
Omission Approach of SDN-FIT evaluation to
evaluate wide area distributed applications∗

Hiroki Kashiwazaki2,1,a) Hiroki Takakura2,b) Shinji Shimojo1,c)

Abstract: A wide-area distributed application is affected by network failure due to natural disasters because
the servers on which the application operates are distributed geographically in a wide area. Failure Injection
Testing (FIT) is a method for verifying fault tolerance of widely distributed applications. In this paper,
by limiting network failures only to the connection line, whole FIT scenarios are generated, and exhaustive
evaluation of fault tolerance is performed. The authors propose a method to omit the evaluations from
the aspect of topological constraint conditions. And they evaluate the visualization method of performance
data obtained from this evaluation and the reduction of the fault tolerance evaluation cost by the proposed
method.

1. Introduction

Information and communication services are essential to

people’s lives*1. There are various services using informa-

tion communication technology (ICT), such as e-mail, map

services. One of the reasons for the wide spreading of ICT

services is the rapid spread of electronic devices such as

smartphones. Cloud computing is one of the typical infor-

mation communication services. Cloud computing is a form

of provision of computers that can use computers without

being aware of the location and number via the Internet.

Cloud computing is a concept advocated by Eric Schmidt,

who was then CEO of Google in 2006 and has since advanced

rapidly into research and development and commercial de-

ployment. At present, Amazon Web Services (AWS) pro-

vided by Amazon, Microsoft Azure provided by Microsoft,

Google Cloud Platform (GCP) provided by Google, and

IBM Cloud provided by IBM, etc. are representative. They

are known as a cloud computing service. Cloud comput-

ing services are still rapidly spreading, and the market is

expanding. In fact, according to the domestic public cloud

service market forecast announced by IDC Japan in Octo-

ber 2018, the domestic public cloud service market in 2018

is expected to increase 27.4% over the previous year to 666.3

billion yen.

∗JSPS KAKENHI Grant Number 19K20256
1 Osaka University, Ibaraki, Osaka, 567–0047, Japan
2 National Institute of Informatics, Chiyoda, Tokyo 101–8430,

Japan
a) reo kashiwazaki@nii.ac.jp
b) takakura@nii.ac.jp
c) shimojo@osaka-u.ac.jp
*1 Information and Communications in Japan WHITE PAPER

2018
http://www.soumu.go.jp/johotsusintokei/whitepaper/eng/

WP2018/2018-index.html

From the viewpoint of ICT, considering the necessity of

ICT services today, it is necessary to be able to always pro-

vide services with the same level of performance as in nor-

mal conditions. However, it is difficult to maintain the same

level of performance under the condition of failure. The ICT

service providers have become to be required to show users

the service level agreement of their services. As to network

service providers, it is also important to show the fault tol-

erance performance of the provider network. In other words,

it is necessary for the ICT service provider to find how their

ICT service can provide the performance under not only the

normal conditions but also the non-steady conditions due to

various failures.

2. Related Works

Failure Injection Testing (FIT) is widely known as a

method to evaluate the fault tolerance of a service. FIT

is an evaluation method that measures the quality of service

when a failure occurs by intentionally injecting failures into

the system that constitutes the service. Depending on the

implementation environment, FIT can be roughly classified

into two approaches, one is implemented in a production en-

vironment, and the other is implemented in a test environ-

ment. A representative example of FIT is Chaos Engineering

proposed and developed by Netflix. In Chaos Engineering,

administrators define the steady-state behavior of the sys-

tem using externally observable performance indexes. Then,

the behavior under non-steady condition is implemented by

injecting the failures that assumed the stop of the server,

the abnormal state of the hard disks, the disconnection of

the network cable, etc. The fault tolerance of the system

is evaluated by comparing the steady-state behavior to the

non-steady one. One of the advantages of Chaos Engineer-

17

インターネットと運用技術シンポジウム 2019
Internet and Operation Technology Symposium 2019

ⓒ 2019 Information Processing Society of Japan

IOTS2019
2019/12/5

ing is that it is possible to implement traffic patterns and

load patterns of actual services by performing fault tolerance

evaluation in a production environment. Meanwhile, since

the failure is injected into the production environment, it is

necessary to minimize the influence of the failure injection

not to degrade the level of the service.

Netflix has developed many automation tools and released

it as open-source software to realize the above Chaos Engi-

neering. Chaos Monkey is a tool to implement server failures

by stopping virtual machines running on AWS at random.

Besides, Chaos Gorilla is a tool to shut down all virtual ma-

chines running on a specific availability zone in AWS. Fur-

thermore, Chaos Kong is a tool to stop all virtual machines

in a particular region.

By implementing FIT using these tools usually, Net-

flix has built a wide-area distributed system with excellent

fault tolerance and guarantees high service level agreement.

Meanwhile, wide-area distributed systems have various net-

work topologies depending on the arrangement of computer

resources that compose them. In addition, when the number

of locations that compose the wide-area distributed system

increases, the combination of failures occurring on each net-

work connection lines increases exponentially. When the

fault tolerance evaluation is performed manually, it takes a

lot of time and effort. So fault tolerance evaluation should

be executed automatically.

DESTCloud is a platform for verifying and evaluating dis-

aster tolerance and fault tolerance of wide-area distributed

systems*2. DESTCloud uses Software Defined Disaster Em-

ulation (SDDE) to inject network failure and collect logs

generated during faults based on a disaster scenario de-

scribed by the administrators who want to perform verifica-

tion and evaluation of the system. In advance, the adminis-

trators describe the disaster scenario where kinds of failures

are indicated in chronological order. Then the SDDE auto-

matically injects the failure based on the disaster scenario

into the network device using the Software-Defined Network-

ing (SDN) approach. In addition, SDDE assigns a disaster

scenario-specific ID to the log generated during failure oc-

currence. As a result, it is easy for administrators to analyze

the log without any manual operations. However, a disaster

scenario can be only described as a simple combination of

failures, and it is not suitable for applications that try whole

combinations of network failures. Also, it can not reduce the

time and effort of analyzing logs for each combination.

The service quality of the ICT service cannot be found

only by performing the benchmark once. It is necessary to

acquire data comprehensively by changing multiple parame-

ters that become indexes. Because of this kind of data acqui-

sition, fault tolerance cannot be evaluated just by listing the

data. Therefore, it makes sense to visualize the consolidated

data. This study aims to propose a tool that automatically

performs fault tolerance evaluation from data acquisition to

visualization.

*2 DESTCloud Project
https://ricc.itrc.net/DESTCloud

The authors have already proposed an SDN-FIT system,

a mechanism that generates programmable faults in the net-

work that connects the FITs between bases and Availabil-

ity Zones, not in VM units [1]. This proposal enumerates

all combinations (failure scenarios) of failures that occur in

network topologies that make up wide-area distributed ap-

plications and implements a comprehensive evaluation by

implementing all of them. Using CLOUDIAN HYPER-

STORE*3, a globally distributed object storage, and COS-

Bench, its benchmark software, all normalized I/O perfor-

mance is listed. Thereby, the service manager can discover

the weak point of the service at the time of failure. How-

ever, this method has a problem that the total number of

failure scenarios increases exponentially as the number of

nodes and links increases. In this study, we explain the

SDN-FIT system and its design and propose and evaluate

the failure scenario reduction method based on the require-

ments of the application.

3. Proposed Approach

In this paper, an ICT service provided by a geographi-

cally separated group of computers connected via a network

is defined as a wide-area distributed service. The sites are

connected by a route control device (router), and by operat-

ing this route control device, it is possible to generate inten-

tional failures between the sites. The routers mean not only

appliance products with physical enclosures, but also soft-

ware routers installed on computers using x86 processors,

and virtual routers that can be installed as virtual machines

(VMs).

Connect to the console of the Network Operation System

(NOS) that operates the router, and execute the NOS com-

mand using the Command Line Interface (CLI) to connect

the routers among the sites. However, NOS commands may

require interactive input. This interactive input requirement

can be a barrier when trying to implement programmatic

automation.

With the spread of cloud computing*4, NOS also imple-

mented cloud-like function sets when the cloud computing

environments become possible to manipulate VM deploy-

ment and configuration changes using an application pro-

gramming interface (API). In 2008, Cisco Systems in the

United States released the API of its integrated router, Cisco

ISR series, in 2008*5. For example, Vyatta, implemented as

a software router, has implemented API operations since

Ver. 6.2 in 2011. In this study, the authors evaluate the

fault tolerance and automate this evaluation by generating

intentional failures in the network connecting the sites using

the API provided by NOS.

*3 https://cloudian.com/jp/products/
*4 The Internet White Paper [Japanese]

http://www.impressrd.jp/news/180209/NP
*5 https://tech.nikkeibp.co.jp/it/article/NEWS/20080528/

304536/

18

インターネットと運用技術シンポジウム 2019
Internet and Operation Technology Symposium 2019

ⓒ 2019 Information Processing Society of Japan

IOTS2019
2019/12/5

3.1 Classification of network failures

In a FIT, it is assumed that network failure caused by

a natural disaster can be implemented. There are various

factors in the network failure caused by a natural disaster,

and those are, failures directly caused by natural disaster

and the in-direct failure caused by equipment failure, etc.

In addition, it is also necessary to examine the influence

range of the failure pattern, the presence or absence of spa-

tial change, and the temporal transition. The network fail-

ures that are caused by a natural disaster can be classi-

fied according to reports of the Ministry of Internal Affairs

and Communications “Study Group on the Ways to Secure

Communications in Large-scale Disasters and Other Emer-

gency Situations” and “Information Network Safety and Re-

liability Standards”*6 and “Information Network Safety and

Reliability Standards”*7. The reports show faults for com-

munication equipment etc. and classify control applied to

network equipment for each event (Table 1).

control
operation
or software

cause of disorder disorder factor presentation function to be
implemented

latency and n% packet loss

latency and n% packet loss

traffic shaving

traffic shaving
destroy of office
lost of power supply

n% packet loss
add latency

interface down

interface down
and 100% packet loss

interface down
and 100% packet loss

disorder of cooler

concentrate of traffic

loop of routes
flapping of routes

route disorder (unknown destination)

disorder of equipment (entire) communication lost (entire)
communication lost (part)

communication lost (part)

packet loss
rise latency time

cable discoonection
disorder of repeater/switch

disorder of equipment (part)

congestion

congestion

communication
restriction control

over load of equipment

network
equipment

facility

communication
line

illegal route
advertisement RIB/FIB force alter

communication lost (entire)

communication lost (part)

Table 1 Classification of network failures

From the aspect of “cause of disorder,” causation can be

assumed in control operation or software, network equip-

ment, communication line. From the aspect of “disorder

factor”, causation on control operation or software can be

caused by disorders of communication restriction control and

illegal route advertisement. Disorders on network equipment

can be caused by entire/partial equipment and overload of

equipment. Disorders on communication lines can be caused

by cable disconnection, a disorder of repeaters or switches

and concentrate on traffic. Finally, disorders on the facil-

ity can be caused by the destruction of office, lost of power

supply, and disorder of cooler. These factors can be pre-

sented by the phenomenon of congestion, loop or flapping of

routes, communication lost, packet loss, and rise of latency

time. This classification can result in the network function

required to be implemented in enough evaluation of fault

tolerance. The requirement is shown below.

(1) Increased delay

(2) n% packet loss (0 < n ≤ 100)

(3) Deactivate network interface card (NIC)

(4) Change of routing control table

*6 http://www.soumu.go.jp/main_sosiki/kenkyu/saigai
*7 http://www.soumu.go.jp/menu_seisaku/ictseisaku/net_

anzen/anshin

Therefore, we set the four types of obstacles implemented

in this research.

3.2 Proposed system

Figure 1 shows a schematic diagram of the proposed sys-

tem for implementing fault tolerance verification by inten-

tional failure occurrence and its automation. The system

consists of a failure pattern generator, FIT controller, bench-

mark controller, and visualizer. The failure pattern genera-

tor generates whole failure patterns based on the topology

of the wide-area distributed system. The FIT controller in-

puts the failure pattern and implements the failures to SDN

routers. The controller also always collect SDN router infor-

mation and maintain topology information of the wide-area

distributed system. The benchmark controller performs the

benchmark program on the wide-area distributed system co-

operated with the FIT controller. After that, the benchmark

controller sends the benchmark result to the visualizer. The

visualizer receives and put the measurement results in order,

then visualizes the data. The following sections describe

each component.

FIT
controller

Failure
pattern

generator

Failure
pattern

end of
evaluation

Failure implementation/
Failure detach

to next failure pattern

finish
all

patterns?

topology
information

benchmark
controller visualizer

SDN router

Fig. 1 A diagram of proposed SDN-FIT system

3.2.1 Failure pattern generator

The fault pattern generator generates fault patterns ac-

cording to the number of circuits in the topology from the

topology information of the wide-area distributed service.

The sites supporting wide-area distributed services to be

subjected to fault tolerance verification are connected by a

routing controller that can be operated by API. The iden-

tifiers are given to each base, and the NICs at both ends of

the circuit connecting the sites are given identifiers in the

NOS of each router. From the above information, the topol-

ogy of the site supporting wide-area distributed service can

be expressed by the nesting of hash and array. Yet Another

Markup Language (YAML) is a format that represents struc-

tured data, and the topology can be described using YAML.

For example, a network consisting of three sites in Figure 1

can be expressed, as shown in Listing 1. In this topology

data, site A is connected to B by eth0 and to C by eth1;

site B is connected to A by eth0 and A by eth1; and site C

is connected to A by eth0 and B by eth1. Listing 1 is an

example of a YAML file to indicate it.

