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ネットワーク・ワードエンベディングのための
負値残差低減および半直交制約付き非負値行列分解

橋本 陸1 笠井 裕之2

Abstract：Network embedding is intended to produce low-dimensional vector representations of nodes

in a network to preserve and extract the latent network structure, which has higher robustness to noise,

outliers, and redundant data. Although a recently proposed multi-level nonnegative matrix factoriza-

tion (NMF)-based approach has exhibited superior performance on network analysis, it is adversely

affected by performance degradation because of discarded negative residual and redundant base selection

throughout sequential multiple factorization processes. To alleviate this shortcoming, this paper presents

a proposal of a sequential semi-orthogonal NMF with negative residual reduction for the network em-

bedding (SSO-NRR-NMF). The proposed approach reduces the negative residuals to be discarded, and

avoids redundant bases with a semi-orthogonal constraint.

Sequential semi-orthogonal multi-level NMF with negative residual
reduction for network embedding

1. Introduction

Many practical data systems use network structured

data, which can include web page networks, social net-

works, road traffic infrastructure, biological networks,

and information networks. It is challenging to handle

such network data effectively for analytical tasks such

as link prediction, node classification, node recommen-

dation, and network visualization. Classical topology-

based network representation techniques are hindered by

onerous bottlenecks encountered in handling large-scale

and high-dimensional network data because they han-

dle an input adjacency matrix directly and because they

are adversely affected by noise, outliers, and redundant

data. By contrast, network embedding (NE) has come

to be a promising approach that seeks low-dimensional

vector representations of nodes in a network to pre-

serve and extract its latent network structure efficiently

[1], [2], [3], [4], [5], [6], [7]. Actually, NE alleviates such

problems through low-dimensional representation while
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preserving the original intrinsic structure. Hence, it al-

lows various off-the-shelf machine learning tools to apply

this representation directly.

One recent advanced NE has been achieved in ap-

proaches attempting to factorize a given designed matrix

to obtain low-dimensional representation assuming that

the node connectivity matrix is globally low-rank [7]. It

is, however, not always true when the matrix consists of a

complex structure. This structure hinders ineffective rep-

resentations from capturing all the observed connectivity

patterns. In this regard, a novel multi-level NE frame-

work (BoostNE) using nonnegative matrix factorizations

(NMFs) has been proposed. The framework learns mul-

tiple embedding representations with different granulari-

ties, i.e., globally and locally low-rankness [8]. However, its

sequential multi-level embedding discards negative resid-

uals to enforce residual matrices that are nonnegative at

the succeeding level. It also does not consider mutually

redundant bases across multiple levels. To alleviate these

problems, building on BoostNE, this paper presents a pro-

posal of a sequential semi-orthogonal NMF with negative
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residual reduction, designated as SSO-NRR-NMF. Con-

vergence analysis of SSO-NRR-NMF is also given. Nu-

merical evaluations illustrate the effectiveness of SSO-

NRR-NMF when used with several real-world datasets.

Throughout the paper, we represent scalars as lower-

case letters (a, b, . . .), vectors as bold typeface lower-case

letters (a, b, . . .), and matrices as bold typeface capitals

(A,B, . . .). An element at (i, j) of a matrix A is rep-

resented as [A]i,j . Herein, al and ak represent the l-

th row vector and the k-th column vector of A. The

Frobenius norm of a matrix A ∈ Rm×n is defined as

∥A∥F =
√∑

m,n[A]2m,n. Operators Tr(·) and (·)T respec-

tively stand for the matrix trace and transpose. Operator

max(a, b) outputs a when a ≥ b, and b otherwise. Opera-

tor min(a, b) is opposite. ⊙ represents the elemental-wise

product. Rd
+ represents d-dimensional nonnegative sub-

space.

2. NMF and BoostNE

2.1 Nonnegative matrix factorization (NMF)

Nonnegative matrix factorization (NMF) approximates

a nonnegative matrix X ∈ Rm×n
+ with a product of two

nonnegative factor matrices U ∈ Rm×r
+ and V ∈ Rn×r

+

as X ≈ UVT . Actually, r is usually chosen such that

r ≪ min{m,n}, i.e., X is approximated in the two low-

rank matrices. Consequently, this problem is formulated

as a constrained minimization problem in terms of the

Euclidean distance as

min
U,V

1

2
∥X−UVT ∥2F , s.t. U ≥ 0,V ≥ 0. (1)

Because Problem (1) is a non-convex optimization prob-

lem, finding its global minimum is NP-hard. For this prob-

lem, multiplicative update (MU) provides a simple but ef-

fective calculation algorithm [9], which is formulated as

V ← V ⊙ XTU
VUTU

and U ← U ⊙ XV
UVTV

, where ⊙
(resp. ·

· ) denotes the component-wise product (resp. di-

vision) of matrices.

2.2 Boosted network embedding (BoostNE) [8]

BoostNE addresses the fact that matrices representing

many real-world network data do not always have a low-

rank structure. Hence, it approximates an input network

matrix by multiple matrices. Concretely, the approxima-

tion error generated by one NMF process is approximated

recursively by another subsequent NMF. This leverages a

power of gradient boosting [10]. Finally, we obtain multiple

bases from a coarser characteristic to a finer characteris-

tic, resulting in higher classification accuracy than that

of others [8]. More specifically, denoting the index of the

boosting level as k(∈ [K]), where K stands for the total

number of the levels, BoostNE seeks multiple nonnegative

bases that can express X via multiple NMF processes.

