Fe g R=2ZVRF L 109—45
(1996. 7. 26)

KA Tz MERMAVZUT FEREERWVE
Bahst BHm T IBHRIE RO ER

Wisut Sae-Tung KHRE EF
BLBEKE KER W8 A7 AR
S 2 7 L REHERH 7§ N - R

BESTEROERIEV I - PRI A RLHREE, Fy M7~ LTy ZEREZRET 57—
5= A, Wb L IEEEEN S HRRET IBADEFITHNA TS, Ll s OEHRE
EIEENFNASEEAICRE /RSN TEY, H—WEREA v T AZRBEL TR,
DX HEETIE, - FHERBCEROBHREREMATLORELY, TITERTIE, BEY
SERTI—FICH LTI L) R EREETO SR ERREL RS 2001, kA TV =7
FgHIA 2 1) 7 B85 Persistent Perl #RE L. IhEk B CBEIEFERET OMBRERE L £
BT 5D,

An Information Retrieval Architecture for Mobile Computers Based on a
Persistent Script Language

Wisut Sae-Tung Ohmori Tadashi Hoshi Mamoru

The University Of Electro-Communications
Graduate School Of Information Systems

Because of the outstanding of hardware technology, a size of computers becomes smaller
so that users can take their mobile computers, move from one place to another place within
networks and query information from the information resources, database server that provide
different kind of multi-media information. Unfortunately, the information resources connect-
ing to the network are developed by different people, in different languages and at different
time. Therefore, they do not provide the integrated interface. This causes the difficulties in
manipulating information in heterogeneous information resources. To solve this problem, we
have designed and developed an environment and a set of tools for mobile computer users to in-
tegrate information on the network. These help users easily and freely manipulate information
on the heterogeneous information resources.

—269—

1 DMotivation

In mobile computing environment, users carry their
mobile computers, travel around the network and may
require to access information from unknown informa-
tion resources[l]. However, the information stored at
such information resources has been developed in di-
verse languages on a wide varity of hardware and soft-
ware platforms, for example; relational databases, doc-
ument retrieval systems, file systems, WWW servers,
Java-application servers and so on[2]. Consequently,
they often provide different data models and access
mechanisms. on this variety, the users can not freely
access information on information resources in an in-
tegrated manner(2,5]. Therefore, the problem of an
integration has become much more challenging. This
situation can be shown in figure 1. All the information
resources do not provide global and integrated inter-
faces. Moreover, the access methods that are provided
by these information resources do not use the same al-
gorithms as the users want. Therefore, they must use
these access methods to get information back to their
mobile computers and browse them one by one. This
method takes time and consumes network resources,

Recently, remote programming has become a focus of
attentions to solve the above problem(4]. Remote pro-
gramming has flexibility and efficiency by performing
much of work locally on information resources and re-
turning results to users only the relevant information.
This method thus provides a better solution than a tra-
ditional distributed client/server model for the system
with a low bandwidth or unreliable network and limited
resource capacities in mobile devices.

To solve the above problem, we use the idea of re-
mote programming. We design and implement a set of
tools that facilitate users to freely access data on spon-
taneous information resources in the integrated man-
ner(8,9]. In this paper, after introducing an overview
of our system architecture in section 2, we describe
problems and necessary functions in script generating
in section 3. In section 4, we describe how to solve the
problems shown in section 3. In section 4, we describe
related work and the philosophy of our approach. Fi-
nally, we conclude and discuss our ongoing work.

2 System Architecture

To understand our system more clearly, we will start
from the following example with the most basic pro-
cessing. It is shown in figure 2. This figure shows the
information-retrieval processing between a mobile com-
puter and an information resource. Suppose that the
mobile computer user comes across an unknown infor-
mation resource when he move around the network. In

< Moblle
Computer

Figure 1: Information Resource and Network structure

this case, the information-retrieval processing is per-
formed in the following steps:

Step 1 The user does not know data schemas and
how to access information in the information resource.
Therefore, he sends a request for the class definitions
of the provided information to the information resource
by an e-mail.

