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Preliminary investigation of using

deep reinforcement learning to control a

mobile robot for human activity recognition
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Abstract: Due to recent advances in robotics technologies, it is becoming feasible for mobile robots to use
their sensors to observe daily human activities for the purpose of human activity recognition (HAR) in indoor
environments. However, when doing so, the robot will have difficultly observing and recognizing human ac-
tivities when it is positioned behind the human or some obstacle. Therefore, this work investigates a method
for using deep reinforcement learning to control the mobile robot’s movement when observing human activi-
ties. Our objective is to minimize the movement of the robot (i.e., its energy consumption) while maximizing
its human activity recognition accuracy. Moreover, our method introduces a new HAR method based on
skeletal and visual features extracted from the robot’s captured images.
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1. Introduction

Recently, human activity recognition (HAR) using

wearable and environmental sensors has been actively

studied. For example, many methods have been proposed

for using body-worn inertial sensors to recognize simple

activities [1], [2], [3], [4]. Moreover, wearable cameras have

been used to recognize complex activities in the computer

vision research, with examples including the use of a chest-

worn camera to recognize location-related events in [5] and

a wrist-worn camera to recognize activities involving the

use of daily objects in [6]. However, to support HAR,

always wearing sensors (e.g., body-worn inertial sensors,

cameras) in daily life is not practical. There are many rea-

sons for this, such as rapid battery consumption by the

sensors, the physical burden imposed, and so on.

However, mobile robots are becoming more common to

use in indoor environments because of advances in robotics

technologies, e.g., house-cleaning robots, more complex

humanoid robots, and so on. Therefore, using robots

with mounted sensors (e.g., camera, microphone) for HAR
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is becoming feasible [7]. Researchers can now use these

robots to perform HAR through a mobile platform, with-

out the need for wearable sensors. Moreover, the ability to

recognize human activities allows those robots to provide

context-aware services for their residents and also improve

their human-robot interactions.

This study focuses on performing HAR using a camera

mounted on a mobile robot. When doing so, the robot

should be controlled to ensure that its camera captures ac-

tivities from an appropriate position and orientation while

the person moves throughout the indoor environment. In

order to maximize activity recognition accuracy, deep re-

inforcement learning is used to train a neural network to

automatically control the actions of a robot. Specifically,

we employ a deep Q-network (DQN) [8] to control the

robot in order to maximize the recognition accuracy of a

HAR neural network while minimizing the distance moved

by the robot (i.e., its energy consumption). The HAR

neural network performs activity recognition using images

captured by the robot’s camera, with the confidence from

the HAR network also fed to the RL network to facilitate

its estimation of Q values for its possible actions.

Additionally, we propose an efficient action space in or-
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der to address the slow convergence of the deep Q-network

that occurs when using an action space that allows the

robot to move freely while performing HAR. Our action

space ensures that the robot does not hamper the daily

activities of the human and that it keeps its distance from

the human.

The research contributions of this study are summarized

as follows:

• We propose an architecture consisting of a deep Q-

network for controlling robot movement and a sec-

ondary HAR network for helping estimate Q values.

• We achieve efficient deep Q-learning for HAR by de-

signing effective action and state spaces and incorpo-

rating state-of-the-art RL techniques.

• We create virtual environments for deep Q-learning in

order to provide it with the interactive environment

needed during training.

In the rest of this paper, we first introduce previous

studies on activity recognition. Then, we describe our

proposed method for activity recognition using a mobile

robot. Finally, we evaluate our method in a virtual envi-

ronment.

2. Related Work

Several previous studies have proposed methods for hu-

man activity recognition in indoor environments through

the use of embedded sensors (e.g., RFID, switch sensor)

[9], [10]. Human activities have also been recognized

using motions, postures, and sounds captured by wear-

able sensors (e.g., microphones, body-worn accelerome-

ters) [11], [12].

Recently, mobile robots with embedded sensors (e.g.,

camera, microphones) have been used to recognize hu-

man activities. Piyathilaka et al. [13] generated 3D skele-

ton features from the depth camera of a robot and used

those features as the basis for human activity recogni-

tion. Vieira et al. [7] applied a Dynamic Bayesian Mixture

Model (DBMM) to implement a real-time HAR applica-

tion for use by a robot.

Moreover, several studies have focused on optimizing

the camera’s position when monitoring humans in an in-

door environment. Schroeter et al. [14] tried to optimize

the mobile robot’s position by focusing on obstacles and

light sources. Kessler et al. [15] proposed a method based

on particle swarm optimization to optimize the position of

the robot when observing humans. In contrast, our study

focuses on the control of a mobile robot to maximize HAR

accuracy by using deep reinforcement learning (DRL).

