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For historical document analysis and recognition, there exist many challenges such as damage, fade, 
show-through, anomalous deformation, various backgrounds, limited resources and so on. These challenges raise 
the demand for preprocessing historical document images. In this paper, we propose deep neural networks, 
named Pixel Segmentation Networks (PSNet) for text segmentation from Pre-Modern Japanese text (PMJT) 
historical document images. The proposed networks are used to segment pixels of text from raw document 
images with various background styles and image sizes, which is helpful for the later steps in historical 
document analysis and recognition. For preparing training patterns, we applied the Otsu local binarization 
method on every single character and extracted the pixel-level labels of all training document images. To 
evaluate the proposed networks, we used following two metrics: pixel-level accuracy (PlA) and the ratio of 
intersection over a union of the true test region and its detected region (IoU). Since there is the great imbalance 
between the number of background pixels and that of text pixels, we normalize the measurements by a weighted 
parameter based on the frequency of background and text pixels. Then, we made experiments on the PMJT 
database, which is randomly split into the training set of 1,556 images, validation set of 333 images and testing 
set of 333 images. The experiments show the best PlA of 98.75%, the frequency-weighted PlA of 95.27%, IoU 
of 87.89%, and the frequency-weighted IoU of 97.68% when 1,556 images are uses for training. Moreover, the 
performance of CED-PSNet12 is only degraded as little as around 2 percentage points even when under 100 
images, 1/16 of the original training set are used. 
 
1. Introduction  

In recent years, many large historical document 
databases have been annotated and published in order to 
answer the demand for preserving historical documents 
and availing them for research without damaging 
physical documents [1]–[8]. Nguyen et al. applied deep 
neural networks to recognize Japanese historical text 
that were vertically written with brush or woodblock 
printed in the Edo period (1603-1868) [9]. They 
achieved the best results in a recognition contest1 on 
short text of three deformed Kana characters and 
multiple text-lines of them, where deformed Kana is a 
set of 46 phonetic characters deformed from Chinese 
characters. They applied the Otsu binarization 
preprocessing on each character bounding box and 
improved the recognition rates since it reduces noises 
and other deformation effects.  

However, it is difficult to employ the Otsu method 
without character bounding boxes to binarize a historical 
document due to several challenges such as damage, 
fade, show-through, anomalous deformation, different 
backgrounds, limited resources and so on. These 
challenges are common in historical documents, which 
add extra difficulties to document analysis and 
recognition as shown in Fig. 1. There are other 
challenges in analyzing them which are not found in 
contemporary documents, such as vertical or horizontal 
guidelines, complex layouts of characters and cursive 

 
1 https://sites.google.com/view/alcon2017prmu (in 
Japanese) 

writing through an entire text-line, as shown in Fig. 2 
and 3. Even experts face difficulties and take a long time 
to read these documents. Obviously, the usual Optical 
Character Recognition (OCR) or Handwriting Text 
Recognition (HTR) systems cannot be used directly on 
the historical documents due to these problems.  

In this paper, we focus on the deep neural 
network-based text segmentation as a preprocessing step 
of OCR or HTR for historical documents. We present a 
method that classifies text pixels from other pieces of 
information such as background, noise, figure pixels, so 
that the process of text recognition can concentrate only 
on text pixels. 

a) Fade. b) Show-through.

Figure 1. Samples of the anomalous deformation.
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a) Vertical guidelines. b) Horizontal guidelines.

Figure 2.  Samples of guidelines. 

          
Figure 3.  Overlapping/touching samples. 

2. Related works 

During the last decade, there have been many studies 
for text segmentation on historical document images, 
which usually consist of binarization and connected 
component analysis to extract text areas based on prior 
knowledge, heuristic rules or machine learning methods. 
Phan et al. applied the Voronoi diagram for 
connected-component boundary detection and 
neighborhood representation [10]. They used prior 
knowledge and heuristic rules to gather adjacent 
Voronoi areas that form character areas in historical 
document images. Bukhari et al. used a multi 
feedforward neural network to classify connected 
components by their extracted features such as 
orientation, height, width, foreground, relative distance 
with neighborhood [11]. For Japanese historical 
woodblock printed document, Panichkriangkrai et al. 
proposed a two-step method consisting of vertical 
text-line segmentation and character segmentation [12]. 
Their text-line segmentation is based on vertical 
projection on binarized images. They applied heuristic 
rules to segment characters from the segmented vertical 
text-lines. Those studies were successfully used for 
printed historical document images without various 
backgrounds or heavy noise [13]. However, their 
methods need to redesign the heuristic rules for different 
databases because they used data-dependent information 
to make their classifiers. Thus, there is still a demand for 
robust text segmentation from historical document 
images. 

In recent years, deep neural networks have been 
studied and applied for semantic segmentation tasks, 
which solve the segmentation problem for general 
images. A few studies have also been reported for 
historical documents using deep neural networks, with 
their effectiveness of the deep neural networks shown 
for solving the pixel-level classification tasks [14]–[16]. 
Chen et al. presented an unsupervised method using a 
convolutional autoencoder (CAE) to learn and extract 
features from pixels of historical document images [14]. 
They used a Support Vector Machine (SVM) to classify 
those extracted features into four categories: periphery, 
background, text block or decoration. It replaced the 
traditional handcrafted features by automatically learned 
features, but it still depends on a simple classifier. 
Renton et al. and Xu et al. proposed end-to-end deep 
neural networks for segmenting text-lines and characters 
from historical document images [15], [16]. Their 
networks outperformed the previous research using 
traditional handcrafted features. However, those 
methods were designed to achieve the best accuracy at 
text-line level segmentation. In our research, we focus 
on exploring the performance of deep neural networks 
for pixel-level segmentation on historical document 
images. 

3. Proposed Method 

In order to solve the problem of text segmentation at 
pixel-level in historical documents, we propose deep 
neural networks, named Pixel Segmentation Networks 
(PSNet) of two types. The input of PSNet is a scanned 
image from historical documents and the output is a 
segmented image of the same size where each pixel is 
labeled as text, figure or background. The training 
scheme of PSNet is shown in Fig. 4. For PSNet, 
pixel-level labels are required for supervised training. 
However, the Pre-Modern Japanese Text (PMJT) 
database contains only character bounding boxes instead 
of pixel-level labels. Therefore, we apply the Otsu 
binarization on every character bounding box to obtain 
the text pixels while other pixels are labeled as 
background. Note that the character bounding boxes are 
not required during the testing phase. Although the Otsu 
method does not provide the perfect ground-truth for the 
image of a whole page, it is quite reliable for an area 
within each character bounding box. In the following 
subsections, we present the details of each network 
architecture. 

3.1. Convolutional Encoder-Decoder based PSNet 

The basic type of PSNet is a Convolutional 
Encoder-Decoder model (CED-PSNet), which is 
inspired by the Fully Convolutional Network [17], to 
solve the semantic segmentation problem for general 
images. A CED-PSNet consists of four components: 
encoder, feature aggregator, classifier and decoder.  

The encoder extracts features from a raw image 
(input image) by multiple convolutional layers with 
pooling layers between them. The first architecture of 
PSNet is shown as CED-PSNet16 in Table I, inspired by 
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VGGNet-16 [18]. Since this architecture consists of 
more than 47.43 million parameters, it may overfit to a 
small database as PMJT. Moreover, it has five max 
pooling layers to reduce the spatial size of an input 
image by 25 times, which also may cut off important 
information. The following two architectures, 
CED-PSNet12 and CED-PSNet9, are derived from the 
first one by reducing the number of parameters and 
keeping more information. The denotations for 
convolution blocks (CONV Block) in Table I are 
formatted as [kxkxNfm]xNl where kxk is the kernel size, 
Nfm is the number of feature maps and Nl is the number 
of stacked layers. At the end of each CONV Block, there 
is a Max Pooling layer (MaxPool) with the kernel size of 
2x2 and the stride of 2. 