Step 2 Corresponding to the user’s request, the
wrapper function on the information resource searches
for the class definitions and sends them back to the
user.

Step 3 The user registers the class definitions sent
from the information resource into his data dictionary
and then use them to build a filtering script in his own
style. This filtering script will be sent to the informa-
tion resource by e-mail again.

Step 4 The wrapper function on the information re-
source executes the incoming mail, and then sends the
result of the execution back to the user.

As the step shown above, we provide various tools to
help a user access an information on the information re-
source in an integrated manner. The basic components
and tools can be divided into the following parts:

1. Wrapper and Persistent Perl[7] Object Model
2. Query Language
3. Mediator on Mobile Computer

The detail of each component will be described in the
next subsections.

—270—

@ User request
Mediator-User Respond
(© Filtering Seript

Mobile

Informatiol
Source

Figure 2: An Information-Retrieval Processing

2.1 Wrapper and Persistent Perl Ob-
ject Model

A wrapper plays the key role of the integration in our
architecture. The wrapper is a group of programs that
translates requests and data between native informa-
tion resource and the Persistent Perl Object Model. In
the other words, the native data items and their ac-
cess method must be described by class definitions of
Persistent Perl. They are then registered into a data
dictionary. With this mapping information, the wrap-
per function can perform the following work:

1. providing mobile computer user these class defini-
tions corresponding to his request.

2. When receiving a script program from the user,
it translates the script program to the native requests,
executes them, converts a result into Persistent Perl
object model and send the result of the execution back
to the user.

To illustrate the wrapper, consider the class defini-
tion shown in figure 3.

The class definition in figure 3 defines a class called
Person. This class contains a body part that specifies
a fixed number of arbitrary attributes. In a method
part, we have to provide the mapping between the na-
tive services to the methods in Persistent Perl style. In
a interface part, we can provide a rule for each do-
main of arguments of the methods of class definition.
The functions of this part will be explained in the next
section.

Suppose that the underlying information resource is a
relational database and the wrapper program retrieves
2 records of data from the database. The values of the
information are shown as follows:

~

Person Data

[967006,Wisut Sae-tung,01-22-1966,M,Eng]
Occupation Data

[Eng, Engineer]

Using Persistent Perl object model, we can represent
the above value as follows:

ersistent class Person

ody
Code string,
Name string,
BirthDate string,
Sex char,
Occupation refto Occupation —
method

PersonClass($Code, $Name, $BirthDate,
$Sex, $Dept)
begin
// coding of constructure function //
end
checkName ($name)
begin
if ($self->{Name} =" /$name/ {
return 1;
Yelse{
return 0;

end
interface

él.lélclass
Figure 3: Class Definition

Person_1->{Code} 7967006,
Person_1->{Name} = ’Wisut Sae-tung’,
Person_1i->{BirthDate} = ’01-22-1966’,
Person_1->{Sex} = ’M’,
Person_1->{0cuppation}
Occupation_1->{Code} =
Occupation_1i->{Name} =

(]

= ’Occupation_1’,
)Engl s
’Engineer’,

Person_1 and Occupation_I are Perl’s associated vari-
able references. From the point of view of object, they
act as object identifiers. In consequence of this, the
value of Person.1—{Occupation}—{Name} is ’Engi-
neer’.

2.2 Query Language

Cooperated with Persistent Perl object model, we pro-
vide users with an Object-Oriented SQL, or O0-SQL,
as an integrated query language for our system. Not
only object qualifications, users can also specify their
filtering methods as the condition of query to manipu-
late information as preferred.

select S->{Code},S->{Name},
S->{BirthDate},S->{Sex},
S->{0ccupation}->{Code}

from S in PersonClass

where Zhoroscope(S->{BirthDate},’06/23/1966°}

From the example shown above, a user wants to find
the information of the person whose characters agree
with his by using the horoscope method. This helps
the user to be able to customize a filtering process into
his own style.

