
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

Solving String Constraints with Streaming String
Transducers

Qizhen Zhu1,a) Hitoshi Akama1,b) YasuhikoMinamide1,c)

Received: May 7, 2019, Accepted: August 22, 2019

Abstract: We present a procedure to solve the satisfiability problem of string constraints consisting of (i) string con-
catenation and rational transductions of string variables restricted to be in the “straight-line” fragment, (ii) regular
constraints to string variables, and (iii) integer constraints involving the length of string variables. We represent each
atomic string constraint by a streaming string transducer. By the sequential composition of streaming string transduc-
ers, we obtain a single streaming string transducer. The input straight-line constraint is satisfiable if and only if the
domain of the composed streaming string transducer is not empty. In addition, by calculating the Parikh image of
the composed streaming string transducers, we can represent the constraints among the length of string variables as a
semi-linear set. Then the integer constraints together with the Parikh image can be solved by existing SMT solvers.
We have implemented this procedure and performed experiments on several string constraints. Our implementation is
slower than other solvers for general cases but performs better for some special cases.

Keywords: string constraints, streaming string transducers, transducers

1. Introduction

Recently, there have been a great amount of works on solving
string constraints. String constraint solvers are useful in numer-
ous areas such as security, web programming, and model check-
ing. For example, the vulnerability of cross-site scripting is typ-
ically caused by improper manipulating of strings and can be
checked by string constraint solvers. However, the combination
of concatenation and rational transductions of string variables
leads to a problem which is undecidable by a simple reduction
to PCP [19].

Lin and Barceló considered a fragment of string constraints
called straight-line which accommodates concatenation and ra-
tional transductions [18]. They proved that the satisifiability of
straight-line string constraints is decidable and still decidable
when they are extended with integer constraints. Their decision
procedure transforms straight-line constraints to another frag-
ment called AC (acyclic) by removing concatenation from con-
straints and then applies the decision procedure for AC. Holı́k
et al. implemented the solver SLOTH based on their work and
succinct representation of string constraints using alternating fi-
nite automata, and demonstrated that their solver handles con-
straints derived from PHP and JavaScript programs [16]. Later
Chen et al. implemented the solver OSTRICH that handles string
constraints with specific conditions by computing pre-image of
regular languages under transductions [12]. OSTRICH is faster
and can support a wider class of transductions than SLOTH.

1 Department of Mathematical and Computing Science, Tokyo Institute of
Technology, Meguro, Tokyo 152–8550, Japan

a) zhu.q.ac@m.titech.ac.jp
b) akamahitoshi@gmail.com
c) minamide@is.titech.ac.jp

However, the support of integer constraints is limited since in
general integer constraints do not follow their restrictions.

As a model of string transformations that accommodates con-
catenation, Alur and Černý introduced streaming string transduc-

ers (SSTs) [9]. An SST is an automaton with a finite set of string
variables and updates variables using the current contents of its
variables at each transition. For updates, it can concatenate the
contents of variables. Finally, it uses the contents of the string
variables to compute the output string at the end of the input
string. It was shown that SSTs are equi-expressive to MSO string
transductions and two-way finite-state transducers [9], [14]. Us-
ing this result, it was shown that SSTs are closed under sequential
composition [9].

In this paper, we apply a class of SSTs called bounded-copy

SSTs to study string constraints including transducers and con-
catenation. The second author of this paper gave a concrete con-
struction for the composition of bounded-copy SSTs [4]. That is
key to our development.

The first advantage of utilizing SSTs lies in that we can support
a wider class of transductions such as string reverse and string re-
placement using regular expressions as shown in Ref. [17]. Fur-
thermore, we can design a simple procedure checking satisfiabil-
ity of straight-line constraints based on the standard construction
for sequential composition and Parikh image.

We develop a decision procedure to solve the satisfiability
problem of straight-line string constraints combined with inte-
ger constraints by using bounded-copy SSTs. We represent each
atomic string constraint with a bounded-copy SST. By the se-
quential composition of SSTs, we obtain a single bounded-copy
SST. The input straight-line string constraint is satisfiable if and
only if the domain of the composed SST is not empty. In addi-
tion, by calculating the Parikh image of the composed SST, we

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

can represent the constraints among the length of string variables
as a semi-linear set. Then the integer constraints together with
the Parikh image can be solved by existing SMT solvers (e.g., the
Z3 SMT solver). We have implemented our decision procedure
in Scala and conducted experiments on several string constraints.
The program is available on https://github.com/minamide-group/
sst.

Organization Firstly, we recall the concepts of transductions,
finite-state transducers, and and semi-linear sets in Section 2. In
Section 3, we review the definition of SST and briefly explain the
sequential composition of SSTs. In Section 4, we define straight-
line string constraints. We transform constraints into SSTs in
Section 5. In Section 6, we show how to combine straight-line
constraints with integer constraints. Our implementation and ex-
perimental results are presented in Section 7. In Section 8, we
review related research on string constraint solvers and composi-
tion of SSTs. Finally, we conclude with possible future works in
Section 9.

2. Preliminaries

Let Σ and Γ be two alphabets. We call a binary relation be-
tween Σ∗ and Γ∗ a transduction. A nondeterministic finite-state

transducer is a tuple T = (Σ,Γ,Q, q0, δ, F), where Σ is the in-
put alphabet, Γ is the output alphabet, Q is a finite set of states,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and
δ ⊆ Q × (Σ ∪ {ε}) × (Γ ∪ {ε}) × Q is the transition relation.
For example, the following transducer recognizes the transduc-
tion {(abi, bi+1) | i ∈ N}.

A transduction is said to be rational if it is recognized by some
finite-state transducer. We use �T � to denote the transduction
recognized by T .

Let M be a commutative monoid with a binary operation +
and an identity element 1M . A linear set over M constructed by
{v0, v1, v2, . . . , vk} ⊆ M is a set of the form {v0 +λ1v1 +λ2v2 + · · ·+
λkvk | λ1, λ2, . . . , λk ∈ N}. A semi-linear set is a finite union of
linear sets.

Let Σ be an alphabet {a1, a2, . . . , al} where the order of
a1, a2, . . . , al is arbitrary but fixed. The Parikh image of a string
w ∈ Σ∗ is Ψ(w) = (c1, c2, . . . , cl) where ci is the number of oc-
currences of ai in w. The Parikh image of a language L ⊆ Σ∗ is
Ψ(L) = {Ψ(w) |w ∈ L}.

3. Streaming String Transducers

Alur and Černý introduced (deterministic) streaming string
transducers (SSTs) for the verification of single-pass list-
processing programs [9]. An SST is an automaton with a finite
set of string variables and updates variables using the current con-
tents of its variables at each transition. Finally, it uses the contents
of the string variables to compute the output string at the end of
the input string. Although SSTs were extended to nondetermin-
istic ones [7], we mainly use deterministic SSTs in this paper and

just say SSTs for deterministic SSTs.

3.1 Definition of SSTs
For the definition of SSTs, we introduce the monoid of variable

updates. Let X and Γ be a finite set of variables and an alphabet.
Then, we call a function from X to (X ∪ Γ)∗ a variable update

and write MX,Γ for the set of variable updates over X and Γ. We
use the following notation for f ∈ MX,Γ such that f (x) = a x,
f (y) = x y, and f (z) = z.

f = [x := a x; y := x y; z := z]

We sometimes omit assignments which assign a variable to itself.
For example, we may write [x := a x; y := x y] for f .

The set of variable updates MX,Γ constitutes a monoid with the
composition of variable updates and the unit element 1MX,Γ (x) = x

for all x ∈ X. For f ∈ MX,Γ and x ∈ X, we write | f |x for the num-
ber of occurrences of the variable x on the right-hand sides of
f . For example, | f |x = 2 and | f |y = 1 for the f above. We say
f ∈ MX,Γ is K-copy if maxx∈X | f |x ≤ K.

Formally, an SST S is an 8-tuple (Σ,Γ,Q, X, q0, δ, η, F), where
Q is a finite set of states, q0 is an initial state, Σ and Γ are input and
output alphabets, respectively, X is a finite set of variables over
Γ∗, δ : Q×Σ→ Q is a state-transition function, η : Q×Σ→ MX,Γ

is a variable-update function, and F : Q ↪→ (X ∪ Γ)∗ is a partial
output function.

We first explain the semantics of SSTs informally using an ex-
ample.

Example 3.1 Let us consider the following SST whose output
function is given by F(q1) = xy. It outputs wwR for an input w$
where w ∈ {a, b}∗.

For an input string ab$, it takes the following transition and fi-
nally it outputs abba by applying [x := ab; y := ba] to xy =

F(q1).
⎛⎜⎜⎜⎜⎝q0,

x := ε
y := ε

⎞⎟⎟⎟⎟⎠ a
=⇒
⎛⎜⎜⎜⎜⎝q0,

x := a

y := a

⎞⎟⎟⎟⎟⎠ b
=⇒
⎛⎜⎜⎜⎜⎝q0,

x := ab

y := ba

⎞⎟⎟⎟⎟⎠ $
=⇒
⎛⎜⎜⎜⎜⎝q1,

x := ab

y := ba

⎞⎟⎟⎟⎟⎠ �

To define the semantics of SSTs formally, we extend the state-
transition and variable-update functions for strings as follows.

δ̂(q, ε) = q

δ̂(q, σw) = δ̂(δ(q, σ), w) (σ ∈ Σ, w ∈ Σ∗)
η̂(q, ε) = 1MX,Γ

η̂(q, σw) = η(q, σ) ◦ η̂(δ(q, σ), w) (σ ∈ Σ, w ∈ Σ∗)

Then, the output string of SST �S�(w) for an input string w ∈ Σ∗

is defined as follows:

�S�(w) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε̂(η̂(q0, w)(F(δ̂(q0, w)))) δ̂(q0, w) ∈ dom(F)

⊥ δ̂(q0, w) � dom(F)

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

where ε̂ : (X ∪ Γ)∗ → Γ∗ is the function that removes variables in
a given string.

Example 3.2 This definition is equivalent to the informal se-
mantics described above. For example, we have the following
composition for the SST in Example 3.1 and the input string ab$.

⎡⎢⎢⎢⎢⎣x := xa

y := ay

⎤⎥⎥⎥⎥⎦ ◦
⎡⎢⎢⎢⎢⎣x := xb

y := by

⎤⎥⎥⎥⎥⎦ ◦
⎡⎢⎢⎢⎢⎣x := x

y := y

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣x := xab

y := bay

⎤⎥⎥⎥⎥⎦

Then, we have ε̂([x := xab; y := bay](xy)) = abba. �
We say an SST is K-bounded copy if for every q ∈ Q and input

string w ∈ Σ∗, the variable update η̂(q, w) is K-copy. An SST is
bounded copy if it is K-bounded copy for some K*1. Especially,
a 1-bounded copy SST is called a copyless SST.

Example 3.3 The following is an example of 3-bounded-copy
SST. It accepts string w#w′ (w, w′ ∈ {a, b}∗) and outputs w3w′. In
the transition diagram, the transition σ/

[
x := xσ

]
represents the

two transitions a/
[
x := x a

]
and b/

[
x := x b

]
.

The same transduction can be given as a copyless SST by intro-
ducing auxiliary variables. �

3.2 Sequential Composition of SSTs
Our work significantly depends on the construction for sequen-

tial composition of two SSTs: for given two SSTs S1 and S2, we
need to construct SST S such that �S� = �S2�◦�S1�. It was first
shown that SSTs are closed under composition by using the re-
sult that the expressiveness of SSTs exactly coincide with that of
MSO string transductions [7]. Our work is based on the following
construction of the second author for bounded-copy SSTs [4].

Theorem 3.4 Let S1 and S2 be K-bounded-copy and L-
bounded-copy SSTs. Then, there exists a K ·L·|Q2|-bounded-copy
SST S such that �S� = �S2� ◦ �S1�. Furthermore,
• the number of the states of S is bounded by |Q1| · |Q2||Q2 ||X| ·

C |Q2 ||X|.
• the number of the variables of S is bounded by |Q2| · |X| · |Y | ·

(L + 1).
where Q1 and Q2 are the state sets of S1 and S2, respectively, X

and Y are the variable sets of S1 and S2, respectively, and C is a
constant defined as follows.

C = |{ f ∈ MY,∅ | f is L-copy }| �

The formalization in Isabelle is available on https://github.com/
akamah/sst-isabelle. This theorem itself is not a contribution of
this paper.

It should be noted that the for the composition of more than
two SSTs, the order of composition has a significant impact on

*1 This definition of bounded copy SSTs does not directly corresponds to
that of Ref. [8]. It is basically an SST with a finite transition monoid in
Ref. [15].

the size of the composed SST. Let us consider the composition
of three copyless SSTs S1, S2, and S3 whose variables sets are
X, Y , and Z. If we compose them by �S3� ◦ (�S2� ◦ �S1�), the
composed SST has the following number of variables.

4 · |Q3| · (|Q2| · |X| · |Y |) · |Z|

On the other hand, if we compose them by (�S3� ◦ �S2�) ◦ �S1�,
the composed SST has the following number of variables:

4 · |Q2,3| · |X| · (|Q3| · |Y | · |Z|)

where |Q2,3| is the state set of the composition ofS2 andS3. Since
|Q2,3| is exponential in |Q3|, the former composition is much bet-
ter at least on the number of variables. Hence, we have chosen
the order of the former composition in our implementation when
we compose more than two SSTs.