図 1: Example images captured by a robot in our virtual envi-

ronment

3. Activity Recognition Method

3.1 Preliminaries

In this study, the HoME platform virtual environment

[16] is used to evaluate the proposed method. Using this

platform, we are able to simulate daily human activities

by having a humanoid character perform a variety of ac-

tivities, with the position of each activity set to a suitable

location in the environment. For example, making tea and

preparing a meal are performed in the kitchen, sleeping is

performed on a bed in the bedroom, and so on. Moreover,

walking activity was used to connect when the humanoid

character transits from one activity to the next. A vir-

tual mobile robot can also be simulated by controlling the

camera position and orientation used to view the virtual

environment. Since this study mainly focuses on control-

ling the movement of the mobile robot during HAR by

using reinforcement learning, the task of indoor position-

ing of the human and robot is simulated using an API

provided by the HoME platform.

The humanoid characters are animated using skeletal

animation models that were generated using a mocap sys-

tem. The virtual mobile robot is designed based on a

commercially-available humanoid robot (Softbank Pep-

per) as follows: (i) the camera is mounted on the head

of the robot at the height of 1 meter facing forward, (ii)

the resolution of the camera is 512 by 512 pixels, (iii) the

frame rate is 24 fps, (iv) the movement speed of the robot

is 0.83 m/s, and (v) the rotation speed of the robot is

34.26 deg/s. Example images captured by the robot are

shown in figure 1.

An overview of the proposed method is shown in figure

2. In RL, an agent learns based on its experiences from

exploration and exploitation. At each time t, the agent

uses its deep Q-network to determine the next action At

to take based on its current state St. These actions corre-

spond to movements by the robot, with the robot’s cam-
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図 2: Overview of proposed method
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図 3: Architecture of the neural network for HAR
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図 4: The performance of the HAR NN

era changing position after each action. Images are then

captured by the camera at this new position and skeleton

informationKt+1 is extracted from those images using the

OpenPose library [17]. This information is used to gener-

ate a new state St+1 and is also used by the HAR network

to estimate a human activity class Ht+1. The portions of

the images that correspond to the hands’ locations are also

fed into the HAR network to capture information about

the objects used during the activities. Moreover, the con-

fidence of the HAR network’s estimate (Ct+1) is output

to allow the deep Q-network to estimate a value for the

agent’s current state.

3.2 Neural Network Used for HAR

Figure 3 shows the structure of the HAR network used

in our study. The HAR network is based on a long-

short term memory (LSTM) network for time-series anal-

ysis [18] and a pre-trained convolutional neural network

(CNN) for object recognition (VGG-16 [19]).

The skeleton information from 2-second windows of im-

ages and the cropped images from detected hand positions

are used as input for the HAR network. The skeleton in-

formation is fed into the LSTM layer while the cropped

images fed into the CNN layer. Then, the output of the

LSTM and CNN layers are concatenated and processed

in densely connected layers. Finally, an output layer

with H nodes outputs a predicted activity class, where

H is the number of activity classes. The rectified lin-

ear units (ReLU) function is used as the activation func-

tion for the nodes in the LSTM and densely connected

layers. We employ the softmax function as the activa-

tion function for nodes in the output layer. Additionally,

the HAR network outputs the confidence of its estimates,

which is used to estimate values for subsequent actions,

Ct = maxi P (Hi|Kt,Kt−1,Kt−2, ..., It), where Hi is the

i-th activity class.

The HAR network is trained to minimize the cross-

entropy between the distribution of the ground truth and

the distribution estimated by the softmax output layer.

To enable us to adjust the learning rate, we employ back-

propagation using Adam [20] with the pre-trained VGG-

16 layers frozen during training.

The performance of the HAR network is shown in figure

4. The results are shown for varying observation angles

for the agent (robot). These results show that the macro-

averaged F-measure decreases when the agent observes a

human from behind.

3.3 Reinforcement Learning for HAR

In general, the agent in RL is mainly seeking a pol-

icy that maximizes its expected future rewards. In this

study, the agent is trained to find a policy that maximizes

its HAR accuracy while minimizing the robot’s movement

distance. To facilitate this, the confidence of the HAR

network’s output is computed and incorporated into the

agent’s current state St. The deep Q-network [8] then

learns a Q function for a policy π that takes an agent’s

state and action as input and maps its input to proba-

ble future rewards as follows: Qπ(s; a) = E[Rt+1|St =

s;At = a], where Rt+1 shows the reward at time t + 1.

Then, the function is used to select an action that maxi-

mizes the expected discounted sum of future rewards *1 by

the agent. The network is updated when training the deep

Q-network to correct the difference between its expected

reward and the observed reward to adjust its weights as

*1 A future reward is discounted by using a discount factor
[0, 1].
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図 5: Action space in the proposed method

follows.