—271—

2.3 Mediator on Mobile Computers

To help users rapidly generating a filtering script, we
have provided the mechanism on the mobile computer
called "mediator”. The mediator generates a filtering
script of Persistent Perl from OO-SQL command. It
collects up some library calls provided in information
resources, user’s data, user’s filtering methods and puts
them into a filtering script in Persistent Perl language.
The filtering script will be sent to the information re-
sources to be executed for retrieving information.

3 Problems and Necessary Func-
tions in Script Generating

In this section, we will describe about the problems
in script generating while mobile computer users are
disconnecting from network and describe how to solve
these problems.

3.1 Problems in Script Generating

In the previous section, we have described the over-
all processing model. In our model, mobile computer
users can generate a filtering script by using 00-SQL
while they are disconnecting from network. They con-
nect to the network, send the filtering script during a
short connection and then disconnect from the network.
Even though this approach is the best style for the mo-
bile computing environment, there are some additional
necessary functions for generating a filtering script. In
contrast to the client/server model, mobile computer
users cannot check whether they enter data matching
with the data required by information resources. This
problem arises because their processes are not connect-
ing to the processes on the information resources. Fur-
thermore, this problem always arises when users try to
join more than two classes that use different domains
or formats for representing the same data.

3.2 Necessary Functions for Generating
Script

To solve the above problem, we need some necessary
functions for generating a filtering script while users
disconnect from information resources. They are listed
as follows:

1. Information resources provide users with not only
class definition but also how to use access methods
in class definition . These information are used as
rules to resolve data-domain and data-type mismatch
of an integration problem.

2. Mobile computers should be able to recognize the
above resources and use them to generate a filtering

script while disconnected from network.

4 Integration Rule Specification
for Mediator

Now, suppose that users want to access to some of
the information stored in 2 information resources that
For example,
the first one represents date format using Heisei for-
mat while the second one represents date format us-
ing American format. To understand our system more
clearly, let us explain the integration rules in a inter-
face part of a class defintion and how a mediator on
mobile computer can use them to generate a filtering
script through the following example.

Asshown in figure 4, the specification of the interface
part can be divied in the following components:

1. Rule: This part declares the rule for each domain
of the arguments of class-associated methods. In this
example, it is the rule for a Heisei Date domain.

2. External Program: This part declares a group
of functions that are provided by the information re-
source. These functions can be used to check or decom-
pose the input arguments. This example shows that the
information resource provides three checking functions,
American, European and Heisei. These functions are

represent data using different format.

used to check the input argument and return a Boolean
value.

3. Comment: This part declare the message shown
to users when they are going to enter data for the ar-
gument of the corresponding domain. It is useful for
explaining some information for users. For example,
data format, how to use this access method and so on.

4. Default: This part declare a sample of data of
its domain. In this example, the sample data of Heisei
date format is “H7/04/23.”

This example shows about querying a reservation for
both a train and a hotel. User wants to know whether
there is an available room of hotel and seat of train
to his destination at the certain time. the user re-
quests the class definitions to the information resources
and they send back the class definitions to the user.
The class definitions of RoomClass and TrainClass are
shown in figure 4 and 5 respectively.

After receiving the class definitions, the user regis-
ters them into his database on mobile computer. Sup-
pose that he want to find out an available train from
Tokyo to Osaka on 25/12/1995 (DEC 235, 1995) and an
available room from 25/12/1995 to 26/12/1995. The
user will use the VacantRoom($startDate Date, $end-
Date Date) method of the RoomClass and the Vacant-
Train($DepartTime Date, $Departure string, $Desti-
nation string) method of the TrainClass. The Room-

—272—

gersistent class RoomClass

ody
TypeOfRoom string,
RoomNo string,
Schedule setof RoomScheduleClass,
method // access methods for RoomClass
RoomClass ($TypeOfRoom string, $RoomNo string)
// code program
VacantRoom($startDate Date,$endDate Date)
// code program
interface // interface rules for RoomClass

Rule:

Date ($X) :- chkType ($X) .
chkType($X) :- Heisei($X),output($X).
chkType($X)

- European($X),output(’&Eu2Heisei(’.$X.’)")

chkType (X0

:-American($X) ,output (’&Am2Heisei(’.$X.%)’).