Listing 1
3nodes network

1 - A:

2 - [[eth0, B], [eth1, C]]

3 - B:

19

インターネットと運用技術シンポジウム 2019
Internet and Operation Technology Symposium 2019

ⓒ 2019 Information Processing Society of Japan

IOTS2019
2019/12/5

4 - [[eth0, A], [eth1, C]]

5 - C:

6 - [[eth0, A], [eth1, B]]

At the same time, this topology data shows the circuit

between sites. In the example of Listing 1., the line a con-

necting eth0 of site A to eth0 of site B, the line b connecting

eth1 of site A to eth0 of site C, and the line connecting eth1

of site B to eth1 of site C Indicates that there are three

lines of c. When the number of lines is m, the fault pattern

generator searches for combinations of fault patterns that

generate all n(0 < n ≤ m) double faults in each line. One

failure pattern is represented by an array composed of the

failure type identifier, the identifier of the router that gen-

erates the failure, and the identifiers of one or more NICs

that cause the failure in the router. Listing 2. shows the

case where the line a and the line b are interrupted due to

the deactivation of the NIC.

Listing 2
shut-
down

1 - [shutdown, A, eth0, eth1]

3.2.2 FIT controller

The FIT controller uses the fault patterns created by the

fault pattern generator to update probabilistic data in accor-

dance with each fault. The implementer of fault tolerance

verification provides the FIT controller with router informa-

tion of the site supporting the wide-area distributed service

to be verified. The FIT controller uses the API for the

router to obtain NIC information of each router and the IP

address assigned to that NIC. It is determined that NICs in

the same IP address range at different sites are connected,

and topology data is created.

The FIT controller provides the created topology data to

the fault pattern generator, and the fault pattern generator

returns all fault patterns to the FIT controller. The FIT

controller sequentially processes the obtained fault pattern

data. As described in Section 3.2.1, a failure pattern consists

of an identifier of the failure type, an id of the router that

causes the failure, and an identifier of one or more NICs that

cause the failure in that router. The FIT controller reads

this array and uses the API to control the NIC specified as

the router and the instruction corresponding to the identifier

of the failure type.

After the control that implements the fault condition usu-

ally ends, the FIT controller applies to process to the bench-

mark to measure the performance in the event of a fault.

When the execution of the benchmark usually ends, the

FIT controller controls the specified NIC of the router using

the API and cancels the failure status. When the release

of the fault condition usually ends, the FIT controller ap-

plies to process to the visualizer to visualize the performance

measurement results obtained by the benchmark controller.

Execute these processes for all failure patterns, and repeat

them until finished.

3.2.3 Benchmarker

Benchmark controller performs object storage bench-

marking. The benchmark controller then sends the bench-

mark results to the visualizer. In benchmark controller,

benchmark software is implemented according to the wide-

area distributed service to be verified. According to an in-

struction from the FIT controller, benchmark controller ex-

ecutes the specified benchmark software based on the spec-

ified arguments.

Those who perform fault-tolerance verification install

benchmark software according to the items they want to in-

vestigate. For example, if the wide-area distributed service

is a Web service and you want to verify its response perfor-

mance, the fault-tolerant verifier uses Apache Bench*8. If

wide-area distributed services are POSIX compliant storage,

fio*9 or IOZONE*10 may be used as benchmark software.

3.2.4 Visualizer

The visualizer receives measurement results from the

benchmark controller and visualizes the result data. The

measurement results obtained by the benchmark controller

are placed in a local storage area in the computer where

the visualizer is deployed, or placed in a place that can be

obtained by remote access. When the visualizer receives an

instruction from the FIT controller, it reads the specified file

and visualizes the data according to the specified drawing

method. The visualizer shows the location of the visualized

file. This enables the verifier to view the visualized data.

4. Implementation

Authors deployed a wide-area distributed service in a real

environment and implemented SDN-FIT system to verify

the fault tolerance of this wide-area distributed service.

4.1 Implementation of evaluation environment

4.1.1 Distcloud

Distcloud is a wide-area distributed virtualization plat-

form under Regional InterCloud Subcommittee (RICC) of

the Internet Technology 163rd Committee (ITRC) of the

Japan Society for the Promotion of Science and Technology.

It is constructed by connecting computers distributed by ge-

ographically dispersed universities, research organizations,

and cloud computing providers by broadband networks (Fig-

ure 2). Wide-area distributed virtualization infrastructure

is implemented by deploying scale-out distributed storage.

Focusing on live migration as a disaster recovery method,

authors implement storage technology with little degrada-

tion of I/O performance before and after wide-area live mi-

gration [2], [3].

