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An Envy-free and Truthful Mechanism
for the Cake-cutting Problem
without Expansion Process with Unlocking
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Abstract: We show an input example in the cake-cutting problem which cannot be correctly solved by the expansion
process with unlocking proposed in the paper [1], [6], and give an alternative envy-free and truthful mechanism which

is not based on the expansion process with unlocking.
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1. Introduction

The problem of dividing a cake among playersin afair manner
has been widely studied since it was first defined by Steinhaus
[7]. Prcocaccia has claimed in his survey paper [5] as follows:
insight from the study of cake-cutting problem can be applied to
the allocation of computational resources, and designing cake-
cutting algorithms that are computationally efficient and immune
to manipulation is a challenge for computer scientists. Recently,
the cake-cutting problem has been studied by computer scientists,
not only from the computational complexity point of view [3], but
also from the game theoretical point of view [2].

Alijani, Farhadi, Ghodsi, Seddighin, and Tgjik considered the
following cake-cutting problem from the game theoretical point
of view [1], [6]: Given a divisible heterogeneous cake C =
(0,1] = {x] 0 < x < 1}, ndtrategic playersN = {1, 2,...,n} with
vauation interval C; = (;,8] = {X|0<a; < X< B <1} cCof
each player i € N, find a mechanism (that is, a polynomial time
algorithm) for dividing the cake into pieces and all ocating pieces
of the cake to n players to meet the following conditions (Fig.1):
(i) the mechanism is envy-free, i.e, each player (weakly)

prefers hig/her alocated pieces to any other player’'s allo-
cated pieces,

(i) the mechanism isstrategy-proof (truthful), i.e., each player's
dominant strategy is to reveal his/her own true vauation in-
terval over the cake (i.e., making aliewill not lead to a better
result), and

(iii) the number of cuts made on the cakeis small.

They proposed an expansion process with unlocking and us-
ing it they gave a mechanism for the above cake-cutting problem
[1], [6]. They claimed that their mechanism satisfies the above
three conditions, i.e., it is envy-free, truthful and the the number
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Fig. 1 An input example for the cake-cutting problem (n = 5). player 1
is alocated (0,0.06] U (0.86, 1], player 2 is alocated (0.06, 0.26],
player 3 is alocated (0.26,0.46], player 4 is alocated (0.46, 0.66]
and player 5 is allocated (0.66, 0.86].

of cuts made on the cakeis at most 2(n — 1).

In this paper, wefirst notethat, for theinput examplein Fig.1 of
the above cake-cutting problem, the mechanism proposed based
on the expansion process with unlocking in the paper [1], [6] is
not envy-free, since, by their mechanism, first player 2 is allo-
cated (0.08,0.28], player 3 is allocated (0.28,0.48], player 4 is
allocated (0.48,0.68], then player 5 is allocated (0.73, 0.86], and
finally player lisallocated (0, 0.08] U(0.68, 0.73]U(0.86, 1] (thus,
player 5will envy players2,3 and 4). We give an dternative envy-
free and truthful mechanism for the above cake-cutting problem
which is not based on the expansion process with unlocking.

2. Preéliminaries

In this section, we give notations which will be used in this
paper. They are alittle different from those used in the paper [6].

We denote by Cy the set of valuation intervals of all the players
N,i.e, Cn ={Ci |i € N}. Weassumethat [ Jc.ce, Ci = C.

Definition 2.1 A piece of the cake C is a separated interval of
C, and a set of pieces of C isaset of digjoint pieces of C. Thus,

Ai = 1{AL A, ... A} isaset of pieces of C if and only if each
A (j =12,...,k)isapieceof C and any two distinct A;; and
A, (L<j<j <k)aedgoint (i.e, A, N A, =0).

Definition 2.2 Let Aj = {A, A, ..., Ay, } be aset of pieces of
the cake C for eachi € N, and let Aj = A, UA, U -~ UA . A
union A; of mutual digjoint setsAil,A.-Z,...,A;K iscaled adirect
sumofAil,A.-z,...,AiK and isdenoted by A; = A.-1+A4-2+---+Aiki.
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Fig. 2 Anallocated set of piecesto player 5is{As,, As,} (n = 6). Size(As) =
size(Ag,) + Size(Ps,) + Size(Ag,) for As = As, + As, + As,.

Then Ay = {Ag, Ao, ..., An} iscaled an allocation of the cake
C to n players N if any two distinct Ay and A; (1 <i < j < n)
aredigointand Yicn A = A+ Az + - + Ay = C. We consider
Ai = AL A A @SOA = T A = A A+ A
is an alocated set of pieces of the cake C to player i in Ay =
(A1, Aa, ..., An} (Fig.2).

Definition 2.3 For an interval X = (X', X”] of C, the size of X,
denoted by size(X), isdefined by x” — x'.

For a direct sum X = X3 + Xp + -+ + X¢ (@ union X =
X1 U Xo U -+ U X of mutual digjoint intervals X; of C), the size
of X, denoted by size(X), is defined by the total sum of size(X;)
(Fig.2), i.e, size(X) = size(Xy) + size(Xp) + - - - + size(Xy).

Definition 2.4 Let X = {Xy, Xz, ..., Xk} be a set of pieces of C
andlet X = Xy + Xo +--- + X. Foreachi € N and valuation
interval C; of player i, the utility of X for player i, denoted by
uti(X), isthe total sum of size(X; N C;) for al pieces X; € X, i.e.,

ut(X) = Size(Xe N C) + - - - + sze(Xe N C). 1)

We aso write utj(X) as utj(X) = size(X; N C;) + size(Xo N Cj) +
-+ 576X NG .

