ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. コンピュータセキュリティシンポジウム
  4. 2019

Privacy-Preserving Approximate Nearest Neighbor Search: A Construction and Experimental Results

https://ipsj.ixsq.nii.ac.jp/records/201336
https://ipsj.ixsq.nii.ac.jp/records/201336
37bdee13-3130-4740-bd9b-5684034086db
名前 / ファイル ライセンス アクション
IPSJCSS2019043.pdf IPSJCSS2019043.pdf (511.9 kB)
Copyright (c) 2019 by the Information Processing Society of Japan
オープンアクセス
Item type Symposium(1)
公開日 2019-10-14
タイトル
タイトル Privacy-Preserving Approximate Nearest Neighbor Search: A Construction and Experimental Results
タイトル
言語 en
タイトル Privacy-Preserving Approximate Nearest Neighbor Search: A Construction and Experimental Results
言語
言語 eng
キーワード
主題Scheme Other
主題 nearest neighbor search,secure computation,short code
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Institute of Industrial Science, The University of Tokyo
著者所属
National Institute of Advanced Industrial Science and Technology (AIST)
著者所属
Institute of Industrial Science, The University of Tokyo
著者所属(英)
en
Institute of Industrial Science, The University of Tokyo
著者所属(英)
en
National Institute of Advanced Industrial Science and Technology (AIST)
著者所属(英)
en
Institute of Industrial Science, The University of Tokyo
著者名 Ke, Huang

× Ke, Huang

Ke, Huang

Search repository
Satsuya, Ohata

× Satsuya, Ohata

Satsuya, Ohata

Search repository
Kanta, Matsuura

× Kanta, Matsuura

Kanta, Matsuura

Search repository
著者名(英) Ke, Huang

× Ke, Huang

en Ke, Huang

Search repository
Satsuya, Ohata

× Satsuya, Ohata

en Satsuya, Ohata

Search repository
Kanta, Matsuura

× Kanta, Matsuura

en Kanta, Matsuura

Search repository
論文抄録
内容記述タイプ Other
内容記述 Secure multi-party computation (MPC) allows a set of parties to jointly compute a function, while keeping their inputs private. MPC has many applications, and we focus on privacy-preserving nearest neighbor search (NNS) in this paper. The purpose of the NNS is to find the closest vector to a query from a given database, and NNS arises in many fields of applications such as computer vision. Recently, some approximation methods of NNS have been proposed for speeding up the search. In this paper, we consider the combination between approximate NNS based on "short code" (searching with quantization) and MPC. We implement a short code-based privacy-preserving approximate NNS on secret sharing-based two-party computation and report some experimental results. These results help us to explore more efficient privacy-preserving approximate NNS in the future.
論文抄録(英)
内容記述タイプ Other
内容記述 Secure multi-party computation (MPC) allows a set of parties to jointly compute a function, while keeping their inputs private. MPC has many applications, and we focus on privacy-preserving nearest neighbor search (NNS) in this paper. The purpose of the NNS is to find the closest vector to a query from a given database, and NNS arises in many fields of applications such as computer vision. Recently, some approximation methods of NNS have been proposed for speeding up the search. In this paper, we consider the combination between approximate NNS based on "short code" (searching with quantization) and MPC. We implement a short code-based privacy-preserving approximate NNS on secret sharing-based two-party computation and report some experimental results. These results help us to explore more efficient privacy-preserving approximate NNS in the future.
書誌レコードID
識別子タイプ NCID
関連識別子 ISSN 1882-0840
書誌情報 コンピュータセキュリティシンポジウム2019論文集

巻 2019, p. 297-304, 発行日 2019-10-14
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 21:05:09.898275
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3