Distcloud’s sites are connected by SINET*11, an academic

information network provided by the National Institute of

Informatics. It uses L2VPN/VPLS service*12 that allows

*8 https://httpd.apache.org/docs/2.4/programs/ab.html
*9 https://github.com/axboe/fio
*10 http://www.iozone.org/
*11 https://www.sinet.ad.jp/
*12 https://www.sinet.ad.jp/connect_service/service/l2vpn

20

インターネットと運用技術シンポジウム 2019
Internet and Operation Technology Symposium 2019

ⓒ 2019 Information Processing Society of Japan

IOTS2019
2019/12/5

Kyushu Sangyo
Univ.

Kyushu Sangyo
Univ.

Kyushu
Univ.

Kyushu
Univ.

Ryukyu
Univ.
Ryukyu
Univ.

KUT
Kochi University
of technology

KUT
Kochi University
of technology

NII
National Institute
of Informatics

NII
National Institute
of Informatics

NAIST
Nara institute of

science and technology

NAIST
Nara institute of

science and technology

JAIST
Japan Advanced Institute
of science and Technology

JAIST
Japan Advanced Institute
of science and Technology

Hiroshima
Univ.

Hiroshima
Univ.

Kanazawa
Univ.
Kanazawa
Univ.

Kyoto
Univ.
Kyoto
Univ.

Osaka
Univ.
Osaka
Univ. Tohoku

Univ.
Tohoku
Univ.

TITECH
Tokyo Institute
of technology

TITECH
Tokyo Institute
of technology

Hokkaido
Univ.
Hokkaido
Univ.

SINET5
Sapporo DC
SINET5
Sapporo DC

SINET5
Tokyo DC
SINET5
Tokyo DCSINET5

Osaka DC
SINET5

Osaka DC

SINET5
Fukuoka DC
SINET5
Fukuoka DC

KIT
Kitami Institute
of technology

KIT
Kitami Institute
of technology

UCSD
University of California

San Diego

UCSD
University of California

San Diego

Fig. 2 Schematic Diagram of Distcloud (2019)

Ethernet frames to be exchanged between LANs at remote

sites.

Virtual Private LAN Service (VPLS) [4] is a technology

that can transfer Ethernet frames using Multi-Protocol La-

bel Switching (MPLS) defined in RFC3031 [5]. Because a

virtual Ethernet LAN can be constructed for each network

created in each network, a protocol to be used does not

depend on IP, and a network with L2 connectivity can be

constructed (Figure 3).

VLAN
A153

VLAN
A153.AB

QinQ

VLAN
A156~ (local)

VLAN
B156~ (local)

VLAN
B153

VPLS

VLAN
B153.AB

QinQ

Fig. 3 Inter-communication among sites with VPLS

Distcloud uses SINET VPLS and prepares L2 networks

called distcloud-core and distcloud-mgmt, respectively. A

distcloud-core is a network used for communication of ser-

vices and applications, and a distcloud-mgmt is a network

for management of devices constituting the sites. Besides,

an L3VPN network called distcloud-L3 is prepared sepa-

rately. As for distcloud-L3, /24 IPv4 addresses are assigned

in advance for each site.

A site connected to Distcloud needs to prepare a VLAN

to connect with the distcloud-core, distcloud-mgmt and

distcloud-L3 in the LAN of the site. A site connected to

Distcloud prepares computer resources and connects this

with the VPLS as mentioned above. Two L2VPN/VPLS

connectivity by VPLS provided by SINET, one IPv4 net-

work by L3VPN, three VLANs in the site, and computer

resources connected to it is the environment provided by

Distcloud.

4.1.2 VyOS

VyOS*13 is a network OS developed by open source. It

is developed based on Debian GNU / Linux. Formerly from

Vyatta mentioned in section 3, it was forked from version

6.6 R1 of Vyatta Core, which is the free version of Vyatta.

In addition to being installed on a physical computer and

used as a software router, it may also be installed as a VM

in a virtual environment and used as a virtual router. Like

a general NOS, it has a unified CLI like a hardware router.

*13 https://vyos.io/

In order to cause communication failure due to FIT pro-

posed in this research among sites, it is necessary to con-

figure an independent network at each site that configures

Distcloud, and it is necessary to perform routing control

with the deployed router at the site. The NICs connecting

between the sites are independent of the networks owned by

each site, and the two connected sites need to belong to the

same network. In Distcloud, only the aforementioned net-

work with distcloud-core is provided as a service network.

4.1.3 CLOUDIAN HYPERSTORE

CLOUDIAN HYPERSTORE is an object storage prod-

uct that is fully compatible with the Amazon S3 API*14

marketed by CLOUDIAN.

