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Abstract: Secure multi-party computation (MPC) allows a set of parties to jointly compute a function,
while keeping their inputs private. MPC has many applications, and we focus on privacy-preserving nearest
neighbor search (NNS) in this paper. The purpose of the NNS is to find the closest vector to a query from
a given database, and NNS arises in many fields of applications such as computer vision. Recently, some
approximation methods of NNS have been proposed for speeding up the search. In this paper, we consider
the combination between approximate NNS based on “short code” (searching with quantization) and MPC.
We implement a short code-based privacy-preserving approximate NNS on secret sharing-based secure two-
party computation and report some experimental results. These results help us to explore more efficient
privacy-preserving approximate NNS in the future.

1. Introduction

1.1 Introduction

The nearest neighbor search (NNS) is a kind of algorithm

that finds a vector in a given dataset which is closest to a

given vector. We can apply this algorithm in many differ-

ent fields, such as machine learning, computer vision, data

mining, etc. With the continuous expansion of data scale,

the demand for data scale on NNS has reached millions or

even higher. To make search faster, we sometimes use some

approximation methods such as short-code. In this strat-

egy, we compress the vector into lower dimensions to reduce

computation costs. In such approximation algorithms, the

results may not always be correct. However, but we can

expect that we can obtain the results that close to the cor-

rect answer in many cases. The NNS with approximation is

called approximate nearest neighbor search(ANN).

In this paper, we consider the privacy of the query and

database in this setting. We can easily find the cases that

we query the privacy-sensitive data (e.g., picture of our face,

genome strings) to the server and search for similar ones.

To the best of our knowledge, there is no previous result of

combining ANN with secure multi-party computation (se-

cure computation, or MPC) [1], [2]. A privacy-preserving

NNS may dramatically be faster by allowing small errors.

1.2 Related Work

There are some ways (= building blocks) to realize MPC

such as (fully) homomorphic encryption [3], [4], garbled cir-
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cuits [1], etc. In this paper, we focus on the MPC based on

secret sharing (SS) [2] since we can obtain large throughput

in this scheme. There are many research results on SS-based

MPC. For examples, we have results on highly-efficient MPC

(e.g., [5], [6]), concrete tools or the toolkit (e.g., [7], [8], [9],

[10], [11]), mixed-protocol framework [12], [13], [14], applica-

tion to privacy-preserving machine learning or data analysis

(e.g., [13], [14], [15], [16]), proposal of another model for

speeding up the pre-computation [15], [17], etc.

There are some research results on privacy-preserving (k-

)NNS [12], [18], [19], [20], [21], [22], [23]. The results other

than [12] consider the protocols based on homomorphic en-

cryption or garbled circuit, and other than [22], [23] consider

not approximate but exact (k-)NNS.

1.3 Our Contribution

In this paper, we proposed the construction of privacy-

preserving approximate nearest neighbor search via secret

sharing-based secure two-party computation. We find that

the “short code” scheme in ANN algorithm has good com-

patibility with secure computation when computing the dis-

tance between vectors. In the original NNS, the compu-

tation of the distance between two vectors requires heavy

operations such as rooting and squaring in secure compu-

tation. After using short code, distance computation can

be transformed into XOR operation. Since we can com-

pute XOR operation without interactions between parties,

we can greatly reduce the costs for computation and com-

munication of the algorithm. We consider the client-aided

two-party computation in this paper. In this construction,

two parties act servers, and they hold a share of database

vectors. In this model, the client who wants to search the
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nearest vector with queries bears the pre-computation.

We make our experiments in local and LAN environments.

We measure the running time of the algorithm. We set the

data scale as 1000 to 10000 in our experiments. The results

show that the time of distance calculation is linear with

the number of data in the database when using short code

approximation. The bottleneck of total execution time at

present is the top-1 selection part (the operation for finding

the shortest distance in a set of distances). The experimen-

tal results can help us to construct more efficient privacy-

preserving ANN.

1.4 Paper Organization

In Section 2, we will introduce some basic knowledge

needed for this paper. In Section 3, we will explain our

construction of privacy-preserving ANN. In Section 4, we

will explain the contents of the experiment and show their

results. Section 5 is a conclusion and future work.

2. Preliminary

2.1 Approximate Nearest Neighbor Search

The algorithm of NNS is summarized as follow:

• Given a vector V and a vector dataset

S ∈ {V1, V2, . . . , Vn}
• Return a vector in S that is the closest to V .

The NNS arises in many fields of applications such as

computer vision. To find a similar image, we convert the

image data to the RGB vector. Then we use the NNS to

find the nearest vector, which is represented to the simi-

lar image. In the current research, the scale of the dataset

we use has expanded to millions or even billions. In these

scales, the general NNS has been unable to maintain high

efficiency. In order to achieve fast NNS with a large amount

of data, some approximation algorithms are usually used.

The locality sensitive hashing is a kind of solution for ANN

search, and there are also many studies on LSH, but when

combined with the secure computation in this paper, LSH

needs a large amount of computation. In order to reduce

the amount of computation, the approximate scheme used

in this paper is the short code method.

2.2 Short Code

The current research on short code methods can be di-

vided into the Hamming type and lookup type, and we use

the Hamming type in our research. The short code methods

based on Hamming type reduces the dimension of the origi-

nal vector by using multiple hash functions and compresses

the vector into a Boolean vector in which all the elements

are Boolean values. In further explanation, we first need

to define a parameter k, which represents the dimension of

the compressed Boolean vector. In related research of short

code-based ANN, k is set to 128. After defining the value

of k, we need to create k hash functions. Each hash func-

tion takes the whole original vector as input and outputs a

Boolean value of 0 or 1. Fig.1 shows the compression pro-

cess of the short code method. Compressed vectors reduce
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Fig. 2 Short code-based approximate nearest neighbor search,
the distance calculation uses XOR-operations with linear
cost.

the required memory space compared with the original vec-

tors. When calculating the distance between two vectors, we

only need to calculate the Hamming distance between two

vectors. The XOR operation is much simpler than the orig-

inal operation. In the application of the nearest neighbor

algorithm, the distance between each database vector and

the request vector can be quickly calculated and compared.

Fig.2 illustrates the computation of the nearest neighbor

search based on short code.

In order to systematically represent the compression pro-

cess of short code and apply it to secure computation, we

transform the k hash functions for compression into a ma-

trix of k ∗m. The whole compression process can be seen as

a matrix multiplication operation between this k ×m ma-

trix and the m-dimensional vector. Since the elements in

the compressed vector are Boolean values, we also need to

transform the output value of matrix multiplication. Here

we choose to use step function ε to process the output values.

The definition of a step function is as follows:

ε(x) =

{
1 x ≥ 0

0 x < 0

Using the step functions mentioned above, we can convert

the results of matrix multiplication into Boolean values. In

secure computation, such step functions can be implemented

by comparison protocols, which can compare the secret value

with zero and output a Boolean value.

The method of matrix generation determines the accuracy

of the searching result. How to generate the parameters of

the matrix is an important research subject. One method

is to generate parameters in a random way. This method

has high efficiency in generating parameters, but random

methods cannot guarantee the accuracy of the final search
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results. Another approach to improve the accuracy is to

train the original data set and determine the parameters

of the matrix by the results of training. This approach is

similar to pattern recognition in machine learning. The ac-

curacy of the matrix generated by training in this approach

depends on the quality of the training algorithm. If there

is no training data, some special transformation algorithms

such as spectral hashing [24] can be used to create matrix

parameters.

2.3 Secret Sharing

Secret sharing refers to methods for distributing a secret

amongst a group of parties, each of whom holds a part of

shared values. In this paper, we use secret sharing under

the concept of 2PC, so here we consider two parties P0 and

P1. For an arbitrary value a, when it is considered in secret

sharing protocol, we express it as [a]. When [a] is shared,

we divide it into two part expressed as [a]0 and [a]1, usually

P0 will hold [a]0 and P1 will hold [a]1.The shared protocols

used in this paper are mainly divided into Arithmetic shar-

ing and Boolean sharing, in which the sharing values are

integers and Boolean values. For any sharing value [a], if it

is a Boolean value that has only one bit, we express it as

[a]B . If it is an Arithmetic value with l-bits, we express it

as [a]A, and all the operations are under the ring Z2l .

