. In this paper, our target
is the primitive Subterranean 2.0 [1] designed by Daemen, Mas-
solino and Rotella. The main reason is that we observed that
its structures in keyed and unkeyed mode are interesting and its
round function is very simple. Moreover, the degree of one-round
permutation is only 2, which gives us an impression that the con-
ditional cube attack [2] may be feasible. Since the 8 blank rounds
in Subterranean-SAE are used to separate the controllable input
and output, we believe that it is still interesting and meaningful
to investigate its security when the number of blank rounds is re-
duced.

1.1 Our Contributions
When the number of blank rounds is reduced to 4, the key-

recovery attack will be feasible. The attack procedure is com-
posed of two steps. The first step is to recover some secret state
bits by using a conditional cube tester. The second step is to guess
some key bits to construct a linear boolean equations system, each
solution of which corresponds to the full key. In this way, we can

1 East China Normal University
2 NICT
3 University of Hyogo
a) liufukangs@163.com

achieve the key-recovery attack with time complexity 2122 and
data complexity 269.5.

2. Description of Subterranean 2.0
In this section, we will briefly describe the round function

of Subterranean 2.0 and the authenticated encryption scheme
Subterranean-SAE.

2.1 Round Function
The subterranean 2.0 round function is composed of 4 simple

operations and operates on a 257-bit state. Denote the 257-bit
state by s and the four operations by χ, ι, θ, π. The one-round
permutation R = π ◦ θ ◦ ι ◦ χ is detailed as follows, where s[i]
represents the i-th bit of s.

χ : s[i]← s[i] ⊕ s[i + 1]s[i + 2],

ι : s[0]← s[0] ⊕ 1,

θ : s[i]← s[i] ⊕ s[i + 3] ⊕ s[i + 8],

π : s[i]← s[12i],

where 0 ≤ i ≤ 256. In addition, we denote the state after χ, ι, θ
operation by sχ, sι and sθ, respectively.

2.2 The Subterranean-SAE Authenticated Encryption
Scheme

Based on the subterranean 2.0 round function, the design-
ers have constructed an authenticated encryption scheme named
Subterranean-SAE, as illustrated in Figure 1. In this scheme, the
input consists of 128-bit key K, 128-bit nonce N, the associated
data A and the message M. The output is the ciphertext C and tag
T . The procedure to generate the ciphertext and tag can be briefly
described as follows:

Step 1: Absorb the key: Initialize a state s with all bits set to
0. Split the 128-bit key K into four 32-bit blocks K0,
K1, K2 and K3. Then, make four times of consecutive

Computer Security Symposium 2019
21 - 24 October 2019

© 2019 Information Processing Society of Japan －342－

Fig. 1: The construction of Subterranean-SAE

calls to duplex(s,Ki) (0 ≤ i ≤ 3) to update the internal
state. Finally, make a call to duplex(s,NULL) to fur-
ther update the internal state, where NULL represents
an empty string.

Step 2: Absorb the nonce: Split the 128-bit nonce N into four
32-bit blocks N0, N1, N2 and N3. Then, make four
times of consecutive calls to duplex(s,Ni) (0 ≤ i ≤ 3)
to update the internal state. Finally, make a call to
duplex(s,NULL) to further update the internal state.

Step 3: Blank rounds: Make 8 times of consecutive calls to
duplex(s,NULL) to update the internal state.

Step 4: Absorb the associated data: Split the |A|-bit associ-
ated data A into a series of 32-bit blocks, denoted by
Ai (0 ≤ i < ⌈|A|/32⌉), where |A| denotes the length of
A. Then, make ⌈|A|/32⌉ times of consecutive calls to
duplex(s, Ai) (0 ≤ i < ⌈|A|/32⌉) to update the inter-
nal state. If |A| is a multiple of 32 (the case when A is
empty also belongs to this case), make one more call to
duplex(s,NULL) to update the internal state.