The feature aggregator follows the encoder. It 
consists of a large receptive field convolution layer with 
the kernel size of 8x8 to capture wide context 
information and another convolution layer with the 
kernel size of 1x1 to transform context features. The 
classifier is a convolution-based classifier with the 
kernel size of 1x1 and the depth of #classes, where 
#classes is the number of classes that pixels belong to, 
which uses the aggregated features as input. Here, 
#classes is two if there are only two categories (text and 
background) and three if there are three categories (text, 
figure and background). The classified output is at a low 
resolution that should be upsampled back to the original 
resolution. 

The decoder reconstructs the output back to the 
spatial shape of the input image. It consists of multiple 
deconvolutional layers (DECONV) to produce a pixel 
classification at the same spatial size as the input image. 
The deconvolutional layers are also named transposed 
convolutional layers. They play a role of up-sampling to 
enlarge the feature maps through transposed 
convolutional operators. The denotations of DECONV 
in Table I are formatted as kxkxNfm,u:ur, where ur is the 
upsampling rate. CED-PSNet has residual connections, 
which are element-wise addition operators (green 
arrows) between the convolution layers of the encoder 
and the deconvolution layers of the decoder in order to 
detect text pixels by features from multiple scales. 

As shown in Fig. 5, the encoder extracts features by 
multiple levels from fine to coarse, and the decoder 
reconstructs features from coarse to fine, where the 
high-level semantic information is still retained. 

Figure 4.  The overflow of PSNet training. 

TABLE I.  DIFFERENT ARCHITECUTURES OF CED-PSNET. 
 CED-PS 

Net16 
CED-PS 

Net12 CED-PSNet9 

Input shape 512x512x3 
CONV 
Block 1 [3x3x64]x2 [3x3x64]x3 [3x3x64]x2 

Output shape 256x256x64 256x256x64 256x256x64
CONV 
Block 2 [3x3x128]x2 [3x3x128]x3 [3x3x128]x2 

Output shape 128x128x128 128x128x128 128x128x128
CONV 
Block 3 [3x3x256]x3 [3x3x128]x3 [3x3x128]x2 

Output shape 64x64x256 64x64x128 64x64x128
CONV 
Block 4 [3x3x512]x3   
Output shape 32x32x512

CONV 
Block 5 [3x3x512]x3   
Output shape 16x16x512

Encoded 
feature 
maps shape 

16x16x512 64x64x128 64x64x128 

Feature 
aggregator

[8x8x1024] 
[1x1x1024] 

Classifier [1x1x#classes] 
Output shape 16x16x#class 64x64x#classes 

DECONV 1 3x3x512,u:2 3x3x128,u:2 
DECONV 2 3x3x256,u:2 3x3x64,u:2 

DECONV 3 3x3x#classes,
u:8 3x3x#classes, u:2 

Output 
shape 512x512x#classes 

Total 
#parameters >47.43M >10.17M >9.95M 

 

Figure 5.  Structure of the proposed CED-PSNet16. 

3.2. Dilated Convolution based PSNet 

As mentioned above for CED-PSNet, MaxPool at the 
end of each CONV Block reduces the spatial size of 
feature maps to produce scale and orientation invariant 
results. It is useful for the image classification task 
because the produced feature maps are generalized. For 
pixel segmentation, however, these max pooling layers 
may cause a loss of information through each CONV 
Block. This is the reason for introducing element-wise 
addition operators in CED-PSNet. We replace the 
CONV Block using convolution layers and MaxPool by 
dilated convolution layers, which is proposed for 
semantic segmentation [19]. 