4. Straight-Line String Constraints

Let X = {x0, x1, . . . , xn−1} be a set of string variables indexed by
one integer. Let i, j, k ∈ N denote the indices of string variables.
Then we define straight-line constraints over X [18].

Definition 4.1 (Basic Straight-Line Constraint). Let w be a
constant string, j, k < i, and T be a transduction. We call xi = ei

an atomic constraint, where ei is an expression defined as follows.

ei ::= w | x j | x j · xk | T (x j)

Let m be a natural number less than n. A basic straight-line

constraint ϕsl is a conjunction of atomic constraints defined as
follows.

ϕsl ::= (xm = em) ∧ (xm+1 = em+1) ∧ · · · ∧ (xn−1 = en−1) �

For example, the following constraint is in straight-line format.

x2 = x0 · x1

x3 = x2.replaceAll(a, bb)

The next constraint is not in straight-line format because x2 is
restricted by x3.

x2 = x0 · x3

x3 = x2.replaceAll(a, bb)

We extends the basic straight-line constraints with regular lan-
guage membership on string variables and integer constraints in-
volving the length of string variables.

Definition 4.2 (Straight-Line Constraint). Let Ri (0 ≤ i < n) be
regular languages. A regular constraint ϕreg is a conjunction of
regular language membership on string variables.

ϕreg ::=
∧

(xi ∈ Ri)

Let c ∈ N be an integer constant, u be an variable over Z, and |x|
be the length of content of string variable x. We define an integer
expression t as follows.

t ::= c | u | |x| | t + t | t − t

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Then an integer constraint ϕint is defined as follows.

ϕint ::= t = t | t < t | ϕint ∧ ϕint | ¬ϕint

A straight-line constraint ϕ is defined as follows.

ϕ ::= ϕsl ∧ ϕreg ∧ ϕint �

Let θstr be an interpretation from a string variable to a string in
Σ∗. We extend θstr for e as follows.

θstr(w) = w for w ∈ Σ∗ θstr(T (x)) = T (θstr(x))

θstr(x1 · x2) = θstr(x1) · θstr(x2)

Let θint be an interpretation from an integer variable to a num-
ber in Z and θ = θstr ∪ θint. Then we extends θ for t as follows.

θ(c) = c for c ∈ Z θ(|x|) = |θstr(x)|
θ(t1 + t2) = θ(t1) + θ(t2) θ(t1 − t2) = θ(t1) − θ(t2)

Given an interpretation θ, we use valθ to evaluate constraints to
a value in {tt, ff } as follows.

valθ(ϕ1 ∧ ϕ2) = tt iff valθ(ϕ1) = tt and valθ(ϕ2) = tt

valθ(¬ϕ) = tt iff valθ(ϕ) = ff

valθ(x = e) = tt iff θstr(x) = θstr(e)

valθ(x ∈ R) = tt iff θstr(x) ∈ R

valθ(t1 = t2) = tt iff θint(t1) = θint(t2)

valθ(t1 < t2) = tt iff θint(t1) < θint(t2)

A constraint ϕ is satisfiable if there is an interpretation θ such
that valθ(ϕ) = tt, and we call θ a witness for ϕ. Otherwise ϕ is
unsatisfiable. We use θ |= ϕ to denote valθ(ϕ) = tt.

Example 4.3 The following constraint replaces all the occur-
rences of < and >, and then checks whether the result contains <
or >. Finally it checks whether x0 · x1 contains the same number
of < and >. This check is achieved because |x3|− |x2| = 3|x2|< and
|x4| − |x3| = 3|x3|>, where |x|σ denotes the number of occurrences
of σ in string variable x.

x2 = x0 · x1

x3 = x2.replaceAll(<,<)

x4 = x3.replaceAll(>,>)

|x4| − |x3| = |x3| − |x2|

This constraint is satisfiable because it is evaluated to be tt un-
der the following witness.

[x0 �→<, x1 �→>, x2 �→<>, x3 �→ <>, x4 �→ <>] �

The previous research of Lin et al. [18] solved a straight-line
constraint ϕ by transforming it into ϕ′ which preserves the satisfi-
ability of ϕ and there is no concatenation in ϕ′. Then ϕ′ is solved
by applying a result in the theory of rational relations [10]. The
size of ϕ′ is at most exponential to that of ϕ.

The transformation is based on the following properties of reg-
ular languages and rational transductions.

• Let R be a regular language. Then there exist a natural num-
ber n, R′i and R′′i (1 ≤ i ≤ n) such that the following statement
holds.

w′w′′ ∈ R⇐⇒
n∨

i=1

(w′ ∈ R′i ∧ w′′ ∈ R′′i)

• Let T be a rational transduction. Then there exist a natural
number n, T ′i and T ′′i (1 ≤ i ≤ n) such that the following statement
holds.

w =T (w′1w
′′
1)⇐⇒

∃w′w′′.(w = w′w′′) ∧
n∨

i=1

(w′ = T ′i (w′1) ∧ w′′ = T ′′i (w′′1))

We use a simple example to explain their approach.
Example 4.4 Consider the following constraint.
(1) y = x0 · x1

(2) y ∈ R

(3) z = T (y)
In order to remove the concatenation x0 · x1, we need to intro-

duce two fresh variables y0 and y1 as follows.
(1′) y0 = x0

(2′) y1 = x1

The regular constraint y ∈ R is then split into two parts:∨
i(y0 ∈ R′i ∧ y1 ∈ R′′i) and we can nondeterministicly choose

one pair of R′i and R′′i .
(3′) y0 ∈ R′i
(4′) y1 ∈ R′′i
We also need to split T and z as

∨
j(z0 = T ′j(y0)∧ z1 = T ′′j (y1)).

Similarly we nondeterministicly choose one pair of T ′j and T ′′j .
(5′) z0 = T ′j(y0)
(6′) z1 = T ′′j (y1)
The new constraint consists of (1′), (2′), (3′), (4′), (5′), and (6′).

SLOTH uses this approach to handle the combination of concate-
nation and transduction. �

5. String Constraints to SSTs

In this section, we show all the atomic constraints and regular
constraints can be transformed into bounded-copy SSTs which
preserve the satisfiability of the original constraints. The original
constraint is satisfiable if and only if the obtained SST accepts a
non-empty language. Then we sequentially compose all the SSTs
together to generate a single SST. The straight-line constraint is
satisfiable if and only if the composed SST accepts a non-empty
language.

5.1 Atomic Constraints
For an atomic constraint xi = ei, we transform this constraint

into an SST Si, such that Si accepts strings of the form (Σ∗#)i

representing x0#x1# . . . #xi−1#, where # is a symbol indicating the
end of the content of the previous variable. Si computes the value
of xi and outputs (Σ∗#)i+1 representing x0#x1# . . . #xi−1#xi#.

Consider xi = ei where ei is a concatenation of string variables.
Note that a single variable or a string can also be transformed in
a similar manner. The SST Si for this constraint has i variables
and (i+ 1) states. It records the values of variables from the input

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

string, outputs them and appends the value of ei at the end.
Example 5.1 x2 = x1 · x0 is transformed into the following

SST. Each xi (i ∈ {0, 1}) is recorded at state qi. The final state q2

outputs values of all variables with the value of x2, which is x1x0.
The values in the output are also split by #.

�

Let T be a transduction realized by an SST Sr with the state set
Qr and the variable set Xr. Then, a constraint xi = T (x j) is trans-
formed into an SST Si with (i + 1 + |Xr |) variables and (i + |Qr |)
states. Firstly, we modify Sr to S′r such that S′r works in the same
way as Sr but updates the value of x j in each transition. Then we
create an SST S′i that accepts (Σ∗#)i and outputs (Σ∗#)i+1. At last
we replace q j in S′i with S′r and get the result Si.

Example 5.2 Consider the operation of string insertion x3 =

x1.insert(1, aba), where x1.insert(1, aba) is the string obtained
by inserting aba at the index 1 of x1. This function can be repre-
sented by the following Sr.

Then we create S′r, which represents the same function as Sr

but updates the value of x1 at the same time.

The following S′3 accepts (Σ∗#)3.

After replacing q1 with S′r and modifying transitions, we ob-
tain the following S3.

�

The following theorem is clear from the construction.
Theorem 5.3 Let Si be the SST obtained from xi = ei. Then

�Si� is a partial function from (Σ∗#)i to (Σ∗#)i+1 and the following
two statements are equivalent.

(1) �Si�(w0# . . . wi−1#) = w0# . . . wi−1#wi#
(2) [x0 �→ w0, . . . , xi−1 �→ wi−1, xi �→ wi] |= xi = ei �

5.2 Regular Constraints
We transform a regular constraint

∧n−1
i=0 (xi ∈ Ri) into Sn that

accepts (Σ∗#)n. We replace each qi in Sn with the DFA represent-
ing Ri, then Sn checks whether the regular constraint is satisfied
by the input. We assume there is exactly one regular language Ri

for each xi. If there are more than one R for a single variable, we
compute the intersection of them. If a variable x is not restricted
by any R, then x is in Σ∗.

Example 5.4 Consider (x0 ∈ a∗)∧(x1 ∈ b∗a) for {x0, x1, x2, x3}.
The regular languages a∗ and b∗a are represented by following
DFAs.

Then we create S4 that accepts (Σ∗#)4.

Then q0 and q1 are replaced with the above DFAs. Because x2

and x3 are not restricted by any regular constraint, and q2 and q3

express Σ∗, we do not need to do anything with them. Then S4

becomes:

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

�

Theorem 5.5 Let Sn be the SST obtained from
∧

(xi ∈ Ri).
Then �Sn� is a partial function from (Σ∗#)n to (Σ∗#)n and the fol-
lowing two statements are equivalent.

(1) �Sn�(w0# . . . wn−1#) = w0# . . . wn−1#
(2) [x0 �→ w0, . . . , xn−1 �→ wn−1] |= ∧(xi ∈ Ri) �
The theorem is also clear from the construction of the SST.
By Theorem 3.4, Theorem 5.3, and Theorem 5.5, we have the

following theorem which shows that we can solve the satisfiabil-
ity of ϕsl and ϕreg by checking whether the domain of the com-
posed SST is empty.

Theorem 5.6 Given ϕsl =
∧n−1

i=m(xi = ei) and ϕreg =
∧

(xi ∈ Ri),
let Si be the SST obtained from xi = ei, Sn be the SST obtained
from ϕreg, and S be the sequential composition of Sm, . . . ,Sn.
Then �S� is a partial function from (Σ∗#)m to (Σ∗#)n and the fol-
lowing two statements are equivalent.

(1) �S�(w0# . . . wm−1#) = w0# . . . wn−1#
(2) [x0 �→ w0, . . . , xn−1 �→ wn−1] |= ϕsl ∧ ϕreg �
This theorem is proved by induction on the number of SSTs.

6. Integer Constraints

In this section we firstly introduce Parikh image of SSTs. Then
we explain how to solve length constraints by using Parikh image.

6.1 Parikh Image of SSTs
We define the Parikh image of an SST S as Ψ(S) =

{Ψ(w′) | ∃w.�S�(w) = w′}. Since SSTs are expressively equiv-
alent to MSO (monadic second-order logic) definable transduc-
tions [9] and the Parikh image of an MSO definable transduction
is a semi-linear set [13], the Parikh image of an SST can also be
represented by a semi-linear set.

Theorem 6.1 Given a bounded-copy SST S, there exists a
nondeterministic transducer TN that reads a string and outputs a
vector of non-negative integers such that the following two state-
ments hold:

(1) if �S�(w) = w′, then (w,Ψ(w′)) ∈ �TN�,
(2) if (w, v) ∈ �TN�, then there exists w′ such that Ψ(w′) = v

and �S�(w) = w′. �
The construction of TN and the outline of the proof are given in

Appendix A.2. The construction is inspired by [5], [17]. By ap-
plying the state elimination on TN, we can compute a semi-linear
set representing the Parikh image of S.

Example 6.2 Let σ be a symbol in {a, b}. Consider the follow-
ing SST.

We generate the following transducer from the SST. In order
to be comprehensible, we use a map from output symbols to in-
tegers to represent the output in each transition. For instance, the
transition labeled with a/[a → 2] means that the number of a

increases by 2 in this transition.

The Parikh image of this SST is {v0 + λ1v1 + λ2v2 | λ1, λ2 ∈ N},
where v0 = (0, 1), v1 = (2, 0) and v2 = (0, 2). The number of a

that this SST outputs is (0 + 2λ1 + 0λ2), and the number of b is
(1 + 0λ1 + 2λ2). �

6.2 Solving Integer Constraints by using Parikh Image
In order to combine string constraints with integer constraints

which involve the length of contents of string variables, firstly we
modify the last SST Sn such that every xi only contains one kind
of symbols ai. The length of xi is equivalent to the number of oc-
currences of ai in the output strings of the composed SST. Then
we compute the Parikh image to calculate the letter counts of all
symbols in the output strings.

Let Sn be an SST obtained from a regular constraint that out-
puts strings in the form w0#w1#...#wn−1#, where wi is the content
of the variable xi (0 ≤ i < n). We modify Sn to S′n such that S′n
outputs:

a0...a0︸�︷︷�︸
|w0 |

a1...a1︸�︷︷�︸
|w1 |

... an−1...an−1︸������︷︷������︸
|wn−1 |

where the number of ai is the length of wi. In other words, we
have Ψ(�S′n�(w0#w1# . . . #wn−1#)) = (|w0|, |w1|, . . . , |wn−1|).
S′n can be obtained by modifying the variable update function

of Sn, such that each variable contains only a single kind of sym-
bol which is distinct from any other variable.