(1)

Q(St, At)← (1− α) ·Q(St, At)︸ ︷︷ ︸
old value

+α

· (Rt+1 + γ ·max
a

Q(St+1, a))︸ ︷︷ ︸
learned value

,

where α shows the learning rate and γ ∈ [0, 1] is a dis-

count factor. Therefore, stochastic gradient descent is

used for training the network to minimize the following

loss: (Rt+1+γt+1 maxa′ Qθ(St+1, a
′)−Qθ(St, At))

2, where

γt+1 is the discount at t+1, θ are the parameters of an on-

line Q-network used for selecting an action, and θ are the

parameters of a target network, which is a periodic copy

of the online network which is not directly optimized.

3.3.1 Design of the Action Space

Figure 5 shows the movement space available to the

deep Q-network. The movement is restricted to the cir-

cumference of a circle centered on the person with a radius

of d. There are three actions that the agent can take: stay

(astay), go right (aright), and go left (aleft). The agent

moves along the circumference of the circle for 10 degrees

(about 0.35 meters) if the agent selected the aright or aleft

actions. The deep Q-network will then determine the next

action to take after the agent has arrived at its new posi-

tion.

3.3.2 Design of the State Space

At each time t, the skeleton information Kt, the obsta-

cle information Ot, and the confidence of the HAR net-

work Ct are concatenated as the agent’s state St. For the

skeleton information, Kt, the x- and y-coordinates of each

body part is normalized to the range [-1,1]. The obstacle

information Ot and the confidence of the HAR network Ct

help the deep Q-network how the local environment will

affect its ability to perform HAR and to estimate a value

for its current state. In this study, we assume that the

agent has a floor map, including obstacle information of

Encoding obstacles within

the circle

Encoding obstacles on the

circumference of the circle

図 6: Examples of obstacle encodings

the environment. Figure 6 shows two examples with the

information encoded. The circle is divided into N regions,

and the existence of an object in each area is represented

using a binary-encoding. The agent is then able to use

this information when learning a movement policy that

takes into account the possibility of camera occlusion by

obstacles.

3.3.3 Design of the Reward

In this study, the reward Rt is computed from the

HAR result (Ht); the movement distance of the previ-

ous action (dm), which represents the energy consumed

for the previous action; and the travel distance between

the positions of the robot and person (drp) as follows:

Rt = A(Ht)− (ep · dm + (drp/d)), where dm is the move-

ment distance of the previous action, ep is a hyperparam-

eter related to the energy consumption of movement, and

A(Ht) indicates whether the HAR output is correct and

is computed from the HAR result Ht at time t. A(Ht)

equals 1 if the agent can predict the activity correctly and

is 0 otherwise. Furthermore, we compute drp using Dijk-

stra’s algorithm in order to punish situations where the

robot is situated in a different room from the person.

3.3.4 Deep Q-network

In this study, three densely connected layers with eight

nodes and an output layer with three nodes were used in

the deep Q-network. We employ the ReLU function as

the activation function of the nodes in the densely con-

nected layers. The number of nodes in the output layer

corresponds to the number of actions, with each node in

the output layer outputting the class probability of its

corresponding action. The optimizer used for training is

RMSProp [21]. We introduce the following state-of-the-

art RL techniques according to [22] to efficiently train the

network. The state-of-the-art RL techniques consist of

Categorical DQN [23], Multi-step RL [24], Double DQN

[24], Prioritized Experience Replay [25], Dueling Networks
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[26], and Noisy Nets [27].

3.3.5 Obstacle Avoidance

Here we introduce our method for obstacle avoidance.

Assume that the deep Q-network outputs aleft, but there

is an obstacle on the circumference of the circle on the left

side of the robot, preventing the robot from moving to the

left. In this case, the robot will pause control by the RL

process and then detour around the obstacle to a new

position on the circumference of the circle. Finally, the

robot will restart control by the RL process. If there is

no unobstructed position beyond the obstacle on the cir-

cumference of the circle, the robot will simply ignore the

action.

4. Evaluation

4.1 Data Set and Environments

We used the virtual home environment, as described

in Section 3.1, with humanoid characters to evaluate our

method. The MakeHuman*2 toolkit was used to create

humanoid characters based on the three participants in

our experiment: participant A (Height: 168 cm., Age:

30s, Sex: M), participant B (Height: 173 cm., Age:

20s, Sex: M), and participant C (Height: 162 cm., Age:

30s, Sex: F). The movements (human activities) of the

humanoid characters were generated based on data col-

lected by a Perceptron Neuron mocap system*3, with

mocap data collected for 25 body parts from each par-

ticipant (e.g., head, left/right shoulder, left/right hand,

etc.) while they performed the 13 activities used in

our evaluation. The 13 activities consist of ‘Preparing

Meal’ (with objects: pan, spatula, knife, and vegetable),

‘Making Tea’ (with objects: can of tea, teacup, and ket-

tle), ‘Making Juice’ (with object: blender), ‘Washing

Dishes’ (with objects: dish, and sponge), ‘Reading

Book’ (with object: book), ‘Using Smartphone’ (with

object: smartphone), ‘Talking on Smartphone’ (with

object: smartphone), ‘Eating Meal’ (with objects: knife,

and fork), ‘Watching TV’ (with object: remote control),

‘Brushing Teeth’ (with object: toothbrush), ‘Washing

Face’, ‘Sleeping’, and ‘Walking’. Each participant con-

ducted 10 sessions of these activities in either an actual

home environment or in our laboratory. During each ses-

sion, they performed the 13 activities in an arbitrary or-

der, with each session containing instances of each activ-

ity.