Object storage is a computer data storage that manages

data as an object as opposed to filesystems that manage

data as a file hierarchy and other storage architectures such

as block storage that manages data as blocks specified by

sectors and tracks Refers to the architecture. Each object

contains data, metadata, and a unique identifier. Object

storage can be implemented at multiple levels, including ob-

ject storage device level, system level, and interface level,

in which case object storage is an interface directly pro-

grammable by the application, multiple instances of physical

hardware It provides data management functions including

namespaces that can span and replication of data.

4.1.4 COSBench

COSBench is an object storage benchmark tool developed

by Qing Zheng et al. Object storage has different indexes

(workloads) to keep the performance of the access system

in a proper state for each service that utilizes it. However,

in 2013, when the use of object storage started to increase

worldwide, there was no workload for object storage. COS-

Bench was designed and implemented to address this prob-

lem [6].

4.2 Construction of wide area distributed system

environment

In this study, CLOUDIAN HYPERSTORE and its envi-

ronment for verification are constructed using five Distcloud

sites (Osaka University, Tohoku University, Ryukyu Univer-

sity, National Institute of Informatics, and Kyushu Sangyo

University) (Figure 4). The specifications of machines in-

stalled in each site is shown in Table.2. The ones of networks

installed in each site is shown in Table.3.

Install Ubuntu*15 18.04 LTS, an operating system based

on Debian GNU/Linux, on the x86 server at each site. To

run VM on this Linux, authors build the environment of

KVM*16 which is a virtualization module that makes Linux

kernel function as a virtual hypervisor.

Then the authors created the following four VMs on Linux

installed on the x86 server at each site.

• CLOUDIAN HYPERSTORE 2VMs

• CentOS7 for COSBench 1VM

*14 https://aws.amazon.com/jp/s3/
*15 https://www.ubuntu.com/
*16 http://www.linux-kvm.org/page/Main_Page

21

インターネットと運用技術シンポジウム 2019
Internet and Operation Technology Symposium 2019

ⓒ 2019 Information Processing Society of Japan

IOTS2019
2019/12/5

10.10.13.0/24 10.10.4.0/24

10.10.12.0/24

28 CPU
128GB memory

CLOUDIAN
HYPERSTORECOSBench

28 CPU
256GB memory

10Gbps

10Gbps1Gbps

20 CPU
192GB memory

Tohoku
University

Osaka
University

10.10.3.0/24

28 CPU
128GB memory

10Gbps

NII

100G40G

Ryukyu
University

10.10.13.0/24

1Gbps
28 CPU
256GB memory

Kyushu
Sangyo

University

100G40G

Fig. 4 A diagram of the wide-area distributed system

site
name

number
of

physical
cores

capacity
of

main memory
(MB)

capacity
of

storages
(GB)

Osaka
University

28 256 3,600

Tohoku
University

28 128 2,200

Ryukyu
University

20 192 2,200

Kyushu
Sangyo
University

28 256 3,300

NII 28 128 1,400
Table 2 The specifications of machines installed in each site.

site
name

network
bandwidth
to SINET
(Gbps)

network
bandwidth
in the site
(Gbps)

Osaka
University

100 10 (dedicated)

Tohoku
University

100 10 (best effort)

Ryukyu
University

40 1

Kyushu
Sangyo
University

10 1

NII 100 10 (dedicated)
Table 3 The specifications of networks installed in each site.

• VyOS 1VM

The VMs specifications of CLOUDIAN HYPERSTORE,

COSBench, and VyOS are shown in Table 4.

Cloudian
Hyperstore

COSBench VyOS

OS/
Version

CentOS
Linux
release
7.4.1708

CentOS
Linux
release
7.6.1810

VyOS
1.1.8

RAM [MiB] 32,768 4,096 512
number
of vCPUs

8 2 1

Table 4 VM Specifications

The VMs belong to an independent network for each lo-

cation and assigns an IPv4 address that does not overlap

with the networks of other locations. A unique VLAN is as-

signed to this network in the site, and VMs for CLOUDIAN

HYPERSTORE at each site, VMs for COSBench, and one

NIC of VyOS are connected to the bridge interface of this

VLAN.

The VyOS at each site has a NIC for configuring a back-

bone network connected to the VyOS at the other sites. As

described in Section 4.1.2, NICs connected to each backbone

network need to belong to independent VLANs, so VLANs

ID should be selected not to overlap with other VLANs at

all sites. The two NICs connected to the backbone network

are connected via a unique L2 network created on the L2

network of distcloud-core by Q-in-Q.