Definition 25 Let Ay = {A1, Ay, ..., An} be an alocation of

the cake C to nplayers N and let A = {A, A, ..., A, } beaset
of pieces of C allocated to player i € N. If
uti(Aj) > Uti(ﬂj) fordl j e N—{i}, 2

then the allocated set of pieces A, is called envy-free for player i.
If, for every player i € N, the alocated set of pieces A; is envy-
freefor player i, then the alocation Ay = {A1, Ao, ..., An} Of the
cakeC tonplayers N is called envy-free.

Definition 2.6  Let M be amechanism for the cake-cutting prob-
lem. Let Cy = {Cq,Cy, ..., Cy} bean arbitrary input to the mech-
anismM and Ay = {A1, Ao, ..., An} bean allocation of the cake
C to n players N obtained by M with A; = (A, A, ..., A} for
eachi € N. If thealocation Ay = {A1, A, ..., An} isenvy-free
then the mechanism M is called envy-free.

Now, for each player i € N, assume that only player i makes a
lieand gives afalse valuation interval C{. Thus, let

Cy(@) ={C1,Co,....,Ci_1,C,Cisa,...,Cp} (3)
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be an input to the mechanism M and let an alocation of the cake
C to n players N obtained by M be
ANG) ={ALAS AL LALAL AL (4

i+1°

with A] = {A’h,A]z,...,A]k,_}for each j € N. The utilities of A;
and A for player i are J

ki K
Wi(A) = ) Sze(A, N C). Wi(A) = ) size(A, N Ci). (5)
j=1 =1

If uti(A;) > uti(A), i.e, if the utility of player i (utj(A[)), even
if player i (and only player i) makes a lie on the valuation inter-
val and gives any C/, will not become better than the utility of
player i (utj(A;)) when player i gives true valuation interval C;,
then player i does not want to tell alie and player i reports the
true valuation interval C; to the mechanism M.

For each player i € N, if this holds, then no player wants to
tell alieand al players want to report true valuation intervals to
the mechanism M. In this case, the mechanism M is called truth-
ful and an allocation Ay = {A1, Ao, ..., An) of thecakeC ton
players N obtained by the mechanism M is also called truthful.

Definition 2.7 For an interval X = (X, Xx"] of C, let N(X) be
the set of playersin N whose valuation intervals are entirely con-
tained in X and let Cn(x) be the set of valuation intervals in Cy
which are entirely contained in X. Let ny be the cardinality of
N(X) (Cnex), i.€., nx isthe number of playersin N(X) (the num-
ber of valuation intervals of Cy in Cn(x)). Thus,

N(X) = {ie N|Ci c X,Cj € C\}, (6)
Cnexy = {Ci € By |1 e N(X)}, (7)
nx = IN(X)| = [Cnexl- (8)

Then the density of theinterval X, denoted by p(X), is defined by

_sizg(X) X' =X
[Cnexl nx

p(X)

©)

Definition 2.8 For aninterval X = (X, X’] of C, if there are val-
uation intervals C; = («;,8i] and Cj = (aj,,Bj] in GN(X) = {Cy €
Cn | k € N(X)} with X' = o; and X" = Bj, then X = (X', X"] is
called aminimal interval with respect to density (there are at most
n? minimal intervals with respect to density).

Definition 2.9 For asubset S € N of players, let Cs be the set
of valuation intervals of playersin S, i.e.,

(‘35 = {Ci = (a/i,ﬁi] € CN | i€ S}. (10)
Let C(S) betheinterval of C defined by

C(S=( mn a«a, ma
Ci=(i.pileCs Ci=(ai,fileCs

B (11)

Then the density of Cs, denoted by o(Cs), is defined by

size(C(S
o(Cs) = M (12)
S|
Note that, for an interval X = C(S) of C, we have
2
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Fig. 3 Example of the valuation intervals C;,Co, ..., Cs. The minimum
density is pmin = 0.15 and the intervals of minimum density are
C;,C5,C3,C4,Cs. Among them, C; and C, are the minimal inter-
vals of minimum density and C4 and Cs are the maximal interval's of
minimum density and interval Cg isof density p(Cg) = % = 0.1666...

ICneol = IN(X) > [S] = [Cs|,  size(C(S)) = size(X), (13)

size(C(S)) size(C(9))
p(X) = p(C(S)) = INCO) S
snceSCN(X)={ieN|Cj € X}andCs C eN(x) ={Ci e Cn |
i € N(X)}. In this paper, we are mainly interested in intervals of
minimum density among all intervalsin C.

<o(Cs) = (24)

Definition 2.10 Let X be the set of al nonempty intervals in
C. Leét pmin be the minimum density among the densities of all
intervalsin C (Fig.3). Thus,

Pmin = Qllj? p(X). (15)
Let Xmin be the set of all intervalsin C of minimum density, i.e.,
Xmin = {X € X | p(X) = Pmin}- (16)

Aninterval X € Xin iscaled aninterval of minimumdensity. An
interval X of minimum density iscalled aminimal interval of min-
imum density if X contains no interval in X properly. Simlarly,
an interval X of minimum density is called a maximal interval of
minimum density if no interval in X, contains X properly.

