
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

QR Factorization of Block Low-rank Matrices with Weak
Admissibility Condition

Akihiro Ida1,a) Hiroshi Nakashima2 Tasuku Hiraishi2 Ichitaro Yamazaki3

Rio Yokota4 Takeshi Iwashita5

Received: April 5, 2019, Accepted: August 19, 2019

Abstract: The QR factorization of a matrix is a fundamental operation in linear algebra and it is widely utilized in
scientific simulations. Although the QR factorization requires a memory storage of O(N2) and the computational cost
of O(N3), they can be reduced if the matrix could be approximated using low-rank structured matrices, such as hi-
erarchical matrices (H-matrices). In this paper, we study the QR factorization based on the block low-rank (BLR-)
matrix representation, which is a simplified variant of the H-matrix. We demonstrate how the BLR block size should
be defined in such matrices and confirm that the memory and computational complexities of the BLR are O(N1.5)
and O(N2) when using an appropriate block size. Furthermore, using the simple structure of BLR-matrices, we also
present a parallel algorithm for the QR factorization of BLR-matrices on distributed memory systems. In numerical
experiments performed, we observe that the accuracy of the QR factorization is controllable by the accuracy of the
BLR-matrix approximation of the original matrix. Finally, we verify that our algorithm enables us to perform the QR
factorization of matrices of several hundred thousand N within a reasonable amount of time using moderate computer
resources.

Keywords: parallel computing, low-rank approximation, block low rank matrices, QR factorization

1. Introduction

Dense matrices appear in many scientific simulations, for ex-
ample, in the discretization of integral equations. Dense matrices
appear also as the Schur complements during the LU factorization
of sparse matrices obtained from differential equations, and as the
orthogonal matrices derived from the QR factorization of sparse
matrices. The dense square matrix requires the memory usage
of O(N2) and the computational cost of O(N3) for arithmetic op-
erations such as matrix–matrix multiplication, matrix inversion,
and LU and QR decompositions, where N is the number of rows
(columns) in the matrix. These requirements prohibit large-scale
simulations.

An approximation technique for the dense matrices can be used
to reduce the computational cost and memory consumption. The
low-rank structured matrices that are represented by hierarchical
(H-)matrices [1] are approximation methods based on low-rank
approximation (LRA) methods. For example,H-matrices obtain
a computational complexity of O(N log2 N) for LU factorization
with a memory complexity of O(N log N) [1], [2].

Parallel computing on a distributed-memory computing system
offers another solution to performing large-scale simulations. To
achieve good parallel scalability, we must balance the workload
and construct an efficient communication pattern among the par-

1 The University of Tokyo, Bunkyo, Tokyo 113–8658, Japan
2 Kyoto University, Kyoto 606–8501, Japan
3 Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
4 Tokyo Institute of Technology, Meguro, Tokyo 152–8550, Japan
5 Hokkaido University, Sapporo, Hokkaido 060–0811, Japan
a) ida@cc.u-tokyo.ac.jp

allel processing units. Unfortunately, the complicated structure
of H-matrices like shown in Fig. 1 (A) prevents one from satis-
fying these requirements simultaneously. However, simplifica-
tion of the structure could solve this problem. Block low-rank
(BLR-) matrices [3] are regarded as special cases of H-matrices
with simplified structures. Although the simplification of struc-
tures results in an increase in memory usage and computational
costs, it is shown in Ref. [4] that matrix-vector multiplications
based on BLR-matrices are significantly faster than anH-matrix
version for a large number of processes.

In this paper, we consider QR factorization based on the BLR-
matrices with a weak admissibility condition, which has the sim-
plest format among all low-rank structured matrices. The admis-
sibility condition determines whether each block of the low-rank
structured matrices is represented by a low-rank matrix or a dense
matrix. In the case of the weak admissibility condition [5], all
the submatrices except those on the diagonal become low-rank.
BLR-matrices are characterized by a simple, non-hierarchical,
and low-rank format based on lattice structures, as shown in
Fig. 1 (B). These lattice structures are similar to the format of a
block divided dense matrix and, thus, allow the use of existing al-
gorithms for dense matrices. Due to the advantages above, BLR-
matrices have recently been applied to realize complex arithmetic
functions in parallel processing, such as the approximation of
Schur complements in the multi-frontal LU factorization [3] and
the approximation of covariance matrices in maximum likelihood
estimation for climate modelling applications [6]. If H-matrices
could be applied to these applications, a more efficient approxi-
mation would be performed. However, except for simple oper-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 1 An H-matrix structure (A) and its conversion to a BLR-matrix with
a weak admissibility condition (B). Blocks painted in deep red show
dense submatrices, and the off-diagonal blocks in light red indicate
low-rank submatrices.

ations such as the matrix-vector multiplication, it is hard to effi-
ciently implement arithmetic ofH-matrices, especially in parallel
processing.

The rest of this paper is structured as follows. In Section 2, we
discuss the related works of this study. In Section 3, the modi-
fied block Gram Schmidt (MBGS) algorithm is introduced as a
QR factorization algorithm for usual dense matrices. We propose
an MBGS algorithm for BLR-matrices with a weak admissibility
condition in Section 4. How to determine the BLR block size is
also discussed, and the memory and computational complexities
are estimated when using the appropriate block size. Further-
more, using the simple structure of BLR-matrices, a parallel al-
gorithm for the QR factorization of BLR-matrices is presented. In
Section 5, some numerical experiments of our proposed MBGS
algorithm for BLR- matrices are presented. The last section con-
tains conclusions and future work.

2. Related Work

Most low-rank structured matrices can be regarded as a special
case of H-matrices proposed by Hackbusch [1]. In the studies
of low-rank structured matrices, arithmetic functions (e.g., ma-
trix generation, matrix-vector multiplication, matrix-matrix mul-
tiplication, matrix inversion, and LU factorization) are often dis-
cussed. However, no library supports the QR factorization of low-
rank structured matrices, and only a few serial implementations of
the QR factorization of H-matrices (H-QR) have been reported
in the literature (see, e.g., Ref. [7]). For the H-QR, functions
related to the summation and multiplication of low-rank subma-
trices are required. However, due to the complex structures of
H-matrices, realizing these arithmetic functions on distributed-
memory computing systems is complicated. Even if the imple-
mentation ofH-QR is realized, parallel efficiency would be diffi-
cult to achieve.

Although theH-matrices achieve a good asymptotic complex-
ity by exploiting their adaptive (recursive) block structure, they
are difficult to implement, particularly on distributed memory
systems. There are a few existing works on the parallelization
of H-matrices (see, e.g., Refs. [8], [9]). However, the parallel
scalability of these implementations is not adequate. To improve
the parallel scalability and the convenience of matrix operations
forH-matrices, some formats with a simpler structure have been
proposed in the literature, such as hierarchically semi-separable
matrices [10], hierarchically off-diagonal low-rank matrices [11],
block low-rank (BLR) matrices [5], and lattice H-matrices [12].
BLR-matrices with a weak admissibility condition is one of the

simplest formats among the structured low-rank matrices, whose
structures are similar to the format of a block divided dense ma-
trix.

The QR factorization of a matrix is a fundamental operation
in linear algebra. Various efficient algorithms for block divided
dense matrices have been proposed in the literature [13], [14],
[15] and some of them are included in popular libraries, such
as LAPACK and ScaLAPACK [16]. A parallel algorithm has
been proposed for factorizing the block divided dense matrices in
Ref. [17]. The current work extends the idea to factorizing BLR-
matrices. To the best of our knowledge, this is the first study
on the QR factorization of BLR-matrices. The parallel algorithm
of low-rank structured matrices is implemented here for the first
time.

3. QR Factorization of a Usual Dense Matrix

For preparation to discuss the QR factorization based on BLR-
matrices, we here recall the QR factorization of a usual dense
matrix. A given matrix A ∈ Rm×n can be factorized as

A := QR, (1)

where Q ∈ Rm×n is an orthogonal matrix and R ∈ Rn×n is an upper
triangular matrix. To simplify the notation, hereafter, we assume
square matrices, i.e., m = n = N.

Various algorithms have been proposed for the QR factoriza-
tion, and the block-divided technique is adapted in some algo-
rithms to efficiently perform the factorization on parallel systems.
In the technique, the matrices are divided into Nb × Nb blocks
(submatrices) as

X := {Xi j | 1 ≤ i, j ≤ Nb}, X ∈ {A,Q,R}. (2)

The matrix is subdivided into a lattice structure like shown in
Fig. 1 (B). By performing operations block-by-block, we can uti-
lize efficient BLAS-3 functions on each process and construct an
efficient communication pattern between the processes.

Among the block-partitioned QR factorization algorithms,
we focus on the modified block Gram Schmidt (MBGS) algo-
rithm [18], whose procedure is shown in Fig. 2. In the case where
the matrix A to be factorized is dense, the computational com-
plexity of the MBGS algorithm is O(N3) regardless of the block
size. Table 1 shows the step-by-step breakdown of the com-
plexity assuming that all blocks are square and have equal size
l (:= N/Nb) to simplify the estimation. We observe that the lead-
ing factors are steps 4 and 5 in Fig. 2, and they require O(N3)
operations regardless of the block size l.

4. Our Proposal QR Factorization Based on a
BLR-matrix Representation

4.1 Introduction to BLR-matrices
Assuming that all the off-diagonal submatrices on the block-

divided matrix A in Eq. (2) are represented in the form of a low-
rank approximation (LRA), while diagonal submatrices remain
dense (see Fig. 3), we formally obtain the simplest format of low-
rank structured matrices, which is categorized as a BLR-matrix
with a weak admissibility condition. A BLR-matrix Ã, which
consists of submatrices Ãi j corresponding to the original dense

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 2 Modified Block Gram Schmidt (MBGS) algorithm, where Nb is the
number of blocks in a column (or row) of matrices A, Q, and R. The
subscripts of the matrices denote the row and column indices of the
lattice. The symbol * represents all blocks, e.g., A∗, j is the j-th block
column which is a tall-skinny matrix. The function TSQR(A∗, j) re-
turns the QR factorization of the tall-skinny matrix A∗, j such that
QT
∗, jQ∗, j = I and Q∗, j, Rj, j = A∗, j where Q∗, j ∈ RN×l and Rj, j ∈ Rl×l.

Table 1 Arithmetic complexity of the QR factorization of a usual dense ma-
trix. In the table, “# of calls” denotes the number of times a given
function is called, “1time complexity” is the arithmetic complex-
ity of each function call, and “Total complexity” is the product of
these two.

Fig. 3 BLR-matrix and low rank representation of a sub-matrix. An mi × n j

matrix Ãi j with rank ki j is represented in the form of an LRA, which
is a multiplication of an mi × ki j matrix ÃU

i j and an ki j ×n j matrix ÃV
i j:

Ãi j = ÃU
i j Ã

V
i j.

submatrices Ai j ∈ Rmi×n j , is defined as

Ã :=

⎧⎪⎪⎨⎪⎪⎩Ãi j =

⎧⎪⎪⎨⎪⎪⎩
ÃU

i j Ã
V
i j (i � j)

Ai j (i = j)
1 ≤ i, j ≤ Nb

⎫⎪⎪⎬⎪⎪⎭ , (3)

where ÃU
i j ∈ Rmi×ki j , ÃV

i j ∈ Rki j×n j , and ki j ∈ N are regarded as the
rank of the submatrix Ãi j. We suppose that mi and n j are O(l). If
ki j � min(mi, n j) for most of the submatrices, the memory usage
of the BLR-matrix Ã is much smaller than the dense matrix. For
a given error tolerance ε ∈ R>0, we assume the following expres-
sion is satisfied: ‖Ai j − Ãi j‖F/‖Ãi j‖F � ε, where ‖ · ‖F denotes
the Frobenius norm. Then, for the approximated matrix Ã, we
can prove ‖A− Ã‖F/‖Ã‖F � ε [19]. Therefore, the error tolerance
for the LRA method determines the accuracy of the approximated
entire matrix.

Memory usage of the BLR-matrix Ã depends on the block
sizes. When assuming a uniform block size l and rank k(� l)
for all low-rank submatrices, the dependency of memory usage

on the block size l is given by the following function f (l):

f (l) = lN + 2kN
(N

l
− 1
)
. (4)

At point lmin =
√

2kN, f (l) assumes the minimum value

f (lmin) = 2
√

2kN3 − 2kN. (5)

Therefore, we find that the memory complexity of BLR-matrices
is Õ(N1.5), where the symbol Õ assumes k � l and hence a com-
plexity order that omit the rank k. Hereafter in this section 4, we
use the symbol Õ to differ from the symbol O for a complexity or-
der without any influence by the rank k. The memory complexity
of BLR-matrices Õ(N1.5) is reduced from that of dense matrices
O(N2).

4.2 Application of the MBGS Algorithm to BLR-matrices
Using the MBGS algorithm in Fig. 2, we consider the QR fac-

torization of the BLR-matrix Ã in Eq. (3). As with the case of
QR factorization of a dense matrix, we perform the operations
block-by-block. The difference is submatrices in the off-diagonal
blocks are formatted by the low-rank representation. We enforce
the following two conditions on the computed matrices Q̃ and R̃:

C1: The matrices Q̃ and R̃ have the same lattice structure as Ã.
C2: The off-diagonal submatrices Q̃i j and R̃i j are formatted by

the same rank ki j representation as Ãi j.
To satisfy these conditions, the following four arithmetic opera-
tions with low-rank submatrices are required in addition to the
usual multiplication and summation of dense matrices.

LA1: (low-rank) + (low-rank) = (low-rank)
LA2: (low-rank) × (low-rank) = (low-rank)
LA3: (low-rank) + (dense) = (dense)
LA4: (low-rank) × (dense) = (low-rank)
The summation of the two low-rank submatrices (LA1) in-

creases the rank of the resulting matrix (Fig. 4), and the condi-
tion C2 cannot be satisfied without approximating the resulting
matrix. To enforce the condition, we further recompress the re-
sulting matrix to reduce the rank. Although we have a choice of
when to perform the approximation, in this study, it is done every
time the summation of the two low-rank submatrices occurs. For
the approximated summation, we employ the “rounded addition”
method proposed in Ref. [20]. In this method, the increased rank
is reduced by the efficient use of the TSQR and singular value de-
composition (SVD) as shown in Fig. 5. When the dimension and
the rank of the two low-rank submatrices are denoted by l and k,
the complexity of the rounded addition is Õ(l). Under these con-
ditions C1 and C2, the multiplication Q̃R̃ would not be equal to
Ã, but an approximation: Ã ≈ Q̃R̃.

For a BLR-matrix with the weak admissibility condition, at
least one of the matrices needed for the matrix operations on lines
4 and 5 of MBGS (Fig. 2) is a low-rank matrix. Hence, we can
use the low-rank arithmetic operations LA1-4 above (there is no
operation with two dense matrices that would require O(l3) arith-
metic operations). The arithmetic LA4 is needed two times on
line 4, and on line 5, we use LA3 and LA4 once. When one
of the blocks is a dense matrix, the computational complexity of
these operations is Õ(l2). On the other hand, if both blocks were

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 4 Summation of two submatrices with a low-rank representation. For
a matrix a with a rank ka and a matrix b with a rank kb, the rank of
the matrix “a + b” is equal to “ka + kb”.