In VyOS at each site, OSPF [7] is operated as an Interior

Gateway Protocol [8], the cost with the adjacent site is set to

10, dead-interval to 40 seconds, hello-interval to 10 seconds,

and retransmit-interval to 5 seconds. In this way, VMs be-

longing to the networks at each site can communicate with

each other. Also, by setting disabled for the interconnected

NICs, that NIC can be deactivated, and communication dis-

connection can occur. When the NIC becomes inactive, and

communication interruption occurs, OSPF recalculates the

path in the topology where communication interruption oc-

curred, and the path is changed by sending Link State Up-

date packet. The inactive state of the NIC can be released

by the delete command.

4.3 Omission of evaluation

As the number of nodes increases, the number of links also

increases depending on the topology. For example, in a full

mesh topology network with n nodes, the number of links is
n(n−1)

2 , and increases in the order of a square with respect

to the increase in n. When the number of links is l, the max-

imum number of link failures in the topology is assumed to

be l(l > 0). Also, the total number of link failures for all l

major failures is 2l − 1 (2l if l = 0 is included, but l = 0 is

a steady state in which no link failure has occurred). Thus,

the total number of failure scenarios increases geometrically

with the increase in the number of nodes, particularly the

number of links. Therefore, when all failure scenarios are

implemented and evaluated, the total time required for the

evaluation also increases geometrically. Therefore, it is nec-

essary to reduce the failure scenarios to be evaluated with a

reasonable method.

When a link failure occurs in the topology in the steady-

state, the number of network edges changes. A group of

nodes that can reach each other among the nodes belong-

ing to the network is called as a “cluster”. A network that

was one cluster in a steady-state may become a plurality of

separated c clusters due to occurrence of n link failures. As

the number of clusters increases, the state of the network

changes significantly, and the behavior of applications that

run on it also differs. Therefore, it is meaningful to set a con-

straint condition of the topology required by the application

and evaluate only a failure scenario that matches the con-

dition even if a link failure occurs. This is because a failure

scenario that is not so is an operation outside the defini-

tion of the application. However, it is important to indicate

what percentage of the total number of failure scenarios is

a failure scenario that results in undefined operation.

22

インターネットと運用技術シンポジウム 2019
Internet and Operation Technology Symposium 2019

ⓒ 2019 Information Processing Society of Japan

IOTS2019
2019/12/5

In this way, the failure scenario to be implemented and the

failure scenario to be omitted without being implemented

are classified by comparing the number of clusters in the

network topology according to the failure scenario and the

constraints required by the application. This approach can

provide effective suppression against a geometrical increase

in the total number of failure scenarios.

5. Evaluations

Authors evaluate the disaster tolerance of CLOUDIAN

HYPERSTORE quantitatively using CLOUDIAN HYPER-

STORE, which is constructed in Section 4.2 and the SDN-

FIT system implemented. Then the authors visualize the

results of evaluations. The network consisting of five sites

constructed in Section 4.2 is connected by ten independent

connection lines, and the failure pattern of a single failure

on the network is also ten patterns.

multiplicity
of

failures

number of
failure
patterns

number of clusters
1

2 3 4 5

1 10 10 0 0 0 0
2 45 45 0 0 0 0
3 120 120 0 0 0 0
4 210 205 5 0 0 0
5 252 222 30 0 0 0
6 210 125 85 0 0 0
7 120 0 110 10 0 0
8 45 0 0 45 0 0
9 10 0 0 0 10 0
10 1 0 0 0 0 1

Table 5 Classification of failure patterns with number of clusters

Since this evaluation experiment network consists of ten

connection lines, a maximum of ten faults will occur. Since

all nodes are connected to other nodes by four lines, the sit-

uation where the number of clusters is greater than 1 arises

from a quadruple failure. Table 5 shows the number of si-

multaneous failures, the number of failure patterns, and the

number of failure states belonging to each cluster number

(maximum number = 5).

CLOUDIAN HYPERSTORE can set a duplication pol-

icy for each bucket. In response to one file creation request,

if you set a policy to return ACK by creating two duplica-

tions on all nodes, the number of clusters=1 is necessary.

Meanwhile, a failure scenario with two or more clusters will

be undefined, and CLOUDIAN HYPERSTORE will return

an error in response to the request. Therefore, the bench-

mark cannot be executed in these scenarios. That is, It can

be said that CLOUDIAN HYPERSTORE can perform the

in-definition operation with the total number of failure sce-

narios 801 with 1 cluster for all 1,023 failure scenarios, but

the remaining 422 is undefined and cannot be evaluated.

This is not only a number, but it is necessary to evaluate

the probability of multiple failures.