(Notethat, an interval of minimum density isawaysaminimal
interval with respect to density.)

3. Structuresof Intervalsof Minimum Density
In this section, we discuss structures of intervals of minimum

density which play a central role in our mechanism.

Lemma3.l LetX = (x,x’] and X; = (x},x’j’] be two distinct

minimal intervalsin C with respect to density. Let
XnXp#0, X-X#0, Xj—X#0,
p(Xi) = p(X)),  p(% N Xj) = p(X)).

Then p(X; U X)) < p(X)).

Proof: By symmetry we can assume x| < X| < X’ < X/’ since
XinX;#0,% —Xj#0,and X; — X # 0 (Fig.4). Let
Y=XnXj=W.y"], Z=XUX;=(Z,7'].
Thus,y’ = X, ¥’ =x', Z =X, z’ =X/ By Definition 2.7,
N(Xi) = {ke N|Cy C X}, Cnx) ={Ck € Cn | ke N(Xi)},

N(Xj) = (ke N[ Cx S Xj}. Cnx;) = {Ck € Cn | ke N(X))},
N(Y) ={keN|CkCY]}, GN(y) ={CreCnlke N(Y)},
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Fig.4 Twointervals X; = (%, x’] and X; = (x’j,x}’] in Proof of 3.1. A val-
uation interval Cy = (ax, Bk] isnotin X nor X;, butinZ = X; U X;.

N(Z) =tke N|Cc C Z}, Cng =1{CkeCnlkeN(2)},
Eney = ey N Cexy)-
Let
Ny, = INCX)I, Ny, = INCX))IL ny = IN(Y)L, nz = IN(Z)],
and let

Cw = Cnz) — (Cnex) Y Cnexp))s Nw = [Cwil.

Note that a valuation interval Cy = (ax,B«] € Cn With X < ax <
X']- and Xi” < Pk < Xﬁ’ isin Gy = GN(Z) - (GN(Xi) U eN(X,)) (Fig.4).
Then, by the inclusion-exclusion principle, we have

Nz = Ny, + Nx, — Ny + Nw.
Thus, the density p(Z) of interval Z = X U X| in Definition 2.7 is

size7) X =%
nz - Ny; +I'1>(J — Ny + Nw
’ 4 ’! 4 4 4
X=X+ X =X = (X = X))

Ny, + n)(j — Ny + Ny

p(2) =

We first discuss the case of ny > 0. Since ny > 0 and by the
definition of density of an interval in Definition 2.7, we have

nx p(Xi) = X" =X, nx p(X)) =X =X, nvp(Y)=x"-x,
X=X+ X =X = (X~ x’j)

7) = ] ]
p( ) nx|+nxj—ny+nw
X/j/ — X] + Xi’/ — X]/ — (Xi// — X/])
- Ny + nxl - Ny
ik p(X5) + nx; p(X)) =Ny p(Y)
- Ny, + f'])(J — Ny '
Note that,

nx (X)) + ny, p(X;) = ny p(Y)
Ny, + I'])(J - Ny

p(2) =

if and only if ny = 0. Since p(Y) = p(X N X;) = p(X;), we have
Ny, i)+ nx. o(X:) = n Y
o(2) < xp(X.)n x, P(Xj) — Ny p(Y)
X+ Nx; — Ny
< ™ p(Xi) + nx; (X)) = ny p(X;)
- Ny, + nxj — Ny '

Furthermore, since p(X;) > p(X;) and ny, > ny, we have
nx, p(Xi) + Ny, p(X;) — ny p(X;)
Ny, + I’l)(J - Ny
nx, p(Xi) + (N, — ny) p(Xj)
Ny, + rl)(j — Ny
- (nx, + Nx, = ny) p(X;)
- Ny, + rb(J - Ny

p(2) <

= p(X).
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The case of ny = 0 can be discussed similarly.
By the argument above, we have p(Z) = p(X) if and only if
nw =0, ny > 0, and p(Y) = p(Xj) = p(X). ]

By Lemma 3.1, we have the following corollaries.

Collorary 3.1 Let X = (x,x'] and X; = (x’j,x]’] be two dis-
tinct intervalsin C of minimum density. If X; N X; # 0 then both
Y =X N Xjand Z = X; U X are of minimum density.

Proof: If Xj = Xj =0 (i.e, Xi € Xj), thenclearly Y = X and
Z = X; are both of minimum density. Similarly, if X; — X = 0,
(i,e, X; € X), then clearly both Y = Xj and Z = X are
of minimum density. Thus, we can assume X; — X; # 0 and
Xj = Xi # 0. Since p(Xi) = p(Xj) = pmin, We have p(Xi) > p(X;),
p(Xi N X;) = p(X;) and p(Z) < pmin by Lemma3.1. Itisclear that
p(Z) = pmin and we have p(Z) = pmin.

Furthermore, by the argument in the proof of Lemma 3.1,
o(Z2) = p(X) = pmn if and only if ny = 0, ny > 0, and
p(Y) = p(Xj) = p(X). Thus, we have p(Y) = pmin. o

Collorary 3.2 If Xi = (X, x] and Xj = (], x{'] aretwo distinct

minimal intervals of minimum density, then X; N X; = 0.
Similarly, if X = (x,x’] and X; = (x’j,xg/] are two distinct

maximal intervals of minimum density, then X; N X; = 0.

4. Our Mechanism

We give abrief outline of our mechanism. Wefirst cut the cake
C = (0, 1] at both endpoints of each maximal interval of mini-
mum density. By Corollary 3.2, two distinct maximal intervals
of minimum density are digoint and we can cut the cake at both
endpoints of each maximal interval of minimum density, inde-
pendently. By these cuts, we can reduce the original cake-cutting
problem into two types of cake-cutting subproblems (Fig.5):

(i) the cake-cutting problem within each maximal interval X =
(%, ] of minimum density (which consists of the players
whose valuation intervalsin X;), and

(ii) the cake-cutting problem with all valuation intervals ob-
tained by deleting al the valuation intervals within all the
maximal interval of minimum density.

Note that the cake-cutting problem of type (i) is amost the
same as the origina cake-cutting problem. On the other hand,
the cake-cutting problem of type (ii) is different from the original
cake-cutting problem, because the resulting cake becomes a set
of two or more digoint intervals and aresulting valuation interval
may also become a set of two or more digjoint intervals. However,
the cake-cutting problem of type (ii) has a nice property.

Lemma4.l For two distinct intervals X = (x/,x’] and X; =
(X, x{'1, let Xi 0 Xj # 0 and X; — Xj # 0. Furthermore, let
Z=XiUXj, GN(Z—X]')={Ck—Xj| CyCZ CyeCy).

Suppose that p(Xi) > p(X;) and p(Z) > p(X;). Then, by cut-
ting the cake at both endpoints of X; and deleting X;, Z becomes
Z—Xj =X = X ﬂXj and@N(z) ={Cx € Cn | Ck C Z} becomes
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Fig.5 The cake-cutting problem can be reduced into two types of cake-
cutting subproblems by cutting the cake C = (0, 1] at both endpoints
of each maximal interval of minimum density: (i) one within each
maximal interval of minimum density (players S; = {1, 4} and play-
ersS; = {2,3,5}]), and (ii) one with al valuation intervals obtained
by deleting al the valuation intervals within all maximal intervals of
minimum density (players R = {6}).

Cn(Z-Xj) ={C—Xj| CkeCn, CkCZ C—X; =0} (17)
and thedensity p(Z) intheoriginal cake-cutting problem becomes

from
B _ size(Z)
o(Z) = pc(2) = TeFa)]

to the density pc_x;(Z — X;) in the cake-cutting problem with the
cake C — X, players N — N(X;) and valuation intervals

Cn(C - X)) ={Ck = Xj| CxeCn, Ck—Xj + 0} (18)
such that

SiZG(Z—Xj)

X (Z=Xj) = —5—<~ = p(X)). 19
pc-x i) CnZ = X)) p(Xj) (19
Furthermore, if p(Z) > p(X;) then pc_x,(Z = Xj) > p(X;).

Proof: Wedividethe caseinto two subcases: (i) when X;—X; # 0
and (ii) when X; - X = 0.
(i) when Xj — X; # 0: By symmetry we can assume

4 / /7’ /!
X <X <X <X

since X, N X; # 0, X — X; # 0, and X; — X; # 0 (Fig.4).
Letnz x; = [CN(Z=X))l, nz = [Cneg)l @nd ny; = |Cnxp| by Egs.
(6), (7) and (8). Then

Nz_x; =Nz —Nx; = (0
Sze(Z - X)) = size(X) — size(Xi N X)) = Xj = X
and, by p(Z) > p(X;), we have

Sze(Z - X;) _ X=X

x(Z-Xj) =
pPc X,( 1) N x, N x,
X=X -0 =X)  p(2) - (X))
Nz — Ny, Nz — Ny,
(nz = nx;) p(Xj)
> ———————— = p(X;).
nz — nx, o( J)

Note that, pc_x, (Z — Xj) = p(X;j) if and only if p(Z) = p(X)).
Thus, if p(2) > p(X;) then pc_x,(Z = Xj) > p(X;).
(iywhen Xj—X; =0 (i.e., X; ¢ X and Z = X;): we can assume

/ / !/ ’/ / / ’! ’
X <xi<x{ <x' or X <x<x/ <X
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by symmetry since X N Xj # 0, X; = Xj # 0, X; — X; = 0. Thus,
Z-Xj = X=X, Siz&(Z-X;) = X'=X—(X/=X]), Nz_x; = Nx,—Nx;,

and, by p(Xi) = p(Z) = p(X;), we have

Xi// _ XI/ _ (X/-’ _ X{)
pox(@-X) = L
Z—Xj
X =X =04 = X))y p(X) = nx p(X))
r])(| — n)(J Ny, — nx]
(nx = nx;) p(X;)
> DX px).
Ny, — nxi

Note, pc_x,(Z - Xj) = p(X;) if and only if p(X;) = p(Z) = p(X)).
By the argument above, we havethefollowing: If p(Z) > p(X;)
then pc-x; (Z = X;) > p(X;). m]

Using Lemma 4.1 repeatedly we have the following corollary.