Fig. 5 Rank reduction algorithm for matrices with a low-rank representa-
tion, where (QUμ)σ(υQV) is the SVD of UV and the corresponding
truncated SVD with the k′ largest singular values gives the best rank-
k′ approximation of UV .

low-rank matrices, we only require the computational complexity
of Õ(l). Among a total of O(N/l) blocks within each block col-
umn, only one block is dense. Hence, for orthogonalizing the k-th
block column Ã∗,k against Ã∗, j, the complexity of these operations
on lines 4 and 5 is Õ(N + l2) at each j-th step.

The remaining function is TSQR for a block column Ã∗, j in line
2. For this, we follow the method proposed in Ref. [7]. The j-th
block column of the BLR-matrix Ã in Eq. (3) consists of a dense
submatrix Aj j and Nb −1 low-rank submatrices. We represent the
dense submatrix by a low-rank representation, i.e., Ã j j = ÃU

j jÃ
V
j j ,

where ÃU
j j := I and ÃV

j j := Aj j. Then, we represent the j-th block
column by

Ã∗, j = [ÃU
1 j Ã

V
1 j, Ã

U
2 j Ã

V
2 j, · · · , ÃU

Nb jÃ
V
Nb j]

T . (6)

For each tall-skinny matrix ÃU
i j , we perform the QR factoriza-

tion as ÃU
i j = Q̃U

i j R̃
U
i j whose computational complexity is O(ki jl2).

Therefore, the complexity of computing the QR factorization of
all blocks ÃU

i j (i = 1 · · ·Nb) is O(Nlki j) i.e., Õ(Nl). The block
column Ã∗, j is decomposed as

Ã∗, j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̃U
1 j 0 · · · 0

0 Q̃U
2 j

. . .
...

...
. . .

. . . 0
0 · · · 0 Q̃U

Nb j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B∗, j, (7)

where

B∗, j :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R̃U
1 j Ã

V
1 j

R̃U
2 j Ã

V
2 j
...

R̃U
Nb jÃ

V
Nb j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

The number of rows of each block Bi, j := R̃U
i j Ã

V
i j is a small

number of rank ki j(� l), except for Bj, j whose number of rows is

Table 2 Arithmetic complexity of the QR factorization of a BLR-matrix
based on the MBGS algorithm. In the table, “# of calls” denotes
the number of times a given function is called, “1time complex-
ity” is the arithmetic complexity of each function call, and “Total
complexity” is the product of these two.

the block size, i.e., B∗ j ∈ R(mj+
∑

i ki j)×n j . Therefore, we can carry
out the QR factorization of B∗ j with Õ(l3) as B∗ j = Q̃B

j R̃B
j where

Q̃B
j ∈ R(mj+

∑
i ki j)×n j and R̃B

j ∈ Rn j×n j . By slicing the matrix Q̃B
j , it

can be formatted in the same way as the right hand side of Eq. (8).
Finally, we calculate [Q̃∗ j, R̃ j j] := TSQR(Ã∗ j) where R̃ j j := R̃B

j

and

Q̃∗, j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̃U
1 jQ̃

B
1 j

Q̃U
2 jQ̃

B
1 j
...

Q̃U
Nb jQ̃

B
Nb j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

The computational complexity of TSQR(Ã∗, j) is Õ(l3). The lead-
ing factor is the QR factorization of Bi, j in Eq. (8).

In the case of a BLR-matrix, the computational complexity of
the MBGS algorithm depends on the block sizes. Assuming that
all the blocks are square and have the same size l, the breakdown
of the complexity is shown in Table 2. The complexity becomes
O(N3) when l = 1 and l = N which correspond to a dense matrix.
For l ∝ √N, the complexity takes its minimum Õ(N2).

4.3 Parallel MBGS Algorithm for BLR-matrices
For the parallelization of the MBGS algorithm in Fig. 2 using

the BLR-matrix representation, we use a hybrid MPI+OpenMP
programming model, and carefully consider the assignment of
tasks to MPI processes.

Although most operations are performed block-by-block, the
QR factorization of B∗ j in Eq. (7) needs all the information in the
j-th block column. To simplify the implementation, we divide
the whole matrix into block columns, and assign a set of block
columns to an MPI process. Although we sometimes assumed
square blocks with a uniform block size l and rank k for all low-
rank submatrices in the previous sections to estimate the memory
usage of BLR-matrices and the computational cost of the MBGS,
blocks actually have a rectangular shape and low-rank submatri-
ces differ in rank. To balance the load among MPI processes, we
adopt a block cyclic assignment strategy in the column direction.
As a result of this, the p-th MPI process is assigned a set of sub-
matrices:

Ãp := {Ã∗ j | Mod(j − 1,Np) = p}, (10)

where Np is the number of MPI processes. In each MPI process,
the QR factorization required for the derivation of Eq. (7) from
Eq. (6) in the step 2 (TSQR) in Fig. 2 is carried out by using the
dgeqrf subroutine provided in the LAPACK library [16] which
are threaded with the OpenMP technology. The matrix–matrix

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 6 MBGS on the pth MPI process. Arithmetic function on Nb ×
Nbp blocks is performed, where Nbp denotes the number of block
columns assigned to the pth MPI process.

multiplications in the step 4 (QT
∗, jA∗,k) are performed by using the

dgemm subroutine in the LAPACK. Furthermore, the step 5 is
performed block-by-block using OpenMP dynamic scheduling.
Figure 6 shows the parallel MBGS algorithm for BLR-matrices
under the assignment (10).