Step 5: Message encryption: Split the |M|-bit (|M| ≥ 0) mes-
sage M into a series of 32-bit blocks, denoted by Mi

(0 ≤ i < ⌈|M|/32⌉), where |M| denotes the length of

M. Then, make ⌈|M|/32⌉ times of consecutive calls to
duplex(s,Mi) (0 ≤ i ≤ ⌈|M|/32⌉) to update the inter-
nal state. Before each call to duplex(s,Mi), make a call
to extract(s) (0 ≤ i < ⌈|M|/32⌉) and then the corre-
sponding ciphertext is Ci = extract(s) ⊕ Mi. If |M| is a
multiple of 32 (the case when M is empty also belongs
to this case), make one more call to duplex(s,NULL) to
update the internal state.

Step 6: Blank rounds: Make 8 times of consecutive calls to
duplex(s,NULL) to update the internal state.

Step 7: Extract tag: Make 4 times of consecutive calls to
duplex(s,NULL). After each call to duplex(s,NULL),
make a call to extract(s) to obtain 32-bit Ti (0 ≤ i ≤ 3).

The details of duplex(s, σ) and extract(s) are described in Al-
gorithm 1 and Algorithm 2, where σ is a bit string with at most
32 bits. The readers can also refer to the official document of
Subterranean 2.0 to have a better understanding.

The above pseudocode is slightly different from the official
document since we introduced two extra arrays order0[] and or-
der1[]. The details of the order0[] and order1[] are specified in
Table 1.

－343－

Algorithm 1 duplex(s, σ)
1: R(s)
2: j = 0
3: for j from 0 to |σ| − 1 do
4: s[order0[j]]=s[order0[j]]⊕σ[j]
5: end for
6: s[order0[j]]=s[order0[j]]⊕1

Algorithm 2 extract(s)
1: for j from 0 to 31 do
2: z[j]=s[order0[j]]⊕ s[order1[j]]
3: end for
4: return z

Table 1: The details of order0[] and order1[]
i 0 1 2 3 4 5 6 7 8

order0[i] 1 176 136 35 249 134 197 234 64
i 9 10 11 12 13 14 15 16 17

order0[i] 213 223 184 2 95 15 70 241 11
i 18 19 20 21 22 23 24 25 26

order0[i] 137 211 128 169 189 111 4 190 30
i 27 28 29 30 31 32 − − −

order0[i] 140 225 22 17 165 256 − − −
i 0 1 2 3 4 5 6 7 8

order1[i] 256 81 121 222 8 123 60 23 193
i 9 10 11 12 13 14 15 16 17

order1[i] 44 34 73 255 162 242 187 16 246
i 18 19 20 21 22 23 24 25 26

order1[i] 120 46 129 88 68 146 253 67 227
i 27 28 29 30 31 − − − −

order1[i] 117 32 235 240 92 − − − −

3. Key-recovery Attack on 4-Blank-Round
Subterranean-SAE

When the number of blank rounds is reduced to 4, a key-
recovery attack will be feasible. The attack procedure can be
divided into two steps on the whole.

Step 1: Recover y secret bits of the state after N1 is absorbed
with the conditional cube tester.

Step 2: Guess (128 − x) bits of the secret key and let the re-
maining x secret key bits as variables. Then with the y
recovered state bits, construct a quadratic boolean equa-
tion system in terms of the x variables. There will be
x(x−1)

2 quadratic terms and we replace them with x(x−1)
2

new variables. In this way, we can obtain y linear equa-
tions in terms of x+ x(x−1)

2 variables. If y ≥ x+ x(x−1)
2 , the

x secret key bits can be computed by solving this linear
equation system.

To make this part more clear, we first consider an equivalent
representation of the state transform. Suppose si (i ≥ 0) denotes
the input state of the (i + 1)-th round. Then, after χ, ι, θ and π
operation, the state is denoted by si

χ, si
ι, si
θ and si+1, respectively.

Moreover, to simulate the construction of Subterranean-SAE, we
suppose 32 bits of si can be influenced by an attacker and he can
also extract 32-bit information from si, which is zi = extract(si).

Similar with the idea of conditional cube attack, we hope the
cube sum will depend on whether the predefine conditions hold.

In other words, supposing there is one condition, the cube sum
will always be zero if the condition holds. However, when this
condition does not hold, the cube sum is uncertain and equals
zero with a very low probability of 2−32. Hence, according to the
cube sum, we can directly determine whether the condition holds
and obtain a linear equation of the secret state bits.

