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An Envy-free and Truthful Mechanism
for the Cake-cutting Problem

without Expansion Process with Unlocking

Takao Asano1,a) Hiroyuki Umeda1,b)

Abstract: We show an input example in the cake-cutting problem which cannot be correctly solved by the expansion
process with unlocking proposed in the paper [1], [6], and give an alternative envy-free and truthful mechanism which
is not based on the expansion process with unlocking.
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1. Introduction

The problem of dividing a cake among players in a fair manner
has been widely studied since it was first defined by Steinhaus
[7]. Prcocaccia has claimed in his survey paper [5] as follows:
insight from the study of cake-cutting problem can be applied to
the allocation of computational resources, and designing cake-
cutting algorithms that are computationally efficient and immune
to manipulation is a challenge for computer scientists. Recently,
the cake-cutting problem has been studied by computer scientists,
not only from the computational complexity point of view [3], but
also from the game theoretical point of view [2].

Alijani, Farhadi, Ghodsi, Seddighin, and Tajik considered the
following cake-cutting problem from the game theoretical point
of view [1], [6]: Given a divisible heterogeneous cake C =

(0, 1] = {x | 0 < x ≤ 1}, n strategic players N = {1, 2, . . . , n} with
valuation interval Ci = (αi, βi] = {x | 0 ≤ αi < x ≤ βi ≤ 1} ⊆ C of
each player i ∈ N, find a mechanism (that is, a polynomial time
algorithm) for dividing the cake into pieces and allocating pieces
of the cake to n players to meet the following conditions (Fig.1):
(i) the mechanism is envy-free, i.e., each player (weakly)

prefers his/her allocated pieces to any other player’s allo-
cated pieces,

(ii) the mechanism is strategy-proof (truthful), i.e., each player’s
dominant strategy is to reveal his/her own true valuation in-
terval over the cake (i.e., making a lie will not lead to a better
result), and

(iii) the number of cuts made on the cake is small.
They proposed an expansion process with unlocking and us-

ing it they gave a mechanism for the above cake-cutting problem
[1], [6]. They claimed that their mechanism satisfies the above
three conditions, i.e., it is envy-free, truthful and the the number
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Fig. 1 An input example for the cake-cutting problem (n = 5). player 1
is allocated (0, 0.06] ∪ (0.86, 1], player 2 is allocated (0.06, 0.26],
player 3 is allocated (0.26, 0.46], player 4 is allocated (0.46, 0.66]
and player 5 is allocated (0.66, 0.86].

of cuts made on the cake is at most 2(n − 1).
In this paper, we first note that, for the input example in Fig.1 of

the above cake-cutting problem, the mechanism proposed based
on the expansion process with unlocking in the paper [1], [6] is
not envy-free, since, by their mechanism, first player 2 is allo-
cated (0.08, 0.28], player 3 is allocated (0.28, 0.48], player 4 is
allocated (0.48, 0.68], then player 5 is allocated (0.73, 0.86], and
finally player 1 is allocated (0, 0.08]∪(0.68, 0.73]∪(0.86, 1] (thus,
player 5 will envy players 2,3 and 4). We give an alternative envy-
free and truthful mechanism for the above cake-cutting problem
which is not based on the expansion process with unlocking.

2. Preliminaries

In this section, we give notations which will be used in this
paper. They are a little different from those used in the paper [6].

We denote by CN the set of valuation intervals of all the players
N, i.e., CN = {Ci | i ∈ N}.We assume that

⋃
Ci∈CN

Ci = C.

Definition 2.1 A piece of the cake C is a separated interval of
C, and a set of pieces of C is a set of disjoint pieces of C. Thus,
Ai = {Ai1 , Ai2 , . . . , Aiki

} is a set of pieces of C if and only if each
Aij ( j = 1, 2, . . . , ki) is a piece of C and any two distinct Aij and
Aij′ (1 ≤ j < j′ ≤ ki) are disjoint (i.e., Aij ∩ Aij′ = ∅).

Definition 2.2 Let Ai = {Ai1 , Ai2 , . . . , Aiki
} be a set of pieces of

the cake C for each i ∈ N, and let Ai = Ai1 ∪ Ai2 ∪ · · · ∪ Aiki
. A

union Ai of mutual disjoint sets Ai1 , Ai2 , . . . , Aiki
is called a direct

sum of Ai1 , Ai2 , . . . , Aiki
and is denoted by Ai = Ai1+Ai2+ · · ·+Aiki

.
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Fig. 2 An allocated set of pieces to player 5 is {A51 , A52 } (n = 6). size(A6) =
size(A61 ) + size(A62 ) + size(A63 ) for A6 = A61 + A62 + A63 .

Then AN = {A1,A2, . . . ,An} is called an allocation of the cake
C to n players N if any two distinct Ai and Aj (1 ≤ i < j ≤ n)
are disjoint and

∑
i∈N Ai = Ai + A2 + · · · + An = C. We consider

Ai = {Ai1 , Ai2 , . . . , Aiki
} (also Ai =

∑ki

j=1 Aij = Ai1 +Ai2 + · · ·+Aiki
)

is an allocated set of pieces of the cake C to player i in AN =

{A1,A2, . . . ,An} (Fig.2).

Definition 2.3 For an interval X = (x′, x′′] of C, the size of X,
denoted by size(X), is defined by x′′ − x′.

For a direct sum X = X1 + X2 + · · · + Xk (a union X =

X1 ∪ X2 ∪ · · · ∪ Xk of mutual disjoint intervals Xj of C), the size

of X, denoted by size(X), is defined by the total sum of size(Xj)
(Fig.2), i.e., size(X) = size(X1) + size(X2) + · · · + size(Xk).

Definition 2.4 Let X = {X1, X2, . . . , Xk} be a set of pieces of C

and let X = X1 + X2 + · · · + Xk. For each i ∈ N and valuation
interval Ci of player i, the utility of X for player i, denoted by
uti(X), is the total sum of size(Xj ∩Ci) for all pieces Xj ∈ X, i.e.,

uti(X) = size(X1 ∩Ci) + · · · + size(Xk ∩Ci). (1)

We also write uti(X) as uti(X) = size(X1 ∩ Ci) + size(X2 ∩ Ci) +
· · · + size(Xk ∩Ci) .

Definition 2.5 Let AN = {A1,A2, . . . ,An} be an allocation of
the cake C to n players N and let Ai = {Ai1 , Ai2 , . . . , Aiki

} be a set
of pieces of C allocated to player i ∈ N. If

uti(Ai) ≥ uti(A j) for all j ∈ N − {i}, (2)

then the allocated set of pieces Ai is called envy-free for player i.
If, for every player i ∈ N, the allocated set of pieces Ai is envy-
free for player i, then the allocation AN = {A1,A2, . . . ,An} of the
cake C to n players N is called envy-free.

Definition 2.6 LetM be a mechanism for the cake-cutting prob-
lem. Let CN = {C1,C2, . . . ,Cn} be an arbitrary input to the mech-
anism M and AN = {A1,A2, . . . ,An} be an allocation of the cake
C to n players N obtained by M with Ai = {Ai1 , Ai2 , . . . , Aiki

} for
each i ∈ N. If the allocation AN = {A1,A2, . . . ,An} is envy-free
then the mechanism M is called envy-free.

Now, for each player i ∈ N, assume that only player i makes a
lie and gives a false valuation interval C′i . Thus, let

C′N(i) = {C1,C2, . . . ,Ci−1,C
′
i ,Ci+1, . . . ,Cn} (3)

be an input to the mechanism M and let an allocation of the cake
C to n players N obtained by M be

A′N(i) = {A′1,A′2, . . . ,A′i−1,A
′
i ,A

′
i+1, . . . ,A

′
n} (4)

with A′j = {A′j1 , A′j2 , . . . , A′jk′j } for each j ∈ N. The utilities of Ai

and A′i for player i are

uti(Ai) =
ki∑

j=1

size(Aij ∩Ci), uti(A
′
i ) =

k′i∑

j=1

size(A′i j
∩Ci). (5)

If uti(Ai) ≥ uti(A′i ), i.e., if the utility of player i (uti(A′i )), even
if player i (and only player i) makes a lie on the valuation inter-
val and gives any C′i , will not become better than the utility of
player i (uti(Ai)) when player i gives true valuation interval Ci,
then player i does not want to tell a lie and player i reports the
true valuation interval Ci to the mechanism M.

For each player i ∈ N, if this holds, then no player wants to
tell a lie and all players want to report true valuation intervals to
the mechanism M. In this case, the mechanism M is called truth-

ful and an allocation AN = {A1,A2, . . . ,An} of the cake C to n

players N obtained by the mechanism M is also called truthful.

Definition 2.7 For an interval X = (x′, x′′] of C, let N(X) be
the set of players in N whose valuation intervals are entirely con-
tained in X and let CN(X) be the set of valuation intervals in CN

which are entirely contained in X. Let nX be the cardinality of
N(X) (CN(X)), i.e., nX is the number of players in N(X) (the num-
ber of valuation intervals of CN in CN(X)). Thus,

N(X) = {i ∈ N | Ci ⊆ X,Ci ∈ CN}, (6)

CN(X) = {Ci ∈ CN | i ∈ N(X)}, (7)

nX = |N(X)| = |CN(X)|. (8)

Then the density of the interval X, denoted by ρ(X), is defined by

ρ(X) =
size(X)
|CN(X)| =

x′′ − x′

nX
. (9)

Definition 2.8 For an interval X = (x′, x′′] of C, if there are val-
uation intervals Ci = (αi, βi] and C j = (α j, β j] in CN(X) = {Ck ∈
CN | k ∈ N(X)} with x′ = αi and x′′ = β j, then X = (x′, x′′] is
called a minimal interval with respect to density (there are at most
n2 minimal intervals with respect to density).

Definition 2.9 For a subset S ⊆ N of players, let CS be the set
of valuation intervals of players in S , i.e.,

CS = {Ci = (αi, βi] ∈ CN | i ∈ S }. (10)

Let C(S ) be the interval of C defined by

C(S ) = ( min
Ci=(αi , βi]∈CS

αi, max
Ci=(αi , βi]∈CS

βi] (11)

Then the density of CS , denoted by σ(CS ), is defined by

σ(CS ) =
size(C(S ))
|S | . (12)

Note that, for an interval X = C(S ) of C, we have
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Fig. 3 Example of the valuation intervals C1,C2, . . . ,C6. The minimum
density is ρmin = 0.15 and the intervals of minimum density are
C1,C2,C3,C4,C5. Among them, C1 and C2 are the minimal inter-
vals of minimum density and C4 and C5 are the maximal intervals of
minimum density and interval C6 is of density ρ(C6) = 1

6 = 0.1666...

|CN(X)| = |N(X)| ≥ |S | = |CS |, size(C(S )) = size(X), (13)

ρ(X) = ρ(C(S )) =
size(C(S ))
|N(X)| ≤ σ(CS ) =

size(C(S ))
|S | . (14)

since S ⊆ N(X) = {i ∈ N | Ci ⊆ X} and CS ⊆ CN(X) = {Ci ∈ CN |
i ∈ N(X)}. In this paper, we are mainly interested in intervals of
minimum density among all intervals in C.

Definition 2.10 Let X be the set of all nonempty intervals in
C. Let ρmin