A dilated convolution block (Dilated CONV) is 
denoted as [kxkxNfm;d:dr]xNl where dr is the dilation 
rate. Dilated convolution is considered as a general form 
of the usual convolution, which corresponds to the 
dilation rate of 1 (shown on the left in Fig. 6). As the 
dilation rate increases, a larger receptive field is 
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obtained with the same kernel-size for convolution as 
shown in Fig. 6. There are two main merits: the 
receptive field is enlarged at the original resolution with 
the same number of parameters and the depth of the 
network is reduced by eliminating the DECONV layers. 
Table II shows details of the two network architectures 
DC-PSNet12 and DC-PSNet9. However, the number of 
computing operators of a dilated convolutional network 
is much larger than that of an equivalent common 
convolutional network, because the spatial size of 
feature maps in a dilated convolutional network is not 
reduced by MaxPool. Fig. 7 presents our Dilated 
Convolution PSNet12 (DC-PSNet12) and DC-PSNet9, 
which are designed to capture sub-regions of the same 
sizes as the above CED-PSNet12 and CED-PSNet9, 
respectively. 

3.3. Training patterns preparation 

During the training process, there are two 
subprocesses: pixel-level ground-truth preparation 
(dashed-line rectangle) and PSNet training by input 
images and generated ground-truth as shown in Fig. 4. 
The previous research required the pixel-level labeled 
databases in order to achieve the state-of-the-art 
performance on text/non-text segmentation. Such 
databases require a considerable effort in both time and 
cost to label every pixel of the historical document 
image. Moreover, this is an unreasonable task for 
historical documents due to a lack of experts. 

Figure 6.  Dilation rates in DC-PSNet12. 

TABLE II.  DIFFERENT ARCHITECTURES OF DC-PSNET. 
 DC-PSNet12 DC-PSNet9 
Input shape 512x512x3 
Dilated CONV 1 [3x3x64;d:1]x3 [3x3x64;d:1]x2
     Output shape 512x512x64
Dilated CONV 2 [3x3x128;d:2]x3 [3x3x128;d:2]x2
     Output shape 512x512x128
Dilated CONV 3 [3x3x128;d:4]x3 [3x3x128;d:4]x2
     Output shape 512x512x128

Feature aggregator [8x8x1024] 
[1x1x1024]

Classfier [1x1x#classes]
Output shape 512x512x#classes
Total #parameters >10.10M >9.88M

 

Figure 7.  Structure of the proposed DC-PSNet12. 

The PMJT database has separate character bounding 
boxes [9], which are useful to generate the pixel-level 
ground-truth. 

We employ the Otsu binarization method on every 
character bounding box [20]. First, all pixels not covered 
by any bounding box are labeled as background pixels. 
Secondly, the binarized pixels are assigned as text pixels 
(white pixels) while other pixels are assigned as 
background pixels (black pixels), as shown in Fig. 8. 
Thus, every single pixel is labeled background (0) or 
text (1), which is used later as the pixel-level 
ground-truth. Although the Otsu method does not 
provide the perfect ground-truth, it is quite reliable as it 
is applied to each character bounding box, which makes 
the method work very well without a large imbalance of 
black and white pixels. We confirmed the generated 
pixel-level ground-truth visually. 

4. Experiments 

In this section, we present the database and two main 
metrics to evaluate PSNet. In the following subsections, 
we describe the details of our experiments to evaluate 
the performance of different proposed network 
architectures for text segmentation at the pixel-level. In 
Section 4.3, we classify pixels into two classes: text and 
non-text pixels where non-text pixels consist of 
background and figure. In Section 4.4, we classify pixels 
into three classes: text, figure and background. In 
Section 4.5, we limit the size of the original training set 
by 1/2 to 1/16 to show the robustness of the proposed 
networks to smaller sizes of the training set. 

4.1. Database 

Since late 2016, Center for Open Data in the 
Humanities (CODH) has published an open access 
database of Japanese historical documents named 
Pre-Modern Japanese Text (PMJT). The PMJT database 

 
a) Raw image (RGB). 

 
b) Pixel-level labels generated by Otsu local binarization.