Given an input network matrix X ∈ Rm×n
+ , the mathe-

matical definition is formulated using U(k) ∈ Rm×rk
+ and

V(k) ∈ Rn×rk
+ (rk ≪ min{m,n}) as

min
{U(k),V(k)}K

k=1

K∑
k=1

1

2
∥R(k) −U(k)V(k)T ∥2F , (2)

where R(k) ∈ Rm×n
+ represents residual elements after the

(k − 1)-th level of the NMF process, which is defined as

R(k)=

X if k = 1

max(R(k−1)−U(k−1)V(k−1)T , 0) if k ≥ 2.
(3)

Without loss of generality, we set rk as rk = r for simplic-

ity in the following discussion.

3. Sequential semi-orthogonal NMF

with negative residual reduction

3.1 Negative residual reduction NMF

As the definition of R(k) in (3) clearly repre-

sents, the (i, j)-th element which satisfies [R(k−1)]ij <

[U(k−1)V(k−1)T ]ij is discarded to keep R(k) nonnegative.

This step exacerbates the approximation capability and

degrades the NE quality. To alleviate this shortcoming,

we propose a new NMF with negative residual reduction,

designated as NRR-NMF. NRR-NMF attempts, at the

k-th level NMF, to force the value of the approximated

element, i.e., [U(k)V(k)T ]ij , lower than the corresponding

target element [R(k)]ij to reduce the discarded elements.

This feature reduces the approximation errors and im-

proves the quality of subsequent analytics tasks. Specif-

ically, we consider a penalty of such negative elements ,

which will be discarded at the subsequent (k+1)-th level

at the original BoostNE. Consequently, the problem is

formulated as

min
U(k),V(k)

fNRR (4)

=
1

2
∥R(k)−U(k)V(k)T∥2F +

λ1

2
∥max(U(k)V(k)T−R(k), 0)∥2F

=
1

2
∥R(k)−U(k)V(k)T∥2F +

λ1

2
∥M(k)⊙(U(k)V(k)T−R(k))∥2F ,

where the second term is the regularizer with λ1(> 0).

The mask matrix M(k) is introduced for efficient calcula-

tion as

[M(k)]ij =

1 if [R(k) −U(k)V(k)T ]ij < 0,

0 otherwise.
(5)
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Hence, the update rules of U and V are derived as

V ← V⊙ RTU+ λ1(M⊙ (M⊙R))TU

VUTU+ λ1(M
T ⊙ (MT ⊙VUT ))U

,

U ← U⊙ RV+ λ1(M⊙ (M⊙R))V

UVTV+ λ1(M⊙ (M⊙UVT ))V
, (6)

from which superscript (k) is omitted for notational sim-

plicity. Also, although this is of major practical impor-

tance, we consider control of λ1 in NRR-NMF to main-

tain better approximation at the end of each level as

λ1(t) = (Tmax − t)/Tmax, where Tmax is the maximum

number of iterations in each NMF process, and t is the

index of the inner iterations.

3.2 Sequential semi-orthogonal NMF

BoostNE performs multiple NMFs sequentially, where

these NMFs are processed entirely independently. There-

fore, some column bases within U(k) might be similar to

those in {U(l)}l<k. To avoid such redundant columns, we

consider an orthogonal constraint on U(k). It should be

emphasized that this differentiates itself from conventional

orthogonal NMFs [11], [12], [13] such that every column

vector in U(k) should be orthogonal to every column vec-

tor in {U(l)}l<k. It should also be emphasized that the

orthogonal constraint is posed in an approximated manner

to avoid degradation of its convergence speed and the sub-

sequent analytic tasks because of overly tight restriction.

Hence, we define the problem as

min
U(k),V(k)

fSSO

:=
1

2
∥R(k) −U(k)V(k)T ∥2F + λ2

r∑
i=1

k−1∑
l=1

r∑
j=1

u
(l)
j u

(k)
i

=
1

2
∥R(k) −U(k)V(k)T ∥2F + λ2

r(k−1)∑
q=1

Tr(QT
q U

(k)). (7)

Therein, u
(k)
i is the i-th column vector of the k-th

level basis U(k). Furthermore, Qq is defined as Qq =

[ uq : uq : · · · : uq ] ∈ Rm×r
+ , where uq ∈ Rm

+ is the q-

th (q ∈ [r(k − 1)]) column vector of U, which is the

concatenated matrix of {U(l)}l<k as U = [U(1) : U(2) :

· · · : U(k−1)] ∈ Rm×r(k−1)
+ . In the sequel, noting that

∂
∂YTr(YB) = BT and that the rule of V(k) is identical to

MU, the update rule of U(k) is defined as

U ← U⊙ RV

UVTV+ λ2

∑R(k−1)
q=1 Qq

. (8)

3.3 Convergence analysis

The convergence analysis is given as below.

Theorem 3.1. The objective function fNRR in (4) is non-

increasing under the update rules in (6).

4. Conclusion

This paper presented a proposal of a sequential semi-
orthogonal NMF with negative residual reduction for
boosted network embedding: SSO-NRR-NMF. The pre-
sentation will show some numerical evaluations using sev-
eral real-world datasets which demonstrate the effective-
ness of the proposed SSO-NRR-NMF.
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