In Arithmetic sharing, the parties share the value in the

form of Arithmetic numbers, the length of the Arithmetic

numbers is defined by the parameter l, and all the opera-

tions occurred in Arithmetic sharing is executed in the ring

Z2l . As a simple case, we suppose that P0 and P1 share a

l-bits secret value [x]A. P0 and P1 both have a part of this

value. We set [x]A0 + [x]A1 = [x]A with [x]A0 , [x]
A
1 ∈ Z2l ,for

i ∈ {0, 1}, Pi holds the value [x]Ai . P0 and P1 are unable

to obtain the shared value of each other. In this step, if we

want to guarantee the privacy of [x]A, this sharing process

cannot be executed by either P0 or P1, because the party

who execute the process can know the values of both parts.

In this paper, we adopt the client-aided model, in which the

sharing step will be performed by a client as the third party,

and the value will be distributed to P0 and P1. The detail

of client-aided model will be informed in Section 3.4, and

the detail steps of Arithmetic sharing are as follows.

• Shared Values: For an Arithmetic sharing [x]A, set

[x]A0 + [x]A1 = [x]A, for i ∈ 0, 1, Pi holds the value [x]
A
i .

• Sharing: [Shr]Ai (x), i ∈ 0, 1: This operation is used for

the case that Pi shares a part of the value [x]A1−i ∈ Z2l

to P1−i. Pi choose a value r ∈ Z2l , set [x]Ai = x− r,

[x]A1−i = r,and send [x]A1−i to P1−i.

• Reconstruction: [Rec]Ai (x), i ∈ 0, 1: This operation

is used for the case that P0 and P1 reconstruct the

shared value [x]A0 and [x]A1 to original value [x]A. For

i ∈ 0, 1, P1−i sends [x]A1−i to Pi and Pi computes

[x]A = [x]A0 + [x]A1 .

The basic operations for Arithmetic sharing are addition

and multiplication, evaluated as follow.

• Addition: Suppose that P0 and P1 have already shared

two Arithmetic value [x]A and [y]A. For i ∈ 0, 1,

Pi holds the values [x]Ai and [y]Ai . When comput-

ing [z]A = [x]A + [y]A, for i ∈ 0, 1, Pi locally compute

[z]Ai = [x]Ai + [y]Ai .

• Multiplication: Suppose that P0 and P1 have already

shared two Arithmetic value [x]A and [y]A. For i ∈ 0, 1,

Pi holds the values [x]Ai and [y]Ai . When computing

[z]A = [x]A ∗ [y]A, an extra Beaver multiplication triple

is necessary. The multiplication triple is constructed

as [c]A = [a]A ∗ [b]A and is shared to P0 and P1. For

i ∈ 0, 1, Pi holds the values [a]
A
i ,[b]

A
i and [c]Ai . Pi com-

putes [e]Ai = [x]Ai − [a]Ai , [f ]Ai = [y]Ai − [b]Ai , and use

[Rec]Ai (e) and [Rec]Ai (f) to get the value of [e]A and

[f ]A. After doing all the steps above, Pi can compute

[z]Ai = i ∗ [e]A ∗ [f ]A + [f ]A ∗ [a]Ai + [e]A ∗ [b]Ai + [c]Ai .

In Boolean sharing, the value is share in the form of sin-

gle bit [x]B ∈ 0, 1. The GMW protocol[2] is widely used for

Boolean sharing. Boolean sharing with GMW protocol has

the following operations.

• Shared Values: For an Boolean sharing [x]B , set

[x]B0
⊕

[x]B1 = [x]B , for i ∈ 0, 1, Pi holds the value [x]
B
i .