To make the condition cube tester work, we will set cube vari-
ables at si (0 ≤ i ≤ 2) and suppose the attacker can only get zi

(i ≥ 8) in the key-recovery attack. The main idea can be briefly
described as follows:

(1) Set 32 cube variables in s2, denoted by v2
j = s2[order0[j]]

(0 ≤ j ≤ 31).

(2) Set n cube variables in s1, denoted by v1
j = s1[order0[r]]

where 0 ≤ j < n and r ∈ {k|0 ≤ k ≤ 31}.

(3) Set 33−n cube variables in s0, denoted by v0
j = s0[order0[r]]

where 0 ≤ j < 33 − n and r ∈ {k|0 ≤ k ≤ 31}.

Suppose f (s0[x]) represents either s0[x] or s0[x]⊕1. There will
be some constraints on v0 and v1 as follows:

Constraint 1: v0 are not next to each other in s0, i.e. they will
not multiply with each other after one-round per-
mutation. After one-round permutation for v0,
they still will not be next to each other in s1.

Constraint 2: v1 are not next to each other in s1, i.e. they will
not multiply with each other after one-round per-
mutation.

Constraint 3: If the specified bit condition f (s0[x]) = 0 holds,
after one-round permutation for v0, none of v0

will be next to any of v1.

Constraint 4: If the specified bit condition f (s0[x]) = 0 does
not hold, after one-round permutation for v0, v0

will be next to at least one of v1.

With the above constraints, we can know that s2 will be linear
with (v0, v1) if f (s0[x]) = 0 holds. Since there are extra 32 cube
variables in s2 and the degree of one-round permutation is 2, we
can know that the degree of z8 is at most 26 = 64 in terms of
s2. Thus, the term v0v1v2 with degree 65 will not appear in the
expression of z8 and the cube sum of s8 will be zero in this case.

However, when the condition does not hold, s2 will contain a
quadratic term. Then, the term v0v1v2 with degree 65 will appear
in the expression of z8 and the cube sum of s8 cannot be predicted.

Consequently, according to the cube sum, we can directly re-
cover the one secret bit s0[x] as the full-state recovery attack.
With a modified searching method in [3], we can find 22 valid
choices for (v0, v1) and therefore recover 22 secret bits of s0, as
listed in Table A·1 and Table A·2 in Appendix A.1. For a bet-
ter understanding of the two tables, we take the first choice for
instance and make some explanation.

For the first choice in Table A·1 to recover the secret state s0[2],
the cube variables v0 are set at 6 bit positions of s0 and v1 are set
at 27 bit positions of s1. Specifically,

－344－

v0
0 = s0[1], v0

1 = s0[30], v0
2 = s0[111], v0

3 = s0[137],

v0
4 = s0[189], v0

5 = s0[233],

v1
0 = s1[1], v1

1 = s1[4], v1
2 = s1[11], v1

3 = s1[15],

v1
4 = s1[17], v1

5 = s1[22], v1
6 = s1[30], v1

7 = s1[35],

v1
8 = s1[64], v1

9 = s1[70], v1
10 = s1[95], v1

11 = s1[111],

v1
12 = s1[128], v1

13 = s1[134], v1
14 = s1[137], v1

15 = s1[140],

v1
16 = s1[165], v1

17 = s1[169], v1
18 = s1[176], v1

19 = s1[184],

v1
20 = s1[189], v1

21 = s1[197], v1
22 = s1[211], v1

23 = s1[223],

v1
24 = s1[225], v1

25 = s1[241], v1
26 = s1[249].

Once the condition s0[2] = 0 holds, the cube sum of z8 is zero.
However, when s0[2] , 0, three bits of s2 will always contain a
quadratic term v0

0v1
0. In addition, we have verified that there will

always be a cubic term in a certain bit of s3. Since there are 65
cube variables and sufficient number of rounds to diffuse v0, v1

and v2, we expect there will be a term of degree 65 in z8. There-
fore, based on the cube sum of z8, we directly recover the secret
state bit s0[2] as follows:∑

z8 , 0⇒ s0[2] = 1,∑
z8 = 0⇒ s0[2] = 0.