Figure 8.  An example of pixel-level labels. 
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contains 2,222 scanned images with 403,242 character 
bounding boxes. In this research, we applied our 
proposed networks to the PMJT database. We randomly 
split the database into three disjoint subsets: training, 
validation and testing sets, which consist of 1,556, 333 
and 333 images, respectively. To make the experiments 
on the three-class segmentations, we inspected and drew 
bounding boxes of figures in 2,222 images in PMJT. 
Then, all the bounding boxes for figures were used to 
label the figure pixels. For the experiments in Section 
4.5, we randomly selected 778, 389, 194, and 97 
samples from the training set (1,556 images) with the 
ratio of 1/2, 1/4, 1/8 and 1/16 of the training set, 
respectively. 

4.2. Settings 

Due to the limitation of GPU memory, the size of the 
input images is set to 512x512. This size of input, 
however, cannot cover the whole page of historical 
documents in the PMJT database. Therefore, squared 
regions of 512x512 are randomly cropped from every 
page and fed to PSNet as input images. During the 
training process with 100,000 epochs, the cross-entropy 
loss is computed at the pixel level between the predicted 
output and the generated pixel-level ground-truth. The 
cross-entropy loss is optimized by the Adam algorithm 
[21]. Each proposed network architecture is trained four 
times with different initialization weights to obtain the 
best result. In the PMJT database, the number of 
background pixels is around 18.5 times larger than that 
of text pixels, which is a common challenge for the 
pixel-level labeling task. Therefore, we apply different 
learning rates for the text and background pixels, which 
are 0.005 and 0.00025, respectively. 

4.3. Performance from different networks on two 
classes 

To evaluate segmentation performance on two classes 
(text and background), we use two metrics: pixel-level 
accuracy (PlA) as shown in Eq. (1) and intersection over 
union (IoU) as shown in Eq. (2), which is the percentage 
of overlap between true test regions and detected 
regions.  

PlA ∑ 𝑝𝑖𝑥𝑒𝑙 𝑖, 𝑖∈ , ∑ 𝑡𝑜𝑡𝑎𝑙_𝑝𝑖𝑥𝑒𝑙 𝑖∈ ,   (1) 

IoU ∑ ,

_ ∑ ,∈ , ,
∈ ,   (2) 

where pixel(i, j) is the number of pixels of class i 
predicted to belong to class j. Also, total_pixel(i) is the 
total number of pixels belonging to class i. 

There is an imbalance between the numbers of 
background pixels and text pixels, which is eliminated 
by normalizing these two metrics by the frequency. 

Frequency Weighted PlA 

𝑝𝑖𝑥𝑒𝑙 𝑖, 𝑖 𝑡𝑜𝑡𝑎𝑙_𝑝𝑖𝑥𝑒𝑙 𝑖⁄
∈ ,

2 

 (3) 

Frequency Weighted IoU

∑ 𝑡𝑜𝑡𝑎𝑙_𝑝𝑖𝑥𝑒𝑙 𝑖 ∗ 𝑝𝑖𝑥𝑒𝑙 𝑖, 𝑖
𝑡𝑜𝑡𝑎𝑙_𝑝𝑖𝑥𝑒𝑙 𝑖 ∑ 𝑝𝑖𝑥𝑒𝑙 𝑗, 𝑖∈ , ,

∈ ,

∑ 𝑡𝑜𝑡𝑎𝑙_𝑝𝑖𝑥𝑒𝑙 𝑘∈ .
 

(4) 
Table III shows the results of different network 

architectures with two main metrics (Eq. (1) and (2)), as 
well as their normalized forms (Eq. (3) and (4)). The 
high accurate results from the proposed networks prove 
that CED- and DC-based PSNets extract not only local 
information but also context information to classify 
every pixel. CED-PSNet12 and DC-PSNet12 perform 
better than CED-PSNet9 and DC-PSNet9, respectively, 
through all metrics. Their performances have only some 
slight differences, which shows that DC-PSNet12 is 
equivalent with CED-PSNet12. On the other hand, the 
shallower CED-PSNet12 achieved better performance 
than the deeper network CED-PSNet16 probably 
because the former unlikely overfit to a small database 
as PMJT. For CED-PSNet9 and DC-PSNet9, their PlAs 
are almost the same but CED-PSNet9 is better on 
frequency-weighted PlA, IoU and frequency-weighted 
IoU, which means that the CED-PSNet9 predicts text 
pixels more accurately than DC-PSNet9. 