External:
Heisei(input) code is Heisei.pl
European(input) code is European.pl
American(input) code is American.pl

Comment: How to use.

Default: H7/04/23

endclass

Figure 4: A HotelClass Definition

Class uses Heisei date format, but the TrainClass use
American date format. For this reason, The date for-
mat values supplied to the VacantRoom and the Va-
cantTrain must be Heisei and American date format
respectively.

By acting as an mobile computer assistent, we pro-
vide users with an user interface so that the user can
form QO-SQL command easily. While communicating
with the user through the user interface, the mediator
on mobile computer uses rules provided from the in-
formation resources to solve the problem shown above.
The detail of the user interface are shown in [9]

The execution of the interface rule is similar to Prolog
execution process that use depth-first search algorithm
to find out the goal of the execution. The mediator on
mobile computer will invoke a rule when user enters
data for the argument whose domain corresponds with
the rule. For the above example, when the user enter ’
25/12/1996° for argument $startDate of the Vacant-
Room method, the mediator will invoke the Date rule,
execute and send &Eu2Heisei(’°25/12/19967) as a re-
turn value. From the requirement we have described,
the result can be shown as below:

select R->{RoomNo},T->{TrainNo}

from R in RoomClass T in TrainClass,

where &VacantRoom(R gEuToHeisei (’25/12/19957)
gEuToHeisei(26/12/19957))

and &VacantTrain(T,&HeiseiToAm(’25/12/1995°)
’Tokyo’,’nsaka’)

and &myBudget (R->{TypeO0fRoom},T->{TypeOfTrain},

’s’,’vip’,’Shinkansen’, ’Regular’)

ersistent class TrainClass

ody

TypeOfTrain string,

TrainNo string,

TimeSchedule setof TimeScheduleClass,
method // access methods for TrainClass
TrainClass($TypeOfTrain string, $TrainNo string)
// coding //
VacantTrain($DepartTime Date,$Departure string,

$Destination string)

// coding //
interface // interface rules for Trainclass

Rule:

Date($X) :- chkType($X).

chkType ($X) :- American($X),output($X).
- chkType ($X)

:~ European($X) ,output (’&Eu24m(’.$X.?)’).
chkType ($X)
:~ Heisei($X),output(’&Heiei2Am(’.$X.’)’).
External:
American(input) code is American.pl
European(input) code is European.pl
Heisei(input) code is Heisei.pl
Comment: How to use
Default: 23/02/1996

Figure 5: A TrainClass Definition

5 Discussion with Related Work

Integration of heterogeneous information resources has
There
are many researches that provide solutions to solve this
problem. One of the outstanding projects is the TSIM-
MIS[2,3] that is developed at Stanford university.

The TSIMMIS provides environment so that users
can freely access information stored on the hetero-
geneous information resources. TSIMMIS provides
OEM-QL{2], the language resembles SQL, for users to
query information from heterogeneous resources. The
mediator[3] provides global integrated view based on
OEM]3] so that users do not need to recognize where
the information is stored.

Even though users can use OEM-QL to query the
provided information, they can use only object qualifi-

become one of important research directions.

cation as query condition. They cannot provide their

own algorithms for accessing information. This re-
stricts users to use the same style as SQL command.
The other restriction of the TSIMMIS is the known in-
tegration view that must be prepared by mediator. In
the mobile environment, While disconnecting from net-
work, mobile computer users can not create their own
view on the spot by their mobile computers to access
information from unknown information resources.