• Sharing: [Shr]Bi (x), i ∈ 0, 1: This operation is used for

the case that Pi shares a part of the value [x]B1−i ∈ 0, 1

to P1−i. Pi choose a value r ∈ 0, 1, set [x]Bi = x
⊕

r,

[x]B1−i = r,and send [x]B1−i to P1−i.

• Reconstruction: [Rec]Bi (x), i ∈ 0, 1: This operation

is used for the case that P0 and P1 reconstruct the

shared value [x]B0 and [x]B1 to original value [x]B . For

i ∈ 0, 1, P1−i sends [x]B1−i to Pi and Pi computes

[x]B = [x]B0
⊕

[x]B1 .

The basic operations in Boolean sharing are XOR-gate

and AND-gate, these two kinds of gate can be extended to

any other gates in bit operation. XOR-gate and AND-gate

are evaluated as follow:

• XOR: Suppose that P0 and P1 have already shared

two Boolean value [x]B and [y]B . For i ∈ 0, 1, Pi

holds the values [x]Bi and [y]Bi . When computing

[z]B = [x]B
⊕

[y]B , for i ∈ 0, 1, Pi locally compute

[z]Bi = [x]Bi
⊕

[y]Bi .

• AND: Suppose that P0 and P1 have already shared

two Boolean value [x]B and [y]B . For i ∈ 0, 1, Pi

holds the values [x]Bi and [y]Bi . When computing

[z]B = [x]B ∧ [y]B , similar to the multiplication triple

required in the multiplication operation of Arithmetic

sharing, here we need to generate a Boolean pre-

computing triple, which can be used to calculate AND-

gate while maintaining input privacy. As another

choice, we can use oblivious transfer protocol to achieve

the operation which is introduced in [25].

In addition to the above basic operations used in Arith-

metic sharing and Boolean sharing, here we introduce two

complex protocols: comparison protocol and B2A protocol.

These two protocols are also constructed by basic protocols

and operations, but they are important protocols needed for

privacy preserving ANN in this paper. They are constructed
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as follow：
• Comparison protocol: This protocol is used to com-

pared two values in Arithmetic sharing and return a

flag to indicate result. It takes as input 2 shared l-bits

Arithmetic value [x]A and [y]A, return a Boolean value

[cp]B . The value satisfies that:

[cp]B =

{
true [x]A ≤ [y]A

false [x]A > [y]A

The detail algorithm and an implement of this protocol

is proposed in [11]. When the comparison protocol is

executed, two users start related operations at the same

time. For i ∈ 0, 1, Pi takes [x]
A
i and [y]Ai as input. Af-

ter the computation in this protocol, P0 and P1 obtain

[cp]B0 and [cp]B1 respectively. These to values satisfies

that:

[cp]B0
⊕

[cp]B1 = [cp]B

Due to the conclusion in [11] and our research, P0 and

P1 needs 2 rounds of communications when the param-

eter l is equal to 8(since the vector compressed by short

code used in this paper has 128 elements, the Hamming

distance is not more than 28). In addition, P0 and P1

require 1012 pairs of multiplication triples and 3 pairs

of Boolean triples. These pre-computing data can be

generated by a third party in advance and transferred

together in one round.

• Boolean-to-Arithmetic(B2A) protocol: This proto-

col is used to convert a Boolean sharing into Arithmetic

sharing. It takes as input a shared Boolean value [x]B ,

Return an l-bits Arithmetic value [x]A. The value sat-

isfies that:

[x]A =

{
1 [x]B = true

0 [x]B = false

This protocol also requires P0 and P1 to execute si-

multaneously, and we can also find the implement and

detail algorithm in [11]. The algorithm has 4 steps that

is listed as follow:

( 1 ) For i ∈ 0, 1, Pi locally converts his values [x]B to

[ẋ]B by the following rule:

[ẋ]Ai =

{
1 [x]Bi = true

0 [x]Bi = false

( 2 ) For i ∈ 0, 1, Pi runs ShrAi ([ẋ]Ai ) and share the

value as [[ẋ]Ai ]
A
i and [[ẋ]Ai ]

A
1−i.