Collorary 4.1 For the cake C = (0,1], n players N =

{1,2,...,n}, Cy with valuation interval C; = («,Bi] of each

player i € N and UL, Ci = C, let H; = (h},hy], Hy =

(h}, 151, ..., He = (h,h] beall the maximal intervals of mini-

mum density. Then by cutting the cake at both endpoints of each

H; = (h}, h;] we can reduce the original cake-cutting problem

into two types of cake-cutting subproblems:

(i) thecake-cutting problem within each maximal interval H, =
(h,,, hy’) of minimum density (which consists of the players
N(H,) and valuationintervals Cne,) = {Ck € Cn | Ck € He},

(i) thecake-cutting problem with cake D = C—Z'g=1 H,, players
P =N- ¥/, N(H,) and valuation intervals

L L
Dp={Di =Ci - Z He | CieCn - ZGN(H[)}-
=1 (=1
Furthermore, the minimum density of intervals in each cake-
cutting problem of type (i) is equal to pmin.
On the other hand, the minimum density of intervals in the
cake-cutting problem of type (ii) is greater than pmin.

We denote, by Procedure CutCake(P, D, D), amethod for solv-
ing the cake-cutting problem with the cake D which is a single
interval, players P and valuation intervals Dp (where each val-
uation interval is a single interval in D). Thus, the original the
cake-cutting problem with the cake C, players N and valuationin-
tervals Cy can be solved by setting P = N, D = C and Dp = Gy,
and calling Procedure CutCake(N, C, C©).

The cake-cutting problem of type (i) can be also solved by this
procedure. However, we use a dlightly different method for solv-
ing the cake-cutting problem of type (i) with the cake H = Hy,
players R = N(H;) = {i € N | C; ¢ H,} and valuation in-
tervals DR = GN(H[) = {Ci € GN | i € N(H[)}, since H is
a maximal interval of minimum density. We call it Procedure
CutMaxInterval (R, H, Dg).

Similarly, we denote, by Procedure CutMinInterval (S, X, Ds),
amethod for solving the cake-cutting problem of type (i) where
the cake isaminimal interval X of minimum density in H = Hy,
players S = N(X) = {i € N(H) | C; € X} and valuation intervals
Ds = Cnex) = {Ci € Cnmy |1 € S).
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On the other hand, as mentioned before, the cake-cutting prob-
lem of type (ii) with the cake D = C — 3\, H,, players P =
N-X% N(H,) and valuationintervals Dp = {D; = Ci— X%, H, |
Ci € Cn — Xr_1 Cney)} may be different from the original cake-
cutting problem with the cake C, players N and valuation inter-
vals Cy, becausethe cake D = C—Z'g;l H, may be aset of two or
more digoint intervals and valuation interval D; € Dp may be so.
However, we can consider the cake-cutting problem of type (ii) to
be of almost the same type as the original cake-cutting problem
by contraction of Hy, Hp, ..., H,.

By contraction of H, = (I, h/] which is deleted from the cake
C (H, becomes an empty piece in the remaining cake), we vir-
tually consider two endpoints hy, h? of H, to be the same point
he = h, = h. Thus, we can consider thecake D = C - 37, H,
asasingleinterval, and also valuation interval D; € Dp asasin-
gleinterval in D. Note that, before the contraction and the after
the contraction, thesize of aninterval inthecake D = C- Y5, H,
and valuation intervals D; € Dp remains the same, since the con-
tracted intervals can be considered of size 0.

Thus, by contraction, we can solve the cake-cutting prob-
lem of type (i) with the cake D = C — 3\, H,, players P =
N-X% N(H,) and valuationintervals Dp = {D; = Ci— X5, H, |
Ci € Cn — Y1 Cngy) in the same way as the original cake-
cutting problem. Of course, in afinal output, all contracted point
h, should be replaced by an empty cake H, = (hy, h}'], because
H, = (h}, hy] will be alocated to the playersin N(H,). We call
this operation as inverse contraction of Hy.

Thus, we can describe a method for solving the cake-cutting
problem of type (i) with the cake D = C — ¥\, H,, play-
esP = N - Y5, N(H,) and vauation intervals Dp = {D; =
Ci—XF1H, ICi€Cn— Xt Cnny) asfollows:

(@ First perform contraction of al H, = (h,hy) (£ =
12,...,L). Let D', D}, be obtained from D, Dp by per-
forming contraction of al H, = (h;, h;).

(b) Thenrecursively call CutCake(P, D', Dp,).

(c) Finally perform inverse contraction of all H, = (h}, h}).

We will give detailed descriptions of Procedures
CutCake(P, D, Dp) (for the cake D, players P and valuation
intervals Dp), CutMaxinterval(R, H, Dg) (for the cake H of
maximal interval of minimum density, players R and valuation
intervals Dr), and CutMininterval(S, X, Ds) (for the cake X of
minimal interval of minimum density, players S and valuation
intervals Dg) later. By using them, we can write our mechanism.

Mechanism 4.1 Our cake-cutting mechanism.
A cakeC = (0,1], nplayersN = {1,2,...,n}, and
valuation intervals Gy with valuation inteval
Ci = (i, pi] of eachplayeri e Nand U, Ci = C.
Output: Allocation Ay = {A1, A», ..., An} to players N.
Algorithm {
for eachi e Ndo a = «a;; by = Bi; D = (&, bi];
P=N;D=C,; Dp =Cy;
CutCake(P, D, Dp);

Input:
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Procedure4.1 CutCake(P, D, Dp) {