Furthermore, we animated the three humanoid charac-

*2 http://www.makehumancommunity.org/
*3 https://neuronmocap.com/

Environment A

Environment B

Environment C

図 7: Virtual home environments used in this study

ters in three separate virtual home environments, shown

in figure 7. Each humanoid character performed activities

in their own corresponding virtual environment and each

activity was conducted at a suitable location in the envi-

ronment; for example, making tea, preparing meals, and

making juice were performed in the kitchen. The aver-

age duration of each activity was about 45 seconds. The

length of one virtual session was about 15 minutes. Note

that the walking activity was used to connect different

locations of each activity throughout the environment.

4.2 Evaluation Methodology

Each participant’s 10 sessions of data were divided into
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a set of training data and a set of testing data, with 5

sessions assigned to each set. We generated the train-

ing data used for the HAR neural network by animating

the humanoid characters using the corresponding partici-

pant’s 5 sessions of training data and then recording their

activities using the virtual mobile robot’s camera in a vir-

tual environment from 12 different angles. The deep Q-

network was trained separately for each environment using

the corresponding participant’s 5 sessions of training data

to animate the humanoid character in that environment.

Note that, we randomized the order of activities for each

training iteration in the deep Q-network.

Furthermore, we prepared four methods to evaluate the

effectiveness of the proposed method:

• Proposed: The proposed method.

• Naive: This method does not employ RL. In this

method, the virtual robot simply follows the person

and captures images of the person with the person

centered in the images. However, the robot does still

maintain a distance d from the person.

• NaiveAct: This method employs RL with a more

complex action space than that used by the proposed

method. In this method, the robot is allowed to move

freely (forward, backward, left, and right in incre-

ments of 0.35 meters; stay; and rotate left/right in

increments of 10 degrees) while maintaining a mini-

mum distance d.

• DQN: This method employs RL, but does not use

the six state-of-the-art RL techniques mentioned in

Section 3.3.4.

4.3 Results

4.3.1 Recognition Accuracy and Reward

Comparisons of reward curves among three of the meth-

ods (Proposed, NaiveAct, and DQN) are shown in figure

8. These results show that in many cases the reward of

Proposed increases earlier than for the other methods.

Comparisons of the evolution of training F-measures for

HAR for each method are shown in figure 9. These results

show that the transitions of the F-measures are unstable.

This may be due to the agents performing exploration and

exploitation.

Comparisons of the evolution of the robot’s movement

distances when performing HAR for each method are

shown in figure 10. These results show that the move-

ment distances of the Proposed decrease earlier than those

of the other methods.

The average movement distance for each activity and

the macro-averaged F-measures for HAR for each of the

methods in each of the environments during testing are

shown in figure 11 and figure 12, respectively. The results

in figure 12 show that Proposed achieved the highest over-

all HAR accuracy. Additionally, since Naive does not use

reinforcement learning to control the robot in order to

improve its view of the activities, the HAR accuracies for

Naive are poor.

The macro-averaged F-measures for HAR for each ac-

tivity for Proposed, Naive, and NaiveAct are shown in

figure 13. Here we can see that the activities “making

tea” and “washing dishes” both have substantially lower

F-measures than the other activities. We found that these

two activities were often confused with each other, which

may be in part due to the robot having difficulty captur-

ing images of the associated objects due to the sink and

kitchen counter.

4.3.2 Effectiveness of Action Space

NaiveAct, which allows the robot to move freely, had

lower F-measures for HAR than Proposed, as shown in

figure 12. There are seven choices of actions for the

RL network in NaiveAct. Therefore, due to the increase

in choices, the RL network likely required more training

episodes than Proposed. Moreover, the average movement

distance for NaiveAct in all the environments was longer

than that of Proposed, as shown in figure 14.

5. Conclusion

This study proposed a new method for using images

captured by a mobile robot’s camera to conduct human

activity recognition in the home environment, with our

method employing DRL to control the robot’s movement.

The objective of our method is to maximize activity recog-

nition accuracy while minimizing the movement distances

(i.e., energy consumption). We evaluated the proposed

method using virtual home environments, with the results

confirming the effectiveness of our method.
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