( 3 ) P0 and P1 compute [[ẋ]A0 ]
A ∗ [[ẋ]A1 ]A us-

ing a multiplication protocol. We set

[m]A = [[ẋ]A0 ]
A ∗ [[ẋ]A1 ]A, for i ∈ 0, 1, Pi holds

the value [m]Ai .

( 4 ) For i ∈ 0, 1, Pi locally computes

[x]Ai = [ẋ]Ai − [m]Ai .

In this protocol, P0 and P1 require one round of com-

munication to exchange intermediate value, and a mul-

tiplication tripe is required.

2.4 Secure Computation

The secret computation tool used in this paper is the 2PC

based on secret sharing. As we denote in Section 1, this kind

of protocol requires a lot of pre-computing data. Here we

use client-aided model[15]. Specifically, we consider three

parties in the whole protocol. Two of them act as servers

that compute the protocols, and the other one acts as a

client to provide part of secret input. In addition, this client

provides pre-computed data for the two parties.

2.5 Semi-honest Model

If a protocol is secure in a semi-honest model, it means

that each participant in the protocol will follow the rules of

the protocol. They will not try to modify their inputs and

outputs, attempt to break the protocol or cooperate with

other participants to obtain more information. They only

record the data and intermediate information they can get

and try to infer more useful information.

Semi-honest model is the general and basic security

model. The construction proposed in this paper is secure

in the semi-honest model.

3. Privacy Preserving ANN

3.1 General Introduction

The secret sharing protocol has good compatibility with

the short code. The short code method uses XOR oper-

ation to compute the Hamming distance and compare the

distance. In secret sharing protocol, the XOR operation is

computed locality. This greatly reduces the time required

for privacy-preserving calculation for Hamming distances.

In addition, the secure computation protocol based on se-

cret sharing has more advantages than other secure com-

puting protocols when using short code method to compress

the query vector. Since the compressing process is a kind of

matrix multiplication, in which each element is multiplied

separately and then added together, all multiplications can

be calculated in parallel. Therefore, P0 and P1 can transfer

intermediate values altogether through one communication

in multiplication protocol. Similarly, the multiplication tri-

angle required for multiplication can also be transmitted in

one communication. Adopting the above method can re-

duce the round of communication in secret sharing-based

matrix multiplication to one round. This greatly increases

the transmission efficiency.

We divide the process in privacy preserving ANN search

into preparation part, distance computing part and com-

parison part. In the protocol mentioned below, the secret

owned by parties will be taken as input, but it doesn’t mean

that parties are required to transmit their own secret. In the

process of protocol, two parties calculate separately and ex-

change some intermediate data. The data transmitted will

not reveal their secrets.

We consider the following situation. A server has a vec-

tor database, and a user also holds a vector. User wants

to search for the vector in the database that is closest to

his vector. During searching, user wants to ensure that his
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own data is private, and server does not want to reveal the

database either. The secret sharing protocol and short code

method introduced in Chapter 2 can be used in the privacy

preserving ANN to protect privacy of parties.

We use the client-aided model in our construction. Sup-

pose that there are three parties P0, P1 and P2. We take

P2 as client, P0 and P1 as distribute servers. P0 and P1

can communicate and transfer data to each other, but they

should ensure that after the client starts querying, the two

servers will not reveal the private data from client.

3.2 Preparation Part

As preparation, we suppose that the database

[vdb]B = {[V 1]B , [V 2]B , ..., [V n]B} already compressed

by the short code that each vector has 128 binary elements.

P0 and P1 have shared the vector database as follows:{
[vdb]B0 = {[V 1]B0 , [V 2]B0 , ..., [V n]B0 }
[vdb]B1 = {[V 1]B1 , [V 2]B1 , ..., [V n]B1 }

[vdb]B0 and [vdb]B1 can be reconstructed as [vdb]B . For

i ∈ 0, 1, Pi holds [vdb]Bi . At the same time, P2 compresses

his query vectors into a 128-dimensions vector called [qv]B

that has the same length as the vector in database. This

process requires matrix multiplication, which is temporarily

omitted in our program and replaced by randomly gener-

ated database and vectors. After the above preparation, P2

divides his query vector into two parts [qv]B0 and [qv]B1 by

sharing the protocol and sends them to P0 and P1 respec-

tively. In addition, P2 also send some pre-computing data

to P0 and P1, which we will mention in Section 3.5.