Find al the maximal intervals of minimum density
in the cake-cutting problem with cake D, players P
and valuation intervals Dp;
Let Hy = (b, 0], Ho = (h), Y], ..., Ho = (h{,h]
be all the maximal intervals of minimum density;
//Hi, Ho, .o, Hy. are mutually digoint by Corollary 3.2
for £=1to Ldo
cut the cake at both endpoints hy, by’ of H,;
Re={ie P|Di CH¢}; Dr ={Di € Dp|iecR};
CutMaxInterval(R;, H¢, DR, );
for £=1to Ldo
P=P-R; D=D-H;
if P#0 then
D=0
for each Dj € Dp withi € Pdo
Di =Dj = (Hi+ Hz+--- + H)); D =D +{Di};
Perform contraction of all Hy, Hp, ..., Hy;
Let D, D become D', Dy, after contraction;
CutCake(P, D", Dp);
Perform inverse contraction of all Hy, Ho, ..., Hi;

Procedure4.2 CutMaxinterval(R, H, DR) {
Let Xg = (X[, x{], X2 = (%5, X5]...., Xe = (X, X¢
be al the minimal intervals of density pmin in H;
/] X1, Xa, ..., Xk are mutually digjoint by Corollary 3.2
for k=1to Kdo
cut the cake at both endpoints x;, X of Xy;
Sk =1{i €e R| Dj € X}; Ds, ={Dj € Dri € Sk}
CutMinlnterval (Sk, Xk, Ds,);
for k=1to Kdo
R=R-Sy; H=H - X;
if R+ 0then
D =0;
for each Dj € Dgrwithi € Rdo
Di=Di -~ (X1 + X2+ -+ Xk); D=D+{Dy};
Perform contraction of al Xy, Xo, ..., Xk;
Let H, D become H’, D, after contraction;
CutMaxInterval (R, H’, D);
Perform inverse contraction of all Xy, Xo, ..., Xk;
}

To describe Procedure CutMininterval (S, F, Ds), we need
some definitions.

Definition 4.1 Let X = (X, X’] be aminimal interval of mini-
mum density pmin. A minimal interval Y = (y’, y”’] with respect to
density which is properly contained in X (i.e., Y c X) iscalled a
separableinterval of X, if size(Y) islessthan (ny + 1) pmin, where
ny isthe number of players whose valuation intervals are entirely
contained in 'Y (Fig.6).

If thereis no separableinterval of X = (X, x”], then Xiscalled
nonseparable.

Note that, since X is a minimal interval of minimum density,
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Fig.6 PlayersN = {1,2,..., 10} and their valuation intervals C; = (0, 1],
C, = (0.01,0.24], C3 = (0.02,0.25], C4 = (0.05,0.34], Cs =
(0.28,0.52], Cs = (0.29,0.59], C; = (0.3,0.65], Cg = (0.32,0.77],
Cy = (0.45,0.85], Cyp = (0.7,1]. Inthiscase, X = (0,1] isamin-
imal interval of minimum density pmin = 0.1, and there are several
separable intervals of X = (0,1] such as (0.01,0.27], (0.01, 0.25],
(0.01,0.59], (0.01,1], (0.28,0.65], (0.28,0.77], (0.28,0.85]. The
largest left endpoint y* of the separable intervals in X is 0.28 and
the set of separable intervals with the largest left endpoint y* = 0.28
is{(0.28,0.65], (0.28,0.77], (0.28,0.85]}.

size(Y) for each Y c X is always larger than ny pmin by the defi-
nition of aminimal interval of minimum density.

We first consider the case when aminimal interval X of mini-
mum density is nonseparable. This has a nice property.

Lemma4.2 Let X = (X,Xx”] be a nonseparable minimal in-
terval of minimum density pmin. For simplicity, we assume
X =(0,1], N(X) = N, Cnp = Cn. Let 1} = ((j — Domin, jomin]
foreach j € N, and let Iy = {l1,12,...,1n}. Let G = (Cn,In, E)
be a bipartite graph with vertex set Cy + Jy and edge set E where
(Gi, 1) e Eifand only if I; € C;. Then G has aperfect matching
M = {(Ci, I@) | i € N} € E (risapermutation on N).

Lemma 4.2 can be proved by Hall’s Theorem [4]: if C;, U
Ci, U --- U G, contains ¢ intervals 1, 1,,...,1;, and £ > iy
for al subsets {Ci,,Ci,,...,C;,} € Cn, then the bipartite graph
G = (Cn, In, E) has aperfect matching.

Lemma 4.2 can be aso proved by using the expansion process
with unlocking proposed in the paper [1], [6].

Let M = {(Ci, l.) | i € N} be a perfect matching of the bi-
partite graph G = (Cn, In, E) defined in Lemma 4.2. Then we
can alocate A = l.5 < Cj of the cake X = (0,1] to player
i € N. Since a perfect matching can be obtained in polynomial
time of n, we call this Procedure Allocatel nterval (N(X), X, Cnx))
and will use in Procedure CutMininterval (N(X), X, Cn(x))-

Next we consider the case when the cake X = (X', X’] isamin-
imal interval of minimum density and has a separable interval.