4.4. Performance on three classes 
To evaluate the segmentation performance for the 

three classes (text, figure and background), we use PlA. 
Eq. (5) defines the general formula to compute PlA for 
the ith class: 

𝑖 PlA ∑ 𝑝𝑖𝑥𝑒𝑙 𝑖, 𝑖∈ _ ∑ 𝑡𝑜𝑡𝑎𝑙_𝑝𝑖𝑥𝑒𝑙 𝑖⁄   (5) 
where output_set={Text, Figure, Background}. To 
simplify the denotation, the text, figure and background 
PlAs are abbreviated as T-PlA, F-PlA and B-PlA, 
respectively. 

TABLE III.  TWO-CLASS SEGMENTATION RESULTS OF DIFFERENT 
NETWORK ARCHITECTURES ON PMJT DATABASE. 

Metrics 

Result (%) by different networks 
CED
-PSN
et16 

CED
-PSN
et12 

CED
-PSN
et9 

DC-P
SNet

12 

DC-P
SNet

9 
Pixel-level 
Accuracy (PlA) 92.89 98.75 97.45 98.60 97.78 

Frequency- 
Weighted PlA 59.09 94.58 93.19 95.27 91.94 

Intersection over 
Union (IoU) 46.05 87.89 82.66 84.63 79.84 

Frequency- 
Weighted IoU 84.44 97.68 95.79 97.45 96.11 

TABLE IV.  THREE-CLASS SEGMENTATION RESULTS OF DIFFERENT 
NETWORK ARCHITECTURES ON PMJT DATABASE. 

Metrics 

Result (%) by different networks 
CED
-PSN
et16 

CED
-PSN
et12 

CED
-PSN
et9 

DC-
PSNe

t12 

DC-
PSNe

t9 
Pixel-level 
Accuracy (PlA) 91.38 96.79 96.08 96.73 96.84 

Text pixel-level 
accuracy (T-PlA) 21.75 88.31 83.53 93.64 94.05 

Figure pixel-level 
accuracy (F-PlA) 5.62 49.82 33.35 50.62 40.74 

Background 
pixel-level 
accuracy (B-PlA)

98.31 98.21 98.40 98.25 98.34 

「人文科学とコンピュータシンポジウム」 2019年12月

©2019 Information Processing Society of Japan－ 257 －



Text segmentation results of different network 
architectures on PMJT database. Table IV presents the 
results of three-class segmentation by different network 
architectures. PlAs of CED-PSNet12, CED-PSNet9, 
DC-PSNet12 and DC-PSNet9 are almost the same.
However, the three metrics (T-PlA, F-PlA and B-PlA)
present differences in their performances. First, T-PlAs
and F-PlAs of DC-PSNet12 and DC-PSNet9 are higher
than those of CED-PSNet12 and CED-PSNet9,
respectively. The DC-PSNet architectures seem to be
better at text segmentation when there is another class
besides the two classes: text and background. For figure
pixels, all network architectures do not predict well, i.e.,
only from 33.35% to 50.62%, which might be due to the
fact that there are not many figure pixels compared with
text or background pixels. The number of figure pixels is
0.173x109 while those of text and background pixels are
0.642x109 and 11.886x109, respectively. Moreover, the
average size of figures in the PMJT database is much
larger than the average size of characters. The receptive
field size of PSNet designed for text pixel segmentation
might not be large enough to cover the figure regions.

4.5. Performance on different sizes of training set 

In order to evaluate the efficiency of PSNet with a 
smaller number of training samples, we trained 
CED-PSNet12 and DC-PSNet12 with smaller sizes of 
training sets, the results of which are shown in Table V 
and VI, respectively. Those networks are selected 
because they achieved the best performances compared 
with other networks. Note that the following results are 
on the two classes (text and background). For 
CED-PSNet12, PlA slightly decreases by 1.21 
percentage points while the number of training samples 
is reduced from 1,556 images to only 97 images. 