3.3 Distance Computing Part

This part of the protocol calculates the Hamming dis-

tance between the query vector and each vector in the

database and return a set of 8-bit arithmetic sharing with

n elements(n is the vector amount of database). As

an example, to calculate the distance between [qv]B and

[V a]B(parameter a satisfies that 1 ≤ a ≤ n), P0 and P1

need to do the following operations.

( 1 ) For i ∈ 0, 1, Pi locally computes

[hva]Bi = [qv]Bi
⊕

[V a]Bi .

( 2 ) P0 and P1 use a B2A function to convert the Boolean

values [hva]B0 and [hva]B1 into Arithmetic sharing value

[hva]A0 and [hva]A1 .

( 3 ) For i ∈ 0, 1, Pi locally adds up the values in each dimen-

sion of [hva]Ai and store the new value as [hda]Ai . Specif-

ically, suppose [hva]Ai = {hv1, hv2, ..., hv128}, then Pi

calculates [hda]Ai = hv1 + hv2 + ...+ hv128 in the ring

of Z2l .

In the whole process, we need to calculate every element

in the database and get Hamming distance of all database

vectors. We call the Hamming distance data set as [HD]A.

For i ∈ 0, 1, Pi holds a sharing of the dataset as follows:

[HD]Ai = {[hd1]Ai , [hd2]Ai , ..., [hdn]Ai }

The time complexity of the program is linear with the

scale of the database. For each database vector, we need

to calculate the distance with the query vector. In distance

calculation, P0 and P1 need one round of communication

to complete the B2A protocol. Therefore, in the database

with n vectors, we usually need n rounds of communication

to complete the distance calculation.

Here we can use an optimization scheme since the calcula-

tion of each vector in the database can be carried out paral-

lelly, we can also merge the communication in the B2A func-

tion together. Through this operation, the data exchanges

that originally need n rounds can be reduced to one round.

3.4 Comparison Part

In this part, we group the elements of [HD]A in pairs,

compare each pair and leave the smaller elements in each

pair. Then we group the remaining elements in pairs again

and leave the smaller elements. For a dataset [HD]A which

is generated from a database with n vector, after ⌈log2n⌉
rounds of operations, there is only one element left, and this

element is the smallest element in the original dataset. The

comparison part we constructed takes as input two Ham-

ming distances in Arithmetic sharing and return the sharing

smaller distance. We use the comparison protocol, B2A pro-

tocol and multiplication protocol in the algorithm. Suppose

we need to compare the two parameters [a]A and [b]A and

leave the smaller value. For i ∈ 0, 1, Pi holds [a]
A
i and [b]Ai ,

and they will do the following operations:

( 1 ) P0 and P1 run comparison protocol that take as input

([a]A0 , [a]
A
1 , [b]

A
0 , [b]

A
1 ). P0 gets [cp]B0 and P1 gets [cp]B1

as the comparison result.

( 2 ) P0 and P1 run B2A protocol that take as input [cp]B0
and [cp]B1 , P0 gets [e]A0 and P1 gets [e]A1 .

( 3 ) P0 calculates [c̄p]B0 =![cp]B0 and P0 calculate

[c̄p]B1 = [cp]B1 .

( 4 ) P0 and P1 run B2A protocol that take as input [c̄p]B0
and [c̄p]B1 , P0 gets [ē]A0 and P1 gets [ē]A1 .

( 5 ) P0 and P1 run multiplication protocol that take as in-

put ([a]A0 , [a]
A
1 , [e]

A
0 , [e]

A
1 ), compute [c1]

A = [a]A ∗ [e]A.
P0 gets [c1]

A
0 and P1 gets [c1]

A
1 .