Let X = (X,x”’] be aminima interval of minimum density
Pmin- Let Y be the set of separableintervalsin X and let

= max . 20
Y Y=(y'.y"1€Y Y (20)

That is, y* isthe largest left endpoint of the separableintervalsin
X. Let
Yy ={Y=0"y"1€¥1y =y} (21)
That is, Y, isthe set of separable intervalsin X whose left end-
points are y* (Fig.6).
For eachinterva Y = (v, y”] of X, let

¥(Y) = siz&(Y) — Ny prmin. (22)

If Y = (v, y”’] is aseparable interval of the minimal interval X
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of minimum density, then Y is a minimal interval with respect to
density and

Ny Pmin < SIZ&(Y) < (Ny + 1) pmin (23)

and we have
0 < ¥(Y) < pmin. (24)

Let y* be the minimum y(Y) among the separable intervals Y =
(y*, y”'] with the largest left endpoint y*, i.e.,

Y =gmin y(Y). (25)
Clearly, by Egs. (24), (25),
0<% < pmin- (26)

Let Z, be the set of right endpoints of the separable intervals
whose |eft endpoints are y*, i.e.,

Zy =" Y=yl €Yyl (27)

Let %Z: be the set of separable intervals Y = (y*, y”] in Y,- with
y(Y)=v7" e,

Y=Y =@y €Yy 1Y) =), (28)
Let Z;f be the set of right endpoints of the separable intervalsin
Y and J be the cardinality of 2", i.e.,
Zp =W 1YY=y ey I=1Z71 (29
Let

2. =\Z.2,....2)), Z<Z<--<Z (30)

Y

For simplicity, we consider

Z=y"+y. Yo=(@". 7] (31)

Furthermore, if z; < x” then we consider z;,; = X" and Yj,1 =
(v, z,,]1 = (", X"]. Let, foreachk = 1,2,...,J,

Yie= ("%l (32)

In the example of Fig.6, Z, = {0.65,0.77,0.85}, y;ﬁ =
{(0.28,0.65], (0.28,0.85]}, Z;f = {065,085}, J =2, Z =
0.65 <z = 0.85.

Then we have the following lemma and corollary.

Lemma4.3 LetX = (X,x’] beaminimal interval of minimum
density pmin inthe cake C. Let Y = (y*, Z] be an interval of X
such that z = B; for some C; = (ai, Bi] € Cn. Then y(Y) = y* for
zez) andy(Y) >y forzg ) ie,

= ¥y (ze2))

Proof: By the definition of y(Y) of Y = (y*, 7 in Eq.(22),
Y(Y) = size(Y) = Nyppin = Z— y* = NyPmin.

Itis clear that if z e Z). then y(Y) = y* by the definitions of 7.
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and ZZ: . Therefore, we can assume z ¢ Z;/f below.
We first consider the case when Y = (y*, Z] is not a separable
interval. Thus, size(Y) > (ny + 1) pmin and by Eq. (26),

Y(Y) = size(Y) - Nypmin = pmin > ¥"

We next consider the case when Y = (y*, 7] is a separable in-
terval. Thus, Nnypmin < Size(Y) < (nNy + 1)pmin. By the definition
of 20 ={y” | Y =(y, y’] € Y}.} and Eq. (25), we have

YY) = size(Y) - nypmin > "

sincez¢ Z;:. u]

Collorary 4.2 Let X = (X, x”] be aminimal interval of mini-
mum density pmin inthe cake C. Let Y = (y*, Z] be an interval of
Xsuchthat z; < z< 7, for some Yy = (y*, ] € (Y = (y", Z] |
j =0,1,...,J} and that z is aright endpoint of some valuation
interval Ci = (@;.Bi] € Cn. Then z—z = size(Y) - size(Yy) =
(y(Y) = ¥(Y)) + pmin(Ny = Ny,) > pmin(Ny = ny,) by ¥(Yi) = "
Let X = (X, X”] beaminimal interval of minimum density pmin
inthecakeC and let S = N(X). Foreach j = 1,2,...,J, let
Zi = (Z1. 7).
Ds@z) = Di€DsIDic (', Z1.Di € (v, Z 41}, (34)
S(ZJ) = {l €S | D; DS(Z])}-
Note that
Ds@z) ={Di € Ds I Di € (v, 7]} = {Di € Ds | Di € (v, Z_4]}-
Furthermore, foreach j = 1,2,...,J, let
‘DIS(Z,») ={D{ =D - (v, z;,1] | Di € Dzl (35

We also consider the remaining cake-cutting problem after
deletion of the interval (z;, z5]. Note that (z, z}] = Z1 + Z, +
<+ Zyand S(Z1) + S(Z2) + -+ - + S(Z3) = S((7, Z5]). Let

§" = S-S((z. %)), (36)
D’ =D-(z, 7). (37)
Ds = {Dj | Df = Di - (4. ].Di € Ds. i £ (4", 7]1.(38)

Similarly, let D and Dy, be obtained from D’ and Ds, by per-
forming contraction of all the 2y, Z, ..., Z;.

Thus, we reduce the remaining cake-cutting problem with the
cake D', players S’ and valuation intervals Ds, by performing
contraction of all the Zy, 7, ..., Z; to the cake-cutting problem
with the cake D, players S” and valuation intervals Dy, .

Then the following lemmas hold.

Lemma4.4 Eachinterval Zj = (z;_l, ZJ.‘] (j=212..., J)isa
minimal interval with minimum density p/.. . = pmin for the cake-
cutting problem with the cake Z;, players S(Z;) = {i € S| D; €
Ds(z)}, vauation intervals D/S(Z,) in Eq.(34) and the density p’.
Similarly, if we proform contraction of al the Z;, 25, ...,2Z;,
then the interval D" obtained from D’ = D - (z,Z)] in Eq.(37)
isalso aminimal interval with minimum density o = pmin for
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the cake-cutting problem with the cake D”, players S’ in Eq.(36),
valuation intervals Dg, obtained from Ds, in (38) and the density

’

0.