Now, we describe how to use the above method the recover
the secret state after N1 is absorbed. Set the associated data A as
empty and the first message block M0 as a zero constant. Denote
the state after Ni is absorbed as NS in

i , as depicted in Figure 2. The
attack procedure can be described as follows:

Step 1: Send an encryption query (N, A,M) and obtain (C,T).

Step 2: Keep M0 and N0 as constant. Treat NS in
1 , NS in

2 and NS in
3

as s0, s1 and s2 respectively. For each choice of the 65
cube variables in Table A·1 and Table A·2, send= 265

encryption queries (N, A,M) with N taking all possible
265 values and compute the sum of C0. If the sum is
zero, the corresponding condition will hold. If it is not
zero, the condition will not hold. Whatever the sum is,
we can recover one secret bit of NS ot

0 . The time and
data complexity to recover the 22 secret bits of NS ot

0 are
both 22 × 265 = 269.5.

After recovering the 22 secret bits of NS ot
0 , we will start to con-

struct 22 equations. Suppose K0, K1 and K2 are fixed, we then
use a trivial MILP-based method to find the maximum number of
variables in K3 which are still linear after two-round permutation
and the Gurobi solver returns 9. The 9 positions are listed below:

11, 35, 70, 95, 140, 165, 190, 213, 241.

In other words, if we fix the remaining 32 − 9 = 23 bits of K3

as constants, NS in
0 will be linear with these 9 secret bits. Since

NS ot
0 is quadratic with NS in

0 , we therefore cannot construct a lin-
ear equation system. Guessing 3 more bits among the 9 secret bits
will reduce the number of variables to 6. Therefore, there will be
6× (6− 1)/2 = 15 quadratic terms. By replacing the 15 quadratic
terms with 15 new variables, we can now know that NS ot

0 is linear
with the 6 + 15 = 21 variables. Since 22 bits of NS ot

0 has been

recovered, we can construct 22 linear equations in terms of 21
variables. It is expected there is only one solution for each guess
of Ki (0 ≤ i ≤ 3). For each solution, we compute the tag T ′ the
corresponding ciphertext C′, only when T = T ′ and C′ = C will
imply the recovered key is correct.

3.1 Complexity Evaluation
The key-recovery attack is divided into two steps. The first step

is to recover 22 secret state bits. The time complexity and data
complexity at this step is 22 × 265 ≈ 269.5. At the second step,
we guess 122 secret key bits and construct an equation system
to compute the remaining 6 secret key bits. It is expected that
there is only one solution for each guess. Therefore, we need to
guess 2122 times to find the correct key. In total, the time com-
plexity and data complexity of key-recovery attack are 2112 and
269.5, respectively.

4. Conclusion
We investigate the security of a reduced variant of

Subterranean-SAE by reducing the number of blank rounds
to 4 from 8. Relying on the idea of conditional cube tester, we
can firstly recover 22 secret state bits. Then with a guess-and-
determine method, the search space for the secret key is reduced
to 2122 from 2128. As a result, we can mount key-recovery attack
for this variant with time complexity 2122 and data complexity
269.5.

References
[1] Joan Daemen, Pedro Maat Costa Massolino and

Yann Rotella: The Subterranean 2.0 Cipher Suite.
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-
1-Candidates (2019)

[2] Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang and
Jingyuan Zhao: Conditional Cube Attack on Reduced-Round Kec-
cak Sponge Function.　 In: Coron JS., Nielsen J.(eds) EUROCRYPT
2017. LNCS, vol. 10211, pp. 259-288. Springer, Cham (2017)

[3] Fukang Liu, Zhenfu Cao and Gaoli Wang: Finding Ordinary Cube
Variables for Keccak-MAC with Greedy Algorithm. In: Attrapadung
N., Yagi T.(eds) IWSEC 2019. LNCS, vol. 11689, pp. 287-305.
Springer, Cham (2019)

Appendix

A.1 Tables
We present some tables in this section.