( 6 ) P0 and P1 run multiplication protocol that take as in-

put ([b]A0 , [b]
A
1 , [ē]

A
0 , [ē]

A
1 ), compute [c2]

A = [b]A ∗ [ē]A.
P0 gets [c2]

A
0 and P1 gets [c2]

A
1 .

( 7 ) For i ∈ 0, 1, Pi locally compute [c]Ai = [c1]
A
i + [c2]

A
i .

After these operations. Pi stores the value [c]Ai as the

sharing of smaller value from [a]A and [b]A.

One comparison protocol, two B2A protocols, and two

multiplication protocols are used in the above operations.

According to the previous conclusion, the total number

of communication rounds required by these protocols is

2 + 2× 1 + 2× 1 = 6 rounds. In fact, this part can also

be optimized. The two B2A protocols and the two multipli-

cation protocols can be implemented in parallel. The inter-

mediate parameters of the two protocols can be transmitted

by one round of communication. In the optimized scheme,

the rounds of communication needed for one comparison has

reduced to 3.
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Fig. 3 Process of comparison part with n = 10, it requires 24
rounds of communications which is equal to 6× ⌈log2n⌉.

In the whole comparison part, there are many places that

can be optimized by parallel processing. When grouping

the elements in pairs, all pairs can be processed in paral-

lel. Therefore, in the whole comparison part, 6 rounds of

communication are used for each round of pair. Since we

need ⌈log2n⌉ rounds of pairing, the total rounds of com-

munication in this part can be reduced to 6× ⌈log2n⌉ after

optimization.

Fig.3 shows the actual execution of the comparison pro-

tocol in the case that n = 10. By this way, the number of

communication returns in the whole comparison protocol is

reduced as much as possible, and the efficiency of the secure

ANN based on secret sharing is improved.

3.5 Pre-computing Part

There are a lot of pre-computing data that need to be

calculated in advance in the whole protocol. If these data

are generated during the calculation process, it will slow

down the execution time of the whole protocol. Since if the

parameter n is determined in the protocol, the required op-

eration process is also determined, so all the pre-computing

data can also be created and sent to users before the imple-

mentation of the protocol, and it can be used directly when

it is required. The amount of pre-computing data is linear

with the number of vectors in the database.

The in multiplication triple B2A protocol, comparison

protocol, and multiplication protocol can all be created by

P2 in advance and transmitted to P0 and P1 before exe-

cuting the calculation. These pre-computed data are not

affected by the input data, so they can be stored in the

memory space of P0 and P1 and used sequentially when

needed. According to the data size of the database, we can

calculate the amount of multiplication triple required in pri-

vacy preserving ANN. Previous conclusions show that in a

database of n vectors, 3n B2A protocols, 2n multiplication

protocols and n comparison protocols are required.

4. Experimental Results

We implement our construction based on Python with

NumPy library. We write three separate programs repre-

sented to P0, P1 and P2 respectively. The program contains

the python.socket library, which enables programs to com-

municate with each other.

We first make the experiment and run the program on

a personal laptop with Intel Core i7-6700HQ 2.60GHz and

16GB RAM. We run programs of P0, P1 and P2 on this

laptop at the same time, so that they can calculate and

communicate with each other. We set the vector amount in

the database to 1000, 2000, 3000 and 10000, and tested the

running time of the program. The test results are shown in

Table 1.

After the above experiments, we used three computers

and built a LAN network, and carried out the second round

of experiments under the LAN environment. We let the lap-

top used in the first experiment as the client, which is also

called P2 in our construction, and two other computers as

P0 and P1. The experimental results are recorded in Table

2.

In the experimental results, pre-computation time indi-

cates the time that P2 provides pre-computing data for the

whole computation process, including the generation of ba-

sic parameters(such as l and n in our construction), query

vectors and multiplication triples. The time of this part

includes both the time of calculation and the time of data

transmission. In the computation time, we show the time

of distance computation and the time of comparison respec-

tively. Distance computation is the process that P0 and

P1 compute Hamming distance from the query vector and

database vectors and returns the vector of Hamming dis-

tance. Comparison time includes the time of finding the

minimum distance from the vector of Hamming distance.