Then the composed SST also outputs strings in the form
a∗0a∗1 . . . a

∗
n−1. We compute the Parikh image of the composed SST

which represents the constraints on variable length.
Theorem 6.3 Given ϕsl =

∧n−1
i=m(xi = ei) and ϕreg =

∧
(xi ∈ Ri),

let Si be the SST obtained from xi = ei, Sn be the SST obtained
from ϕreg, S′n be the SST obtained by modifying Sn, S′ be the
sequential composition of Sm, . . . ,Sn−1,S′n, and TN be the trans-
ducer obtained from S′ by the Theorem 6.1. Then �TN� is a

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

transduction between (Σ∗#)m and Nn and the following two state-
ments are equivalent.

(1) (w0# . . . wm−1#, (c0, . . . , cn−1)) ∈ �TN�
(2) [x0 �→ w0, . . . , xn−1 �→ wn−1] |= ϕsl ∧ ϕreg and

∧n−1
i=0 |wi| = ci f orsomewm, . . . , wn−1 �

This theorem follows directly from Theorem 5.6 and Theo-
rem 6.1.

Example 6.4 Reconsider examples in Section 5. We have SSTs
transformed from the following constraints.

S2 : x2 = x1x0

S3 : x3 = x1.insert(1, aba)

S4 : (x0 ∈ a∗) ∧ (x1 ∈ b∗a)

We add an integer constraint |x3| > |x2| and modify S4 into S′4
as follows.

Then we compose S2, S3 and S′4 together, and compute its
Parikh image, which is {v0 + λ1v1 + λ2v2 | λ1, λ2 ∈ N} where
v0 = (0, 1, 1, 4), v1 = (1, 0, 1, 0) and v2 = (0, 1, 1, 1). Intuitively, v1
means that when |x0| increases by 1, |x2| will increase by 1. And
v2 means that when |x1| increases by 1, both of |x2| and |x3| will
increase by 1.

We convert this Parikh image into following integer con-
straints.

(1) λ1 ≥ 0
(2) λ2 ≥ 0
(3) |x0| = 0 + λ1 + 0λ2

(4) |x1| = 1 + 0λ1 + λ2

(5) |x2| = 1 + λ1 + λ2

(6) |x3| = 4 + 0λ1 + λ2

Finally we submit the conjunction of the integer constraints
from Parikh image together with the input |x3| > |x2| to an SMT
solver and get a sat answer. �

7. Implementation and Experiments

7.1 Implementation
We have implemented our procedure and optimization in Scala.

Currently, our solver supports a part of SMT-libv2 format [11]
including declare-fun, assert, check-sat, and get-model
commands with string operations such as str.substr, str.++,
str.len and so on.

The output includes the satisfiability of the input constraint. If
the input constraint is satisfiable, our solver can also find a wit-
ness by following method. If there is no length constraint on any
variable, we search the composed SST for an accepted input and
let the composed SST process the input to get a witness that con-
tains the values of all variables. If there are length constraints on
variables, firstly we obtain a witness wit0 that specifies the length
of each variable by an SMT solver. We search the transducer gen-
erated by the method in Section 6.1 for an accepted input which
produces an output that is equivalent to wit0. Then the composed
SST processes the input and outputs a witness.

The program structure is in Fig. 1. Firstly we convert the
atomic constraints and regular constraints into SSTs. Then we
compose the SSTs together. If the composed SST accepts an
empty language, the result is “unsat”, which means the input
constraint is unsatisfiable. Otherwise, we calculate the Parikh im-
age of the composed SST, submit the integer constraints together
with the Parikh image to the Z3 SMT solver, and get the result.

Example 7.1

x1 = ba x0 ab

x2 = x1.replaceAll(abb, bb)

x2 ∈ b∗aab

|x2| = |x1|

The above constraint is represented as the following text.

(declare-fun x0 () String)

(declare-fun x1 () String)

(declare-fun x2 () String)

(assert (= x1 (str.++ "ba" x0 "ab")))

(assert (= x2 (str.replaceall x1 "abb" "bb")))

(assert (str.in.re x2

(re.++ (re.* (str.to.re "b"))

(str.to.re "aab"))))

(assert (= (str.len x2) (str.len x1)))

(check-sat)

(get-model)

Fig. 1 Overview of our solver.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Firstly, we declare variables x0, x1, x2 with the declare-fun
command. Then we use the assert command to express the con-
straint above. Here the str.++, str.replaceall, str.in.re,
and str.len represent the string concatenation, string replac-
ing, regular language membership and string length operations re-
spectively. str.to.re converts a string into a regular expression.
re.*, re.++, and re.union represent the star, concatenation,
and union operations on regular expressions. The check-sat
command checks the satisfiability of the set of all assertions. The
get-model command returns a possible assignment of the vari-
ables if the assertions are satisfiable.

The output is as follows. sat means this constraint is satisfi-
able. model defines the values of the variables.

sat

(model

(define-fun x0 () String

‘’)

(define-fun x1 () String

‘baab’)

(define-fun x2 () String

‘baab’)

)

�

7.2 Optimization: Removing Redundant Variables
The SST composition algorithm generates lots of states and

variables as we described in Theorem 1. However, only a few
of them are necessary. We give a method to remove redundant
variables, which are never used by the output function or always
contain the empty string.

Firstly, we search for all unreachable states and remove them.
Then, find all the variables which may be used by the output func-
tion. We will calculate the used variable set of the initial state.
At first, the used variable set of each final state q f is all the vari-
ables in F(q f), and the used variable set of each non-final state
is ∅. Then we find all the variables that are assigned to the used
variables in a transition and add them to the used variable set of
the origin state of the transition. Repeat this step until the used
variable set of each state does not change.

We also need to find all the variables which may contain a non-
empty string. We will calculate the union of the nonempty vari-

able set of all the final states. At first, the nonempty variable set
of the initial state is ∅. Then we find all the variables assigned
by alphabets or by the nonempty variables in a transition, and
add them to the nonempty variable set of the destination of the
transition.

Example 7.2 Consider the following SST.

At the beginning, the used variable set of q1 is {x2}. Then by the

transition (q0, b, q1), we can update the used variable set of q0 to
{x1, x2} because x1 and x2 are assigned to x2 in this transition.
Similarly, by the transition (q0, a, q0), the used variable set of q0

is updated to {x0, x1, x2}.
The nonempty variable sets of q0 is initially ∅. By the transition

(q0, a, q0), the nonempty variable sets of q0 is updated to {x1, x2},
because they are assigned by non-empty strings in this transition.
By the transition (q0, b, q1), the nonempty variable sets of q1 is
updated to {x1, x2}.