－345－

Table A·1: Cube variables for conditional cube tester
Bit positions in s0 1, 30, 111, 137, 189, 223,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,
in s1 165, 169, 176, 184, 189, 197, 211, 223, 225, 241, 249

condition s0[2] = 0
Bit positions in s0 2, 30, 137, 189,

Bit positions 2, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,
in s1 165, 169, 176, 184, 189, 197, 211, 213 , 223, 225, 234 , 241, 249

condition s0[3] = 0
Bit positions in s0 2, 30, 111, 137, 189, 223,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,
in s1 165, 169, 176, 184, 189, 197, 211, 223, 225, 241, 249

condition s0[1] = 1
Bit positions in s0 4, 30, 137, 189,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,
in s1 165, 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249

condition s0[5] = 0
Bit positions in s0 11, 30, 137, 189,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,
in s1 165, 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249

condition s0[10] = 1
Bit positions in s0 15, 137, 189, 223,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,
in s1 165, 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249

condition s0[16] = 0
Bit positions in s0 22, 111, 137, 189, 223,

Bit positions 2, 4, 11, 15, 17, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140, 165,
in s1 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249

condition s0[21] = 1
Bit positions in s0 64, 30, 111, 137, 189, 223,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 128, 137, 140, 165, 169,
in s1 176, 184, 189, 197 , 211, 213, 223, 225, 234, 241, 249

condition s0[65] = 0
Bit positions in s0 64, 30, 111, 137, 189, 223,

Bit positions 1, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140, 165,
in s1 169, 176, 184, 189, 211, 213, 223, 225, 234, 241, 249

condition s0[63] = 1
Bit positions in s0 70, 30, 137, 189,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,
in s1 165, 169, 176 , 184, 189, 197, 211, 213, 223, 225, 234, 241, 249

condition s0[69] = 1
Bit positions in s0 95, 30, 137, 189,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 136, 140,
in s1 165, 169, 176, 184, 189, 197, 211, 213, 223 , 225, 234, 241, 249

condition s0[96] = 0

－346－

Table A·2: Cube variables for conditional cube tester
Bit positions in s0 111, 30, 137, 189,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 136, 140,
in s1 165, 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249

condition s0[112] = 0
Bit positions in s0 134, 30, 111, 189, 223,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 165,
in s1 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249

condition s0[133] = 1
Bit positions in s0 136, 30, 189, 223,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,
in s1 165 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249

condition s0[135] = 1
Bit positions in s0 165, 30, 137, 189,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,
in s1 165, 169, 176, 184 , 189, 197, 211, 213, 223, 225, 234, 241, 249

condition s0[166] = 0
Bit positions in s0 184, 30, 137, 223,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,
in s1 165, 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249

condition s0[185] = 0
Bit positions in s0 197, 30, 111, 137, 223,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,
in s1 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249

condition s0[196] = 1
Bit positions in s0 211, 30, 137, 223,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 136, 140,
in s1 165, 169, 176, 184, 189, 197, 211 , 213, 223, 225, 234, 241, 249

condition s0[212] = 0
Bit positions in s0 213, 30, 137, 223,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 136, 140,
in s1 165, 169, 176, 184, 190 , 197, 211, 213, 223, 225, 234, 241, 249

condition s0[214] = 0
Bit positions in s0 225, 30, 111, 137, 189,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,
in s1 165, 176, 184, 189 , 197, 211, 213, 223, 225, 234, 241, 249

condition s0[226] = 0
Bit positions in s0 241, 30, 111, 137, 189,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,
in s1 165, 176, 184, 190 , 197, 211 , 213 , 223, 225, 234, 241, 249

condition s0[240] = 1
Bit positions in s0 249, 30, 111, 137, 189,

Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,
in s1 165, 176, 184, 190, 197, 211, 213, 223, 225, 234, 241, 249

condition s0[248] = 1

－347－

�
� R

�

�
�

�
�

R

�
�

�

R

�
�

�

R

�
�

�

R

�
�

�

R

�

R

�
�

�

R

�
�

�

R

�
�

�

R

�
�

�

R

�

�

��
�

�� ��
�

�	

��
�

�� ��
�

�	

��
�

�� ��
�

�	

��
�

�� ��
�

�	

Fig. 2: Key recovery attack

－348－