Both parts of the time include computing time and commu-

nication time.

The experimental results show that the running time of

privacy-preserving ANN construction that we proposed in

this paper is linear with the amount of database vectors.

At the same time, depending on current construction, when

the data amount is less than 10000, it is possible to put

it into practical use. At the same time, we find that the

bottleneck of the current construct is the comparison part

that to compare the Hamming distance and return to the

minimum one. In the local environment, the running time

of the current comparison protocol accounts for 94.4% of

the total computing time. In LAN, this time accounts for

94.9%. It can be inferred that in higher latency environ-

ment, the time spent by comparing protocols determines

the running time of the whole program. Similar conclusions

can be drawn from the inference of the algorithm itself be-

cause the number of multiplication triples generated in one

comparison protocol of an 8-bit Arithmetic sharing is over

a thousand, which is tens of times larger than that of other

protocols. However, in the current research, there is no bet-

ter solution to the privacy-preserving comparison protocol.

With the further development of comparison protocol, the

efficiency of short code-based ANN algorithm can be further
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Table 1 Run Time of Privacy Preserving ANN Pre-computation/Computation/Total Pro-
cess with Different Amount of Database Vector in Local Environment(All Pro-
gram Run in One Computer)

Data amount Pre-computation
Computation Time

TotalDistance Computation Comparison Total Computation
Time (s) Time (s) Time (s) Time (s) Time (s)

1000 7.2 0.3 5.3 5.6 12.8
2000 14.3 0.6 10.7 11.3 25.6
3000 23.2 0.9 16.8 17.7 40.9
10000 74.7 2.9 49.3 52.2 126.9

Table 2 Run Time of Privacy Preserving ANN Pre-computation/Computation/Total Pro-
cess with Different Amount of Database Vector in LAN (3 Computers)

Data amount Pre-computation
Computation Time

TotalDistance Computation Comparison Total Computation
Time (s) Time (s) Time (s) Time (s) Time (s)

1000 9.2 0.3 6.2 6.5 15.7
2000 16.8 0.7 12.3 13.0 29.8
3000 27.6 1.0 17.7 18.7 46.3
10000 78.2 3.3 61.2 64.5 142.7

improved.

5. Conclusion

We propose a construction of privacy-preserving ANN and

test its expression through experiments. However, there are

still other parts that need to be added to the current con-

struction. Firstly, the process of compressing the original

vector by short code is not included in the program we made,

and there is no conclusion about the best method of gener-

ating the parameters of the compression matrix. Secondly,

current research just constructs the privacy-preserving ANN

algorithm that outputs the smallest distance. But in prac-

tice, it is not enough for users just to know the minimum

distance of compressed vectors, and they also need to know

the corresponding original vectors and obtain the original

vectors. Here we propose two approaches:

( 1 ) While sharing database vectors, the server binds the

original vectors together. In the whole computing pro-

cess, only the Hamming distance is compared in the

comparison protocol, and the original vectors are bind

together to calculate in other protocols. In this way, the

minimum Hamming distance can be output bind with

the corresponding original vector.

( 2 ) Instead of binding the original vectors while sharing,

here the data bound to the database vector is the index

of the original vector. After the same process in ap-

proach 1, the index of the original vector can be output.

Then a private information retrieval (PIR) protocol [26]

is used between the user and the server, and the original

vector is obtained by the user.

The first approach is easy to implement, but it will affect

the efficiency of the whole construction because the bound

original vector data also takes up a certain amount of mem-

ory space and participates in the calculation. The second

method has little impact on efficiency but requires addi-

tional PIR schemes. Choosing which approach is one of the

future topics.

The current experimental results show that privacy-

preserving ANN has acceptable running time when the vec-

tor amount is less than 10000 in the database. For the cur-

rent popular ANN search of million-scale or even billion-

scale, it is necessary to classify the whole database and re-

duce the number of vectors for searching to less than 10000,

so that they can be used in secure computation. The current

experiment results also provide the basis and objectives for

future research.
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