At last, we find the intersection of the used variables and the
nonempty variables. In this example, {x0, x1, x2} ∩ {x1, x2} =
{x1, x2} is the set of the non-redundant variables. �

7.3 Experiments
Firstly we use one test case to show details of composition of

SSTs and removal of redundant variables. We solve Case 1 with
and without the optimization of removing redundant states and
variables. Here we use only {a, b} as the alphabet.

Case 1.
(1) x1 = x0.replaceAll(a, b)
(2) x2 = a · x1 · a
(3) x2 ∈ ab∗a

This constraint is transformed into the following SSTs.

|Q| |X| |δ|
(1) 3 2 3

(2) 4 2 6

(3) 7 3 10

The results of the composition of SSTs are in Table 1. With-
out optimization, the size of the variable set grows extremely fast.
When composing 3 SSTs together, |X| becomes 1344. This case is
satisfiable because the domain of the composed SST is not empty.
With the optimization, |X| of the second composed SST is reduced
from 1344 to 3. �

We also conducted experiments to compare our procedure with
SLOTH [16] and OSTRICH [12]. All the test cases use the 8-
bit extended ASCII alphabet. Experiments were executed on a
computer with Intel Core i5-5257U CPU @ 2.70 GHz and 8 GiB
RAM.

Case 2, Case 3 and Case 4 contain constraints with replaceAll

functions. Case 5 uses a series of concatenation. Case 6, Case 7,
Case 8 and Case 9 contain integer constraints, while Case 8 and
Case 9 also use reverse functions. We explain some of the test
cases while others are shown in Appendix A.1. The results are
listed in Table 2. We use - to denote the solver is not able to
handle this test case (whether the constraint is not supported or
the constraint causes an out-of-memory error), # to denote the
solver gives an incorrect answer, and * to denote the solver gives
a correct answer but cannot generate a witness.

Case 2 (ReplaceAll I).

x1 = x0.replaceAll(〈sc〉, ε)
x1 ∈ 〈sc〉

This constraint replaces all the occurrences of 〈sc〉 with the

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Table 1 Results of optimization.

unoptimized optimized
composed SST |Q| |X| |δ| |Q| |X| |δ|

(1)–(2) 5 32 15 4 2 6
(1)–(3) 15 1344 45 14 3 21

Table 2 Results of comparing with other solvers.

Run Time (sec)
Case 2 Case 3 Case 4 Case 5 (k = 9) Case 6 Case 7 Case 8 Case 9

Our Solver 1.257 7.819 2.270 2.995 1.492 1.357 1.384 1.275
SLOTH 1.737 2.058 8.321 - 1.508/* 1.776/* - -

OSTRICH 1.107/# 1.285 1.264 1.199 - - 1.471 -

Table 3 Results of Case 5 with different k.

SLOTH OSTRICH Our Solver
k AFAs Final AFA states Run Time (sec) Run Time (sec) Run Time (sec)
1 4 12 1.744 1.017 1.010
2 6 18 1.361 1.052 1.197
3 10 30 1.367 1.051 1.281
4 18 54 1.454 1.084 1.422
5 34 102 1.623 1.065 1.556
6 66 198 2.122 1.082 1.707
7 130 390 3.446 1.099 1.951
8 258 774 7.323 1.096 2.291
9 514 1542 - (OOM) 1.199 2.995

empty string, and then checks whether the result may still be 〈sc〉.
It is satisfiable because we have the following witness.

x0 = 〈sc〈sc〉〉 x1 = 〈sc〉

SLOTH and our solver solve this constraint correctly, while
OSTRICH gives an unsat answer. �

Case 2 shows that we cannot remove all the occurrences of
〈sc〉 by simply replacing them with empty strings. If we use a
nonempty string to replace 〈sc〉, then Case 2 will be unsatisfiable.
However, the concatenation of strings without 〈sc〉 may still lead
to a result containing 〈sc〉 as shown in the next test case.

Case 3 (ReplaceAll II).

x2 = x0.replaceAll(〈sc〉, a)

x3 = x1.replaceAll(〈sc〉, a)

x4 = x2 · x3

x4 ∈ a〈sc〉a

This constraint replaces all the occurrences of 〈sc〉 in x0 and x1

with a, then checks whether the concatenation of the results may
contain 〈sc〉. It is satisfiable because of the following witness.

x0 = a〈s x1 = c〉a x2 = a〈s
x3 = c〉a x4 = a〈sc〉a

This constraint is handled by SLOTH, OSTRICH and our
solver. As shown in Table 2, our solver is much slower than other
solvers. The main reason is due to the fast growth of the size of
the composed SST. The final composed SST has 4797 states and
100 variables. �

Case 5 (Concatenation)

x1 = x0 · x0

x2 = x1 · x1

· · ·

xk = xk−1 · xk−1

x1 ∈ (ab)+

xk ∈ (aa)+

This constraint is obviously unsatisfiable. We run this test case
for k from 1 to 9. The results are shown in Table 3. OSTRICH
solves this constraint efficiently, while our solver is slower than
OSTRICH. SLOTH uses alternating finite automata (AFA) to
represent constraints. As shown in the results, the number of
states of AFAs grows exponentially, which is consistent with what
we discussed in Example 4.4. When k = 9, SLOTH encounters
an out-of-memory (OOM) error. �

Above all, our solver is slower than SLOTH and OSTRICH
when the constraint is supported by them. However, our solver
supports the general straight-line constraints including concate-
nation, transductions realized by SSTs, and integer constraints.

8. Related Works

There have been numerous works on solving string con-
straints [1], [2], [3], [16], [18], [20]. Among them, we review
the works that accommodate transducers and concatenation. We
also review the previous research on the sequential composition
of SSTs.

Lin and Barceló [18] showed that string constraints in straight-
line format are decidable. They gave a method to solve straight-
line string constraints including concatenation, regular language
membership, and finite-state transducers. Their fragment sup-
ports constraints of the form x = T (y), where T is a transduc-
tion represented by a possibly nondeterministic finite-state trans-
ducer. On the other hand, we represent T by a deterministic
SST. The classes of transductions represented by nondetermin-
istic finite-state transducers and deterministic SST are incompa-
rable. However, the class of transductions represented by de-
terministic SSTs is larger than that of functional transductions

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

represented by finite-state transducers since deterministic SSTs
are equi-expressive to deterministic two-way finite-state trans-
ducers [9], [14]. Lin and Barceló also showed that their con-
straints are still decidable when extended with linear arithmetic
constraints involving the length of string variables and IndexOf

constraints.
Holı́k et al. implemented the string constraint solver SLOTH

based on the research of Lin [18] with alternating finite automata
as succinct representations of languages [16]. Their solver per-
forms better than ours for most cases where regular expressions
are complex.