The global view of our solution can be shown in fig-
ure 6. In our environment, a user will collect class
definitions, utility programs provided from information
resources and his own filtering methods in his mobile
computer and move within network (step 1). When the

—273—

[“wrapper |

[wrarrer]

WRAPPER
0%

Program
Mobile
Computer

. (Providing Server

Figure 6: The Global-View Architecture

user comes across unknown information resources, he
then uses his filtering methods and the class definitions
sent from these information resources to generate his
own style of a filtering script while he is disconnecting
from network. However, the interface rules provided
by each information resource may be insufficient for
integration. In this case, the user can receive interface
rules and utility programs from other mobile users or
servers and uses them to generate the filtering script
again (step 2). After finishing script generating, the
user will send the filtering script to the information re-
sources to gather the relevant information (step 3). A
wrapper will convert the queries of the filtering script
into native query commands of the underlying infor-
mation resource and transforms the result of the query
into Persistent Perl object model (step 4). In case that
the filtering script must be executed in several infor-
mation resources to complete its work, it moves to an-
other information resource (step 5). It contacts with
the wrapper in that information resource as the same
manner shown above. When finishing all works, the
result will be sent back to the user (step 6).

As described earlier, our propose has a number of
advantages as follows:

1. Information-retrieval process is performed on in-
formation resources without intensive network commu-
nication.

2. A Mobile computer user can use his own filter-
ing methods, class definitions and rules from informa-
tion resource or other mobile users to generate a cus-
tomized filtering script. He does this process on the

WRAPPER 5\

spot they meet an the unknown information resources
during they disconnect from network.

3. A wrapper and Persistent Perl can act as a broker
that helps user to access information on heterogeneous
information resources in an integrated manner.

Note, a very important difference between our sys-
tem and TSIMMIS is the operation environment. In
mobile computing environment, users move in network
and may want to access unknown information resources
on the spot by their mobile computers which still have
resource capacities and network bandwidth limitations.
These characteristic and limitations of mobile comput-
ing comstrict the way of use that differ from the tradi-
tional client/server model.

6 Conclusion and Project Status

In this paper, we have proposed an environment and
a set of tools for mobile computer users to integrate in-
formation in heterogeneous information resources. We
have implemented the Persistent Perl and use it as the
communication language in our system. We have pre-
sented the wrapper function on information resource,
the OO-SQL, the mediator function and the user in-
terface on mobile computer. We describe how to use
our tools to access information on heterogeneous en-
vironment through the example of the global view of
our system. We believe that our proposal is so natural
a way of use and it will be an important step toward
for achieving information-retrieval in mobile computing
and heterogeneous environment.

The initial work consisting of all modules described
above have been developed. However, The information
resources we used for testing are implemented by Per-
sistent Perl. We are currently implementing The wrap-
per for Postgres95 database and applications built by
Java language.

References

1: T. Imielinski and B. R. Badrinath.: "Data Manage-
ment for Mobile Computing.” SIGMOD Record, 22(1):34-39,
March 1993.

2: Chawathe,S. et al.: “The TSIMMIS project: Integration
of heterogenous information sources”. In Proceedings of the
ACM the 100th IPSJ, Tokyo, Japan, %p.T-IS, Oct 1994,

3: Y. Papakonstantinou, et al.: ”Object exchange across
heterogenous information sources.” In 1EEE Int. Conf. Data
Engineering '95., P .251-260, 1995.

4]1.99? Wayner. ’ngnts Unleashed” AP PROFESSIONAL

5: A.Silberschatz, M.Stonebraker, J.D.Ullman ed.:

“Database Sgstems: Achievements and Opportunities”,

ACM SIGMOD Record, Vol.19 (No.4), pp.6-22, 1990.

6: J. Gosling, H. McGilton. The Java Language Environ-

ment A white paper. Sun MicroSystems Co. Available from

httg%ava.sun‘com/ .

7. L.Wall, Perl reference guide for Perl ver.5.

8 A% E. Wisut Sae-Tung, B . [A2)7 EEICLD

BEREBEAII S 7V 27 P O RF A BIERBESZIH
#i5 DE95-54, 95 4£ 10 H.

9: A% E. Wisut Sae-Tung, £ 5. [BEEERICBIT 2

BR—ARFEAL)T L OSRER] MELEEZLE5 26 &

EA& 7P-6, 96 € 3 A.

—274—