Proof: Wefirst show that each Z;j = (Zj*_l, Z}] (j=12,...,0)is
aminimal interval with minimum density pmin.
Itisclear that p’(Z;) = pmin, SiNCE

Size((y". Z]) = pminN:. 21 + 7"
size((y". Z_1]) = pminNgr. z ) + 7"
Nz, = Ny, z1 = N, 7,1
size(Zj) = size((y", Z]) - size(y”, Z_41)

Prin(Nye, 2 = N, z_,1) = Pminz; -

Let Z = (Z,Z’] be aproper subinterval of Z; (i.e., Z c Z;) such
that Z is z;_l or a left endpoint of some valuation interval and
that z” is aright endpoint of some valuation interval in D’S(ZJ). If
Z+7, then p’(Z) = p(Z) > pmin, SiINCEZ C X (Z # X) and X is
aminimal interval with minimum density pmin. Thus, we assume
Z =17 ,<7 <Zz. Now consider the intervals Yj = (v, 2]
and Yj_1 = (v, z‘}‘_l]. Thennz = Ny, — Ny, ,. By Corollary 4.2,
we have size(Z) = 2/ - ij—l > Pmin(an’ - I']YH) = Pmin Nz and
p'(2) = 3288 > pry. Thus, Z; = (z._,, ] isaminimal interval
with minimum density o/ ;. = Pmin-

Next we show that D" is also a minimal interval with mini-
mum density pmin- ©’(D”") = pmin Can be obtained in an amost
the same argument above.

Let Z = (Z, Z’] be a proper subinterval in D” (i.e., Z c D”).
Thus, Z < z or 2/ > z;. We will show that p’(Z) > pmin by
dividing into two subcases: (i) the case of Z < z; and (ii) the case
of z <Zandz’ > z.

We only discussthecase of Z < y* <z < 2" < zjin (i) (the
other cases in (i) can be discussed similarly). Since the contrac-
tionof Zy +Zo +- -+ Z3 = (Z, z5] is performed, we can consider

Z”ZZT], SiZG(Z):Z”—Z'ZZS—Z', PminN, 23] ZZT]—ZEKL.

Thus, after the contraction is performed, Z becomes Z' = Z —
(7, ] and nz: = nz — n,. z) and size(Z’) = z; — Z, we have

o SiZEZ -z
p(Z)ZﬁZZ‘I > Pmin
nZ/ nZ/
by
Sze(Z) Z)-Z+Z -7  Pminly.z)+4~Z
p(Z) = P = > Pmin-

Nz + n(y*, 7 Nz + n(_,,*, 7

We only discuss the case of z; < Z < Z, < Zz’ in (ii) (the
other cases in (ii) can be discussed similarly). By corollary 4.2
fork=J,Y;=(y", 5] and Y = (y*, 2], wehave Z' = (z;, 2'],

Siz8(Z') = 7' - z; = Siz&(Y) - Siz&(Ys) > pmin(Ny = Ny,)

/(71 sizez’ sizez
andnzfsny—nyJ.Thus,p(Z)z%zm_i%)xomm. ]

Based on Lemma 4.2 and Lemma 4.4, we can write Procedure
CutMinInterval (S, X, Ds) asfollows.
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Procedure4.3 CutMininterval(S, X, Ds) {
if X =(X,x"’]isnonseparable then
Allocatelnterval (S, X, Ds);
// thisfinds an alocation of X to players S by Lemma 4.2
else // thereisaseparableinterval in X
Findy*, ", Y}, and ). defined by
Egs. (20), (25), (28), and (29), respectively;
LetZZ: ={z,2,...,7;} and assume
=y +y <4<z <--<Zy< 231 =X}
for j=1to Jdo
Zj = (ij_l’ i;],
cut the cake at both endpoints Z .7 of Zj = (Zf-r Zj*];
let Dgz;) and D’S(ZJ) be defined in Egs. (34) and (35);
S(Zj) ={i € S| Di € Dszl;
CutMinlInterval(S(Z;), Z;, D’S(ZJ));
S’ =S-5(z.%]); D'=D-(z.];
if S”# 0then
'Ds/ =0;
for each D; € Ds withi € S’ do
D/ =Di - (7, z]; Ds = Ds + (D]}
Perform contraction of all Z3,7,,...,Z;;
Let D', Ds, become D", Dy, after contraction,
CutMininterval(S’, D", Dg,);
Perform inverse contraction of all Z1,25,...,7Z3;
}

Based on Corollary 4.1, Lemma 4.2 and Lemma 4.4, we can
show that Mechanism 4.1 correctly finds, in O(n®) time, an dlo-
cation Ay = {A1, Ay, ..., An} of the cake C to n players N with
Ai ={ALA,, .. At suchthat A = A, + A, + -+ A, €Ci
for each player i € N. Envy-freeness and truthfulness of Mecha-
nism 4.1 can be obtained by induction on the number of calls on
Procedure CutCake(P, D, Dp) by Corollary 4.1. Truthfulness of
Mechanism 4.1 can be also shown in a similar way as in papers
[2], [6]. We can show that the number of cutsis at most 2(n — 1)
inasimilar way asin paper [6].

Thus, we have the following theorem.

Theorem 4.1 Mechanism 4.1 is envy-free and truthful, and the
number of cuts made by Mechanism 4.1 on the cake is at most
2(n-1).
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