TABLE V.  TEXT SEGMENTATION RESULTS BY CED-PSNET12 
USING DIFFERENT SIZES OF TRAINING SET. 

Metrics 

Result (%) by training with different number 
of training samples 

97 
(1/16) 

194 
(1/8) 

389 
(1/4) 

778 
(1/2) 

1,556 

Pixel-level 
Accuracy (PlA) 96.12 97.50 98.17 98.31 98.75 

Frequency- 
Weighted PlA 90.07 91.52 93.67 93.83 94.58 

Intersection over 
Union (IoU) 80.21 83.33 85.17 86.51 87.89 

Frequency- 
Weighted IoU 94.86 95.27 96.88 97.05 97.68 

TABLE VI.  TEXT SEGMENTATION RESULTS BY DC-PSNET12 
USING DIFFERENT SIZES OF TRAINING SET. 

Metrics 

Result (%) by training with different number 
of training samples 

97 
(1/16) 

194 
(1/8) 

389 
(1/4) 

778 
(1/2) 

1,556 

Pixel-level 
Accuracy (PlA) 95.51 97.66 98.15 98.24 98.60 

Frequency- 
Weighted PlA 90.57 92.11 94.74 94.82 95.27 

Intersection over 
Union (IoU) 73.13 79.52 81.21 81.66 84.63 

Frequency- 
Weighted IoU 93.05 95.91 96.82 96.94 97.45 

IoUs are from 87.73% to 94.27%, while 
frequency-weighted IoUs are from 96.18% to 98.33%, 
which means that more than 87% of the pixel-level 
predictions matched with the ground-truth labels. 
DC-PSNet12 has the same performance as
CED-PSNet12 when it is trained on the whole training
set. Its PlA decreases by 3.09 percentage points
compared with 2.63 percentage point of decrease by
CED-PSNet12 when only 1/16 training samples are
used. The frequency-weighted PlA of DC-PSNet12,
however, is higher than that of CED-PSNet12, which
means that DC-PSNet12 correctly predicts more text
pixels than CED-PSNet12. Thus, CED-PSNet12 and
DC-PSNet12 are appropriate for segmenting text even
when only a small number of training images are
available.

4.6. Visualization results 

In order to visualize a test image having a larger 
shape than 512x512, we split it into multiple 
non-overlapping sub-regions so that the largest shape 
should be 512x512. After binarization, we concatenated 
the sub-regions again to obtain the final output with the 
shape of the test image. Note that PSNet is not 
dependent on the shape or size of input images, which 
means that it can process an input image of the size 
512x512 (constrained by the GPU memory) or smaller. 
Fig. 9 shows the result of an image with a common 
background and a typical vertical writing style. 
Although most document images are the same as in Fig. 
9, there are some exceptions, as shown in Figs. 10 and 
11. Fig. 10 shows the result on an image with a
table-like layout in which the character locations, as well
as the table structure, are not fixed. The proposed
networks perform well on both the vertical writing style
and the table-like layout.

Even though the performance on pixel accuracy is not 
completely perfect, as shown in these two figures, these 
predictions seem reasonable for further analyses and 
recognition tasks. Fig. 11 shows the result of an image 
with graphics/drawing. It is also interesting that our 
model even segments some characters that are not 
marked by people, as shown in Fig. 12. These 
predictions suggest that the trained model converges at 
the general optimal solution and does not over-fit on the 
training set. 

a) Input image. b) Prediction.

Figure 9. Result of CED-PSNet9 on a typical background image.
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a) Input image. b) Prediction.

Figure 10.  Result of CED-PSNet12 on a table-like layout image. 

a) Input image. b) Prediction.

Figure 11.  Result of CED-PSNet12 on an image with graphic 
layout. 

 

a) Input image. b) Labeled from
PMJT.

c) Prediction. 

Figure 12.  Result of CED-PSNet12 on an example where 
some characters are unlabeled in PMJT.