Chen et al. developed a framework that solves straight-line
string constraints by computing pre-image of regular languages
under transductions [12]. It supports constraints that satisfy two
specific restrictions RegMonDec and RegInvRel. Based on the
framework, they implemented OSTRICH that can handle string
constraints involving concatenation, one-way and two-way finite-
state transducers(possibly non-deterministic), regular-expression
matching, reverse functions, and replaceAll functions. The re-
placement of their replaceAll functions could contain string vari-
ables. The support of integer constraints is limited since in gen-
eral integer constraints do not follow their restrictions.

Abdulla et al. developed a CEGAR framework to solve string
constraints based on flat automata [1]. Their method can handle
general string constraints which are not restricted to the straight-
line fragment and include string concatenation, equations, trans-
ducers, context-free grammars and length constraints.

The sequential composition of SSTs plays a crucial role in this
work. A sketch of the construction was first given for copyless
SSTs in Refs. [7], [9]. However, it was pointed out later that it
does not preserve the restriction of copyless SSTs. Our work is
based on the construction of the second author for bounded-copy
SSTs [4]. He formalized the construction in Isabelle/HOL and
verified its correctness. As far as we know, the only work other
than his construction that concretely gives a construction is that of
Alur and D’antoni [6], which describes a construction of the com-
position of streaming tree transducers. However, their construc-
tion is not direct in the sense that it depends on the factorization
of variable updates into atomic ones.

9. Conclusion

We have implemented a string constraint solver for straight-
line constraints involving string concatenation, functions repre-
sented by streaming string transducers, regular language mem-
bership, and length constraints. Our solver transforms atomic
constraints and regular constraints into streaming string transduc-
ers, applies the sequential composition to them, and computes the
Parikh image of the composed streaming string transducer. Our
current implementation is slow in general but fast for some spe-
cial string constraints.

Future Work Currently, our solver only handles functions
from strings to strings represented by deterministic SSTs. Since
nondeterministic SSTs are also closed under composition, we
believe that our approach can be extended for nondeterministic
SSTs. However, we have to give a concrete construction of com-
position before the extension.

Acknowledgments This work was supported by JSPS KAK-
ENHI Grant Numbers 15K00087 and 19K11899.

References

[1] Abdulla, P.A., Atig, M.F., Chen, Y.-F., Diep, B.P., Holı́k, L., Rezine,
A. and Rümmer, P.: Flatten and Conquer: A Framework for Efficient
Analysis of String Constraints, Proc. 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp.602–617
(2017).

[2] Abdulla, P.A., Atig, M.F., Chen, Y.-F., Holı́k, L., Rezine, A., Rümmer,
P. and Stenman, J.: String Constraints for Verification, Computer
Aided Verification, pp.150–166 (2014).

[3] Abdulla, P.A., Atig, M.F., Chen, Y.-F., Holı́k, L., Rezine, A., Rümmer,
P. and Stenman, J.: Norn: An SMT Solver for String Constraints,
Computer Aided Verification, pp.462–469 (2015).

[4] Akama, H.: Composition of bounded-copy streaming string transduc-
ers and its formal verification, Master’s thesis, Tokyo Institute of Tech-
nology (2019).

[5] Alur, R. and Cerný, P.: Streaming transducers for algorithmic ver-
ification of single-pass list-processing programs, Proc. 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp.599–610 (2011).

[6] Alur, R. and D’antoni, L.: Streaming tree transducers, Journal of the
ACM (JACM), Vol.64, No.5, pp.31:1–31:55 (2017).

[7] Alur, R. and Deshmukh, J.V.: Nondeterministic Streaming String
Transducers, Automata, Languages and Programming, pp.1–20
(2011).

[8] Alur, R., Filiot, E. and Trivedi, A.: Regular Transformations of Infinite
Strings, 2012 27th Annual IEEE Symposium on Logic in Computer
Science, pp.65–74 (2012).

[9] Alur, R. and Černý, P.: Expressiveness of streaming string transduc-
ers, IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science, pp.1–12 (2010).

[10] Barceló, P., Figueira, D. and Libkin, L.: Graph Logics with Rational
Relations, Logical Methods in Computer Science, Vol.9, No.3 (2013).

[11] Barrett, C., Fontaine, P. and Tinelli, C.: The SMT-LIB Standard Ver-
sion 2.0, Proc. 8th International Workshop on Satisfiability Modulo
Theories (2010).

[12] Chen, T., Hague, M., Lin, A.W., Rümmer, P. and Wu, Z.: Decision
procedures for path feasibility of string-manipulating programs with
complex operations, Proc. ACM on Programming Languages, Vol.3,
pp.49:1–49:30 (2019).

[13] Courcelle, B.: Monadic Second-Order Definable Graph Transduc-
tions: A Survey, Theoretical Computer Science, Vol.126, pp.53–75
(1994).

[14] Engelfriet, J. and Hoogeboom, H.J.: MSO Definable String Transduc-
tions and Two-way Finite-state Transducers, ACM Trans. Computa-
tional Logic, Vol.2, No.2, pp.216–254 (2001).

[15] Filiot, E., Krishna, S.N. and Trivedi, A.: First-order Definable
String Transformations, 34th International Conference on Foundation
of Software Technology and Theoretical Computer Science, Vol.29,
pp.147–159 (2014).

[16] Holı́k, L., Janků, P., Lin, A.W., Rümmer, P. and Vojnar, T.: String Con-
straints with Concatenation and Transducers Solved Efficiently, Proc.
ACM on Programming Languages, Vol.2, pp.4:1–4:32 (2017).

[17] Kagae, M. and Minamide, Y.: Equivalence Checking of Streaming
String Transducers and Its Application to Regular Expression Re-
placement, PRO, Vol.8, No.3, pp.1–10 (2015).

[18] Lin, A.W. and Barceló, P.: String solving with word equations and
transducers: towards a logic for analysing mutation XSS, Proc. 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp.123–136 (2016).

[19] Morvan, C.: On Rational Graphs, Foundations of Software Science
and Computation Structures, pp.252–266 (2000).

[20] Zheng, Y., Zhang, X. and Ganesh, V.: Z3-str: A z3-based string solver
for web application analysis, Proc. 2013 9th Joint Meeting on Foun-
dations of Software Engineering, pp.114–124 (2013).