6. Conclusion

In this paper, authors proposed a system that supports

automation of fault tolerance evaluation of wide-area dis-

tributed service for the purpose of quantifying fault toler-

ance evaluation of information communication service con-

structed as a wide-area distributed system and reducing

the cost required for evaluation. This system consists of

a fault pattern generator, FIT controller, benchmark con-

troller, and visualizer.

As the number of nodes and links increases, the total num-

ber of failure scenarios increases exponentially. Therefore,

by comparing the operation requirements of the application

with the topology after the failure scenario is implemented,

we propose to reduce the number of failure scenarios that

are actually implemented and evaluate when evaluating the

CLOUDIAN HYPERSTORE on a 5-node full mesh net-

work. It was shown that the total number could be reduced

by 22%. Further reductions can be expected in applications

with more complex requirements.

On the other hand, it is required not only to evaluate the

reduction in the number of failure scenarios to be evaluated

simply but also to evaluate the resilience after evaluating the

occurrence probability of multiple failures and the number

of reductions. This is an issue for the future.

In order to evaluate the effectiveness of this proposal, the

authors constructed a wide-area distributed service on the

wide-area distributed platform “Distcloud” and performed

fault tolerance verification by implementing the proposed

method for this service. Perform comprehensive bench-

marks based on failure patterns that are automatically gen-

erated by providing router information at multiple locations,

and compare the steady-state and non-steady-state perfor-

mances to reduce the performance against steady-state The

heat map was output and visualized.

Acknowledgments Part of this work was carried out

under the Cooperative Research Project Program of the Re-

search Institute of Electrical Communication, Tohoku Uni-

versity. The research was supported by ROIS NII Open

Collaborative Research 19FA08. The work is partly sup-

ported by the collaborative research program 2019 informa-

tion initiative center, Hokkaido university, Sapporo, Japan.

Thanks for Cloudian Inc. They always provided technical

support of CLOUDIAN HYPERSTORE on the Distcloud

environment.

References

[1] Kashiwazaki, H., Miura, S. and Shimojo, S.: A Proposal
of SDN-FIT System to Evaluate Wide-Area Distributed Ap-
plications Based on Exhaustive FIT Scenario Generation,
2019 IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC), Vol. 2, pp. 36–41 (online), DOI:
10.1109/COMPSAC.2019.10180 (2019).

[2] Nakagawa, I., Ichikawa, K., Kondo, T., Kitaguchi, Y., Kashi-
wazaki, H. and Shimojo, S.: Transpacific Live Migration
with Wide Area Distributed Storage, 2014 IEEE 38th Annual
Computer Software and Applications Conference, pp. 486–492
(online), DOI: 10.1109/COMPSAC.2014.71 (2014).

[3] Nakagawa, I., Kashiwazaki, H., Shimojo, S., Ichikawa, K.,
Kondo, T., Kitaguchi, Y., Kikuchi, Y., Yokoyama, S. and
Abe, S.: A Design and Implementation of Global Distributed
POSIX File System on the Top of Multiple Independent Cloud
Services, 2016 5th IIAI International Congress on Advanced
Applied Informatics (IIAI-AAI), pp. 867–872 (online), DOI:

23

インターネットと運用技術シンポジウム 2019
Internet and Operation Technology Symposium 2019

ⓒ 2019 Information Processing Society of Japan

IOTS2019
2019/12/5

10.1109/IIAI-AAI.2016.75 (2016).
[4] Rekhter, Y. and Kompella, K.: Virtual Private LAN Service

(VPLS) Using BGP for Auto-Discovery and Signaling, RFC
4761 (2007).

[5] Viswanathan, A., Rosen, E. C. and Callon, R.: Multiprotocol
Label Switching Architecture, RFC 3031 (2001).

[6] Zheng, Q., Chen, H., Wang, Y., Zhang, J. and Duan, J.: COS-
Bench: Cloud Object Storage Benchmark, Proceedings of the
4th ACM/SPEC International Conference on Performance
Engineering, ICPE ’13, New York, NY, USA, ACM, pp. 199–
210 (online), DOI: 10.1145/2479871.2479900 (2013).

[7] Ferguson, D., Lindem, A. and Moy, J.: OSPF for IPv6, RFC
5340 (2008).

[8] Faucheur, F. L., Merckx, P., Telkamp, T., Uppili, R. and Ve-
drenne, A.: Use of Interior Gateway Protocol (IGP) Metric as
a second MPLS Traffic Engineering (TE) Metric, RFC 3785
(2004).

24

インターネットと運用技術シンポジウム 2019
Internet and Operation Technology Symposium 2019

ⓒ 2019 Information Processing Society of Japan

IOTS2019
2019/12/5