5. Discussions

As mentioned in the above Introduction, the text
segmentation should be useful for OCR and HTR 
systems. It requires the vertical text-line segmentation 
since the OCR and HTR systems perform better on 
single text-line rather than on multiple text-line [9]. For 
segmenting the vertical text-lines based on the 
pixel-level text segmentation predictions, we employ the 
connected-component analysis (a bottom-up approach). 
First, the connected components among the prediction 
pixels are computed. Secondly, the components are 

grouped in case they overlap. The connected 
component-based method seems appropriate for both 
vertical text-line and table-like layouts. The results of 
the connected component and grouping are shown in 
Fig. 13 and 14 as the vertical text blocks, which are 
entirely appropriate to be recognized by the previous 
recognizers. Fig. 13 shows the connected components 
extracted from the text segmentation predictions even 
these text blocks are vertical unaligned. These results 
seem to be linked with high-level segmentation, which is 
related to character, sentence or text-line, and so on. 
Even when a high accuracy on text/non-text 
segmentation at pixel-level is achieved, our model still 
requires the text-line segmentation process before 
employing an optical character recognition due to a lack 
of high-level semantic segmentation during training. For 
future work, we will use end-to-end text-line recognizers 
to recognize text regions without character 
segmentation. It should be useful for researchers in the 
historical document processing area since a trained 
model could be used to process an enormous number of 
scanned images without requiring large human effort. 

a) Input image. b) Connected
components. 

c) Grouped 
components.

Figure 13.  Connected-components grouping method on an image 
with table-like layout. 

a) Input image. b) Connected 
components. 

c) Grouped 
components.

Figure 14.  Connected-components grouping method on an image 
with vertical text-line layout. 

6. Conclusions

This paper presented Pixel Segmentation Networks
(PSNet) to segment text at the pixel level from Japanese 
historical document images stored in the Pre-Modern 
Japanese Text (PMJT) database. We compared two 
promising types of networks: Convolutional 
Encoder-Decoder (CED-PSNet) and Dilated 
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Convolution (DC-PSNet). Since the PMJT database did 
not contain pixel labels for text segmentation, we 
generated them using the Otsu binarization method on 
each character bounding box. First, we evaluated the 
performances of different network architectures on two 
categories (text and background pixels) by two main 
metrics: pixel-level accuracy (PlA) and Intersection over 
Union (IoU), as well as their normalized forms: 
frequency-weighted PlA and frequency-weighted IoU. 
The experiments showed the best PlA of 98.75% by 
CED-PSNet12 and the frequency-weighted PlA of 
95.27% by DC-PSNet12. The highest mean IoU is 
87.89%, and the frequency-weighted IoU is 97.68% by 
CED-PSNet12. CED-PSNet12 and DC-PSNet12 have 
similar accuracies probably because their structures are 
designed to capture the same size of receptive field, 
which proves that CED- and DC-based PSNets extract 
not only local information but also context information 
to classify every pixel. On the other hand, the shallower 
CED-PSNet12 achieved better performance than the 
deeper network CED-PSNet16 probably because the 
former unlikely overfit to a small database as PMJT. 

Secondly, we evaluated different PSNet architectures 
on three categories (text, figure and background pixels) 
using Text-PlA (T-PlA), Figure-PlA (F-PlA) and 
Background-PlA (B-PlA). CED-PSNet12 and 
DC-PSNet12 achieved the same PlA but DC-PSNet12 
achieved the best performance on T-PlA (93.64%) and 
F-PlA (50.62%). The F-PlA was low because the 
receptive field size of PSNet designed for text pixel 
segmentation might not be large enough to cover the 
figure regions which are much larger than the text 
regions. Thirdly, we evaluated the dependency on the 
training set size of PSNet because historical document 
databases often do not store a large number of training 
samples. The performance of CED-PSNet12 slightly 
drops around 2 percentage points even with only a small 
number of training samples under 100 training samples. 
Thus, CED-PSNet12 is expected to be applicable to 
other low-resource historical documents. 
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