Appendix

A.1 Test Cases in Table 2

Case 4 (ReplaceAll III).

x1 = x0.replaceAll(b, c)

x2 = x1.replaceAll(c, d)

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

· · ·
x9 = x8.replaceAll(j, k)

x0 ∈ aaba

This constraint is satisfiable because we have the following
witness.

x0 = aaba x1 = aaca x2 = aada

x3 = aaea x4 = aa f a x5 = aaga

x6 = aaha x7 = aaia x8 = aa ja

x9 = aaka

SLOTH, OSTRICH and our solver can solve this constraint.
�

Case 6 (Integer I).

x1 = x0.replaceAll(ab, c)

|x0| >= |x1| + 5

This constraint is satisfiable because we have the following
witness.

x0 = abacacbababbccbaaabbcacccabccacacabbbbbbaccb

x1 = cacacbccbccbaacbcaccccccacaccbbbbbaccb

|x0| = 44 |x1| = 38

OSTRICH cannot handle this constraint. SLOTH handles this
constraint but fails to generate a witness. �

Case 7 (Integer II).

x2 = x0.replaceAll(a, bb)

x3 = x1.replaceAll(a, bbb)

x0 ∈ a+

x1 ∈ a+

|x2| = |x3|

This constraint is satisfiable because we have the following
witness.

x0 = aaa x1 = aa

x2 = bbbbbb x3 = bbbbbb

OSTRICH cannot handle this constraint. SLOTH handles this
constraint but fails to generate a witness. �

Case 8 (Reverse I).

x1 = x0.reverse

x0 ∈ (abc)+

x1 ∈ (cba)+

|x0| = |x1|

This constraint is satisfiable because we have the following
witness.

x0 = abcx1 = cba

SLOTH cannot handle this constraint. �

Case 9 (Reverse II).

x1 = x0.reverse

x0 ∈ (abc)+

x1 ∈ (cba)+

|x0| < |x1|

This constraint is unsatisfiable. OSTRICH and SLOTH cannot
handle this constraint. �

A.2 Construction of TN
For finite sets X and Y , a function f : Y → X → N can be

considered as a |X| × |Y | matrix on N.
For f : Y → X → N and g : Z → Y → N, we define

f · g : Z → X → N as follows.

(f · g)(z)(x) =
∑
y∈Y
g(z)(y) f (y)(x)

For f1 : X → Y → N and f2 : X → Y → N, we define
f1 + f2 : X → Y → N as follows.

(f1 + f2)(x)(y) = f1(x)(y) + f2(x)(y)

For f : X → Y → N and v : X → N, we define f · v : Y → N
as follows.

f · v(y) =
∑
x∈X
v(x) f (x)(y)

We define functions ΨX : (X ∪ Γ)∗ → X → N and ΨΓ :
(X ∪ Γ)∗ → Γ→ N as follows.

ΨX(w)(x) = |w|x
ΨΓ(w)(a) = |w|a

We extend ΨX to MX,Γ → X → N and ΨΓ to MX,Γ → Γ → N
as follows.

ΨX(α)(x) = ΨX(α(x))

ΨΓ(α)(x) = ΨΓ(α(x))

Lemma 1. For any α1, α2 ∈ MX,Γ, we have the following equa-
tions.

ΨX(α1 ◦ α2) = ΨX(α1) · ΨX(α2)

ΨΓ(α1 ◦ α2) = ΨΓ(α1) · ΨX(α2) + ΨΓ(α2)

Lemma 2. For any α ∈ MX,Γ and w f ∈ (X ∪ Γ)∗, we have the
following equation.

Ψ(ε̂(α(w f))) = ΨΓ(α) · ΨX(w f) + ΨΓ(w f)

Then we construct a nondeterministic transducer TN =

(Σ, Γ → N,QA,QA
0 ,Δ

A, FA) from S = (Σ, Γ,Q, X, q0, δ, η, F),
with each component defined as follows.

QA = {q⊥} ∪ {(q,ΨX(α) · ΨX(w f)) | ∃w, q f .δ̂(q, w) = q f∧
η̂(q, w) = α ∧ F(q f) = w f }

QA
0 = {(q0, B) | (q0, B) ∈ QA}

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

FA = {q⊥}
ΔA ⊆ QA × Σ × (Γ→ N) × QA

Then QA is finite since S is bounded-copy. ΔA contains the
following transitions.

For any q f ∈ dom(F) and F(q f) = w f ,

(q f ,ΨX(w f))
ε/ΨΓ(w f)
−−−−−−→ q⊥ ∈ ΔA.

For (q, B) ∈ QA, δ(q′, σ) = q, and η(q′, σ) = α,

(q′,ΨX(α) · B)
σ/ΨΓ(α) · B
−−−−−−−−→ (q, B) ∈ ΔA.

Lemma 3. If δ̂(q, w) = q f , F(q f) = w f , and η̂(q, w) = α, then
we have the following transition in ΔA.

(q,ΨX(α) · ΨX(w f))
w/ΨΓ(α) · ΨX (w f) + ΨΓ(w f)
−−−−−−−−−−−−−−−−−−−→ q⊥

Lemma 4. If we have a transition (q, B)
w/v
−−→ q⊥ ∈ ΔA,

then there exist a finial state q f and a variable update α such
that δ̂(q, w) = q f , η̂(q, w) = α, B = ΨX(α) · ΨX(w f), and
v = ΨΓ(α) · ΨX(w f) + ΨΓ(w f) where w f = F(q f).

It is easy to prove Lemma 3 and Lemma 4 by induction on |w|.
Outline of the Proof of Theorem 1:
(1) If �S�(w) = w′, then there exists q f such that F(q f) = w f ,

δ̂(q0, w) = q f , η̂(q0, w) = α, and ε̂(α(w f)) = w′.
By Lemma 3, we have the following transition in TN.

(q0,ΨX(α) · ΨX(w f))
w/ΨΓ(α) · ΨX (w f) + ΨΓ(w f)
−−−−−−−−−−−−−−−−−−−→ q⊥

Then by Lemma 2, we have ΨΓ(α) · ΨX(w f) + ΨΓ(w f) =
ΨΓ(ε̂(α(w f))). Therefore we have the following transition.

(q0,ΨX(α) · ΨX(w f))
w/ΨΓ(w′)−−−−−−→ q⊥

(2) If (w, v) ∈ �TN�, then we have the following transition for
some B.

(q0, B)
w/v
−−→ q⊥

By Lemma 4, there exist q f and α such that δ̂(q0, w) = q f ,
η̂(q0, w) = α, and v = ΨΓ(α) ·ΨX(w f)+ΨΓ(w f) where w f = F(q f).

Let w′ = ε̂(α(w f)). By Lemma 2, we have Ψ(w′) = v. �

Qizhen Zhu received his B.Sc. degree in
computer science and technology from
Zhejiang University, China in 2016. He
is currently undertaking a master course
at Tokyo Institute of Technology. His re-
search interests include automata theory
and software verification.

Hitoshi Akama received his M.Sc. de-
gree and graduated from Tokyo Institute
of Technology in 2019. He is interested in
formal language theory and its application
to software verification.

Yasuhiko Minamide received his M.Sc.
and Ph.D. degrees from Kyoto University
in 1993 and 1997, respectively. Since
2015, he has been a professor at the De-
partment of Mathematical and Computing
Science, Tokyo Institute of Technology.
His research interests focus on software
verification and programming languages.

He is also interested in the theory and applications of automata
and formal languages. He is a member of ACM, IPSJ, and JSSST.

c© 2019 Information Processing Society of Japan