5. Numerical Experiments

5.1 Implementation and Computation Environment
In this subsection, we discuss the performance of the MBGS al-

gorithm for BLR-matrices. For the algorithm, we re-implemented
functions of theHACApK library [21], which provides the func-
tions for the generation of low-rank structured matrices that work
on distributed-memory systems using MPI. For the common parts
of these low-rank structured matrices, such as LRA or submatrix-
vector multiplication, the functions in theHACApK library were
used in the new implementation where possible. Throughout the
numerical experiments, we use the adaptive cross approximation
(ACA) [22] to perform the LRA.

As a test problem, we have selected the static electric field anal-
yses described in the next subsection. All calculations were car-
ried out using an SMP cluster system, which is equipped with In-
tel(R) Xeon(R) E5-2680 v2 (10core× 2 sockets/node) and 32 GB
DDR3 memory on a node. For the interconnect, a Fat-Tree with
Full-bisection bandwidth using InfiniBand FDR×2 is used, which
has a link throughput of 6.8 GB/s. We used the Intel Fortran com-
piler with the –O3 optimization option and the Intel MPI and
MKL libraries. We adopted the hybrid MPI+OpenMP program-
ming model.

5.2 BLR-matrices Derived from BEM Analyses
We use an electrostatic field problem to get examples of target

Table 3 Specification of BLR-matrices for the static electric field problem
with the sphere model of N when the required accuracy is set to be
ε.

Fig. 7 Distribution of rank of low-rank submatrices. The submatrices next
to the diagonal block have the maximum rank. The rank of submatri-
ces decreases rapidly based on the distance from the diagonal block
up to 10 block distance, and the rank of far off-diagonal submatrices
is almost constant.

matrices [23] and assume a spherical perfect conductor. It is set in
a uniform electric field in the z-direction in a 3-D space with 0 [V]
at the ground. The induced surface charge on the conductors is
calculated. When applying BEM to the above electrostatic field
analysis, we divide the surface of the conductor into triangular
elements and use step functions as the basis function for BEM.
By using the BEM analysis, we provide the BLR-matrices with
N = 1,000, 3,042, 4,950, 6,936, 10,400, 20,000, 50,864, 69,312,
101,250, 211,750, and 338,000, while varying the required ac-
curacy for ACA as ε = 1.0e− 4, 1.0e− 6, and 1.0e− 8. The block
size l of BLR is set to be l = 10

√
N. Table 3 shows the observed

memory usage, the maximum rank and the average rank for the
BLR-matrices of N = 101,250, 211,750, and 338,000. Figure 7
shows the distribution of rank of low-rank submatrices in the first
row for the BLR-matrices with N = 101,250 and 211,750.

5.3 Quality of the Approximated QR Factorization
As mentioned in Section 4.2, our proposed MBGS algorithm

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

provides the approximation of QR factorization of the BLR-
matrix: Ã ≈ Q̃R̃, where Q̃ is the approximated orthogonal ma-
trix and R̃ denotes the approximated upper triangular matrix. In
addition to the error ‖Ã−Q̃R̃‖/‖Ã‖, the orthogonality of the result-
ing matrix Q̃ is an important index to evaluate the quality of the
QR factorization. Even in the case of a non-approximated MBGS
algorithm for dense matrices, the error and orthogonality could
decay as the matrix size increases because of round-off errors.
We investigate the accuracy of the error and the orthogonality of
Q̃ derived from our algorithm for BLR-matrices that were intro-
duced in Section 5.2 and observe dependency on matrix size.

Instead of ‖Ã − Q̃R̃‖/‖Ã‖, we calculate ‖Ãx − Q̃R̃x‖/‖Ãx‖ with
the vector x whose components are equal to one, because the di-
rect multiplication Q̃R̃ requires the approximation in Fig. 4 which
comes from the low-rank summation. Although we could directly
evaluate ‖Ã−Q̃R̃‖/‖Ã‖ if we treat the low-rank matrices Ã, Q̃, R̃ as
dense matrices, the computational cost of O(N3) and the memory
usage of O(N2) are required. The results are plotted as a function
of matrix size N in Fig. 8 (a). The error is the same order as the
accuracy ε of the BLR-matrix Ã to be factorized.

When using the BLR-matrix format in Eq. (3), it is inefficient
to investigate the orthogonality vector-by-vector because each
vector in the column direction is not explicitly stored. Therefore,
we calculate the matrices Q̃T

∗,iQ̃∗, j for 1 ≤ i, j ≤ Nb, which are
expected to satisfy the following relation:

Q̃T
∗,iQ̃∗, j =

⎧⎪⎪⎨⎪⎪⎩
I (i = j)
0 (i � j).

(11)

Since the TSQR(Ã∗, j) described in Section 4.2 is performed
without any approximation, the error in ‖Q̃T

∗,iQ̃∗, j − I‖2 must be
smaller than the error in ‖Q̃T

∗,iQ̃∗, j‖2 (i � j). We calculate the
maximum value of ‖Q̃T

∗,iQ̃∗, j‖2 for all the test BLR-matrices, and
plot the results as a function of matrix size N in Fig. 8 (b). For
matrix sizes up to tens of thousands, the accuracy of orthogonal-
ity is the same order as the accuracy ε of the BLR-matrix Ã to be
factorized. Although the orthogonality decays as the matrix size
increases, the accuracy is relatively preserved in the case where
ε = 1.0e − 4.

5.4 The Computational Complexity of QR Factorization Us-
ing MBGS Algorithm for BLR-matrices

Here, we investigate the dependency of the matrix size N on
the computational time of the QR factorization. We perform the
factorization using our proposed method in Section 4.2 for the
BLR-matrices introduced in Section 5.2. Moreover, we calculate
the QR factorization of dense matrices using the Intel MKL li-
brary. In Fig. 9, the observed computational times are plotted as
a function of the matrix size N. We can see from this figure that
the computational complexity of QR factorization of dense ma-
trices is O(N3) in accordance with the theory discussed in Sec-
tion 3. However, the computational complexity of our proposed
algorithm is clearly less than O(N3) and looks less than the the-
oretical O(N2)estimated in Section 4.2. One possibility for this
outcome is that the average ranks of BLR-matrices in Table 3 de-
crease as the matrix size N increases.

As expected, the calculation time of our proposed algorithm

Fig. 8 The error of factorization (a) and accuracy of orthogonality of the
resulting orthogonal matrix Q̃ (b) derived from our proposed MBGS
algorithm for BLR-matrices.

Fig. 9 Calculation time of the proposed algorithm and MKL routines (“dge-
qrf” and “dorgqr”).

depends on the accuracy of BLR-matrices. The cases where
ε = 1.0e − 4 are about 3.5 fold faster than the cases where
ε = 1.0e − 8 regardless of the matrix size N. For small matri-
ces, the implementation of our proposed algorithm is slower than
the MKL library when high accuracy is required. However, for
the cases where ε = 1.0e − 4, our implementation is significantly
faster than the MKL library regardless of the matrix size N and
achieves the QR factorization of a matrix of N = 338,000 on a
single node with 32 GB memory.

5.5 Performance of Parallel MBGS for BLR-matrices
First, we confirm the parallel scalability using OpenMP threads

in a CPU socket. For the test matrices with N = 101,205 and
211,750 in Table 3, we observe the computational time of our
proposed parallel MBGS algorithm in Section 4.3 when varying
the number of OpenMP threads from 1 to 10 in a single MPI pro-
cess. Table 4 shows the results. We observe a parallel speed-up
up to 10 threads, and the calculation time with 10 threads is about
5-fold faster than the case with a single thread. The bottleneck
for the parallel speed-up is the calculation for Q̃T

∗ j Ã∗k in line 9 in
Fig. 5.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Table 4 Parallel scalability using OpenMP threads in a CPU socket when
performing parallel MBGS for BLR-matrices with a weak admis-
sibility condition where ε = 1.0e − 8.

Fig. 10 Parallel scalability using the hybrid MPI+OpenMP on a dis-
tributed memory system when performing parallel MBGS for BLR-
matrices.

Next, we investigate the parallel scalability using the hybrid
MPI+OpenMP on the distributed memory system and observe the
computational time when varying the number of cores from 1 to
200. In the calculations, we use a single MPI process with 10
OpenMP threads per socket, which means two MPI processes per
a node. Figure 10 (a) shows the results. Parallel speed-up up to
about 140 cores is observed. The fastest time is about 20-fold
faster than the time of serial computation. As Fig. 10 (b) shows,
similar results are observed if we use test matrices of different
sizes.

6. Conclusions

In this paper, we implemented a QR factorization based on the
BLR matrix format with a weak admissibility condition. We used

a modified block Gram Schmidt (MBGS) algorithm for BLR-
matrices with two constraints on the structure and rank of the re-
sulting matrices. We confirmed that the application requires only
arithmetic operations related to low-rank submatrices in addition
to the usual ones of dense submatrices, thanks to the constrained
lattice structure of BLR-matrices, which is similar to the format
of a block divided dense matrix. Although the QR factorization
of dense square matrices requires memory usage of O(N2) and
computational costs of O(N3), they can be reduced to O(N1.5)
and O(N2), respectively, when our proposed MBGS is employed
to BLR-matrices with a block size l ∝ √N. We confirmed this
both in theory and in experiments. Thanks to the reduced com-
plexity, we achieved the approximated QR factorization of a ma-
trix with N = 338,000 on a single node with 32 GB memory. As
future work, we will consider the use of more efficient low-rank
structured matrices with a similar lattice structure, such as lattice
H-matrices [12] and multilevel BLR [24]. It is expected in theory
that a QR factorization using the MBGS algorithm based on lat-
tice H-matrices requires only memory usage of O(N log N) and
computational costs of O(N log2 N).

Our proposed QR factorization based on BLR-matrices pro-
vides the approximation of the orthogonal matrix Q̃ and the upper
triangular matrix R̃. In the numerical experiments, we confirmed
that the factorization error and the accuracy of the orthogonality
depends on the accuracy of the BLR-matrix to be factorized. This
means that the accuracy of the QR factorization is controllable.
Since the calculation time also depends on the accuracy of BLR-
matrices, we may deliberately choose low accuracy and use it as a
preconditioner for Krylov subspace methods. For large matrices,
we observed a decay of the orthogonality when we require high
accuracy. To avoid this problem, the use of quadruple-precision
and/or increasing the rank of the resulting matrices Q̃ and R̃ may
be considered. Instead of using MBGS, another promising ap-
proach would employ the tile QR factorization based on House-
holder reflectors [25], if the reflectors could be efficiently approx-
imated by the low-rank structured matrices.

We also proposed the parallelization algorithm of the MBGS
for BLR-matrices, and implemented the algorithm using the hy-
brid MPI+OpenMP programming model. Making full use of the
simple structure of BLR-matrices and a block-cyclic assignment
strategy to balance the load, the implementation achieves parallel
scalability up to at least 140 cores. The fastest time using 140
cores is about 20-fold faster than the time of serial computation.
For further improvement in the near future, we will introduce a
2D cyclic assignment strategy to parallelize the operations within
a block column.

Acknowledgments This work was partially supported
by JSPS KAKENHI Grant Numbers 17K19962, 17H01749,
18H03248, 19H04122 and “Joint Usage/Research Center for
Interdisciplinary Large-scale Information Infrastructures” and
“High Performance Computing Infrastructure” in Japan (Project
ID: jh190043). Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. De-
partment of Energy National Nuclear Security Administration

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

under contract DE-NA0003525. This paper describes objective
technical results and analysis. Any subjective views or opinions
that might be expressed in the paper do not necessarily represent
the views of the U.S. Department of Energy or the United States
Government.

References

[1] Hackbusch, W.: A sparse matrix arithmetic based on-matrices, Part
I: Introduction to H-matrices, Computing, Vol.62, No.2, pp.89–108
(1999).

[2] Bebendorf, M. and Hackbusch, W.: Existence of H-matrix ap-
proximants to the inverse FE-matrix of elliptic operators with L8-
coefficients, Numer. Math., Vol.95, No.1, pp.1–28 (2003).

[3] Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., L’Excellent, J.-Y.
and Weisbecker, C.: Improving multifrontal methods by means of
block low-rank representations, SIAM Journal on Scientific Comput-
ing, Vol.37, No.3, pp.A1451–A1474 (2015).

[4] Ida, A., Nakashima, H. and Kawai, M.: Parallel Hierarchical Matrices
with Block Low-rank Representation on Distributed Memory Com-
puter Systems, Proc. International Conference on High Performance
Computing in Asia-Pacific Region, pp.232–240, ACM (2018).

[5] Wolfgang, H. and K. Boris, N. and Ronald, K.: Hierarchical matri-
ces based on a weak admissibility criterion: Computing, Vol.73, No.3,
pp.207–243 (2004).

[6] Akbudak, K., Ltaief, H., Mikhalev, A. and Keyes, D.: Tile low rank
Cholesky factorization for climate/weather modeling applications on
manycore architectures, International Supercomputing Conference,
pp.22–40 (2017).

[7] Benner, P., Mach, T. and Seaside, C.A.: On the QR decomposition of
H-matrices, Computing, Vol.88, No.3–4, pp.111–129 (2010).

[8] Bebendorf, M. and Kriemann, R.: Fast parallel solution of boundary
integral equations and related problems, Computing and Visualization
in Science, Vol.8, No.3, pp.121–135 (2005).

[9] Ida, A., Iwashita, T., Mifune, T. and Takahashi, Y.: Parallel hierarchi-
cal matrices with adaptive cross approximation on symmetric multi-
processing clusters, Journal of Information Processing, Vol.22, No.4,
pp.642–650 (2014).

[10] Chandrasekaran, S., Dewilde, P., Gu, M., Lyons, W. and Pals, T.: A
fast solver for HSS representations via sparse matrices, SIAM J. Ma-
trix Anal. Appl., Vol.29, No.1, pp.67–81 (2006).

[11] Ambikasaran, S. and Darve, E.: An O(N log N) Fast Direct Solver for
Partial Hierarchically Semi-Separable Matrices, Journal of Scientific
Computing, Vol.57, No.3, pp.477–501 (2013).

[12] Ida, A.: Lattice H-matrices on distributed-memory systems, 2018
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp.389–398, IEEE (2018).

[13] Bouwmeester, H., Jacquelin, M., Langou, J. and Robert, Y.: Tiled
QR factorization algorithms, Proc. 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, 7,
ACM (2011).

[14] Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P.
and Dongarra, J.: DAGuE: A generic distributed DAG engine for high
performance computing, Parallel Comput., Vol.38, No.1–2, pp.37–51
(2012).

[15] Yamazaki, I., Tomov, S. and Dongarra, J.: Mixed-precision Cholesky
QR factorization and its case studies on multicore CPU with mul-
tiple GPUs, SIAM Journal on Scientific Computing, Vol.37, No.3,
pp.C307–C330 (2015).

[16] Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J.,
Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A.,
Stanley, K., Walker, D. and Whaley, R.C.: ScaLAPACK Users’ Guide,
Society for Industrial and Applied Mathematics, Philadelphia, PA
(1997).

[17] Demmel, J., Grigori, L., Hoemmen, M. and Langou, J.:
Communication-optimal parallel and sequential QR and LU factoriza-
tions, SIAM Journal on Scientific Computing, Vol.34, No.1, pp.A206–
A239 (2012).

[18] Jalby, W. and Philippe, B.: Stability analysis and improvement of the
block Gram–Schmidt algorithm, SIAM Journal on Scientific and Sta-
tistical Computing, Vol.12, No.5, pp.1058–1073 (1991).

[19] Ida, A., Iwashita, T., Ohtani, M. and Hirahara, K.: Improvement of
hierarchical matrices with adaptive cross approximation for largescale
simulation, Journal of Information Processing, Vol.23, No.3, pp.366–
372 (2015).

[20] Bebendorf, M.: Hierarchical matrices, pp.15–16, Springer (2008).
[21] “HACApK”, available from 〈https://github.com/Post-Peta-Crest/

ppOpenHPC/tree/MATH/HACApK〉 (accessed 2019-04-04).
[22] Bebendorf, M.: Approximation of boundary element matrices, Numer.

Math., Vol.86, No.4, pp.565–589 (2000).
[23] Iwashita, T., Ida, A., Mifune, T. and Takahashi, Y.: Software Frame-

work for Parallel BEM Analyses with H-matrices Using MPI and
OpenMP, Procedia Computer Science, Vol.108, pp.2200–2209 (2017).

[24] Amestoy, P., Buttari, A., L’Excellent, J.-Y. and Mary, T.: Bridging
the gap between flat and hierarchical low-rank matrix formats: The
multilevel BLR format, The University of Manchester MIMS EPrints
(2018).

[25] Bouwmeester, H., Jacquelin, M., Langou, J. and Robert, Y.: Tiled
QR factorization algorithms, Proc. 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis,
No.7, ACM (2011).

Akihiro Ida was born in Japan in 1971.
He received B.Math and M.E. degrees
from Nagoya University in 1994 and
1996, respectively. In 2008, Chuo Univer-
sity awarded him a Ph.D. degree in math-
ematics. In 2000–2012, he researched and
developed linear solvers at VINAS Co.,
Ltd. In 2012–2015, he worked as an assis-

tant professor in the Academic Center for Computing and Media
Studies, Kyoto University. He currently works as an associate
professor in the Information Technology Center, The University
of Tokyo. His research interests include discretization methods
for integro-differential equations, numerical linear algebra and
high performance computing.

Hiroshi Nakashima received his M.E.
and Ph.D. from Kyoto University in
1981 and 1991 respectively, and was en-
gaged in research on inference systems
with Mitsubishi Electric Corporation from
1981. He became an associate professor
at Kyoto University in 1992, a professor
at Toyohashi University of Technology in

1997, and a professor at Kyoto University in 2006. His current re-
search interests are in high-performance computing systems and
programming on them. He received the Motooka award in 1988
and the Sakai award in 1993. He is a Fellow of IPSJ, and a mem-
ber of IEEE-CS, ACM, ALP and TUG.

Tasuku Hiraishi was born in 1981. He
received his B.E. in Information Science
in 2003, an Master of informatics in 2005,
and his Ph.D. in informatics in 2008, all
from Kyoto University. In 2007–2008, he
was a fellow of the JSPS (at Kyoto Uni-
versity). Since 2008, he has been working
at Kyoto University as an assistant profes-

sor at Supercomputing Research Laboratory, Academic Center
for Computing and Media Studies, Kyoto University. His re-
search interests include parallel programming languages and high
performance computing. He won the IPSJ Best Paper Award in
2010. He is a member of IPSJ, JSSST, and ACM.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Ichitaro Yamazaki received his Ph.D.
degree in Computer Science from the Uni-
versity of California at Davis in 2008. He
is currently a research scientist at the San-
dia National Laboratories, where his inter-
ests lie in high-performance computing,
especially for linear algebra and scientific
computing. Before joining the Sandia Na-

tional Laboratories, he has also worked in the Innovative Com-
puting Laboratory at the University of Tennessee at Knoxville as
a research scientist from 2011 to 2019, and in Scientific Comput-
ing Group at Lawrence Berkeley National Laboratory from 2008
to 2011, as a Postdoctoral Researcher.

Rio Yokota is an Associate Professor at
GSIC, Tokyo Institute of Technology.
He was a Research Scientist at ECRC,
KAUST from September 2011 to March
2015 before joining Tokyo Tech. His
research interests range from high per-
formance computing, hierarchical low-
rank approxima-tion methods, and scal-

able deep learning. He was part of the team that won the Gor-
don Bell prize for price/performance in 2009. He is a member of
ACM, IEEE, SIAM, IPSJ, JSAI, and JSIAM.

Takeshi Iwashita was born in 1971. He
received a B.E., an M.E., and a Ph.D.
from Kyoto University in 1992, 1995, and
1998, respectively. In 1998–1999, he
worked as a post-doctoral fellow of the
JSPS project in the Graduate School of
Engineering, Kyoto University. He moved
to the Data Processing Center of the same

university in 2000. In 2003–2014, he worked as an associate pro-
fessor in the Academic Center for Computing and Media Studies,
Kyoto University. He currently works as a professor in the Infor-
mation Initiative Center, Hokkaido University. His research inter-
ests include high performance computing, linear iterative solver,
and electromagnetic field analysis. He is a member of IEEE,
SIAM, IPSJ, IEEJ, JSIAM, JSCES, and JSAEM.

c© 2019 Information Processing Society of Japan

