Item type |
SIG Technical Reports(1) |
公開日 |
2019-12-04 |
タイトル |
|
|
タイトル |
Node-perturbation Learning applied for Soft-committee machine |
タイトル |
|
|
言語 |
en |
|
タイトル |
Node-perturbation Learning applied for Soft-committee machine |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
College of Industrial Technology, Nihon University |
著者所属 |
|
|
|
Graduate School of Informatics, Nagoya University |
著者所属 |
|
|
|
Graduate School of Sciences, The University of Tokyo/Graduate School of Frontier Sciences, The University of Tokyo |
著者所属(英) |
|
|
|
en |
|
|
College of Industrial Technology, Nihon University |
著者所属(英) |
|
|
|
en |
|
|
Graduate School of Informatics, Nagoya University |
著者所属(英) |
|
|
|
en |
|
|
Graduate School of Sciences, The University of Tokyo / Graduate School of Frontier Sciences, The University of Tokyo |
著者名 |
Kazuyuki, Hara
Kentaro, Katahira
Masato, Okada
|
著者名(英) |
Kazuyuki, Hara
Kentaro, Katahira
Masato, Okada
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Node-perturbation learning is a stochastic gradient descent method for neural networks. It estimates the gradient of the error surface by calculating the change in error between the perturbed output and the non-perturbed output. Node-perturbation can be applied to problems where the objective function is not defined. We explore the application of node perturbation learning to a multilayer neural network called a soft committee machine and analyze the dynamic properties of the learning process. We conduct computer simulations to show the validity of the proposed method. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Node-perturbation learning is a stochastic gradient descent method for neural networks. It estimates the gradient of the error surface by calculating the change in error between the perturbed output and the non-perturbed output. Node-perturbation can be applied to problems where the objective function is not defined. We explore the application of node perturbation learning to a multilayer neural network called a soft committee machine and analyze the dynamic properties of the learning process. We conduct computer simulations to show the validity of the proposed method. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN10505667 |
書誌情報 |
研究報告数理モデル化と問題解決(MPS)
巻 2019-MPS-126,
号 2,
p. 1-6,
発行日 2019-12-04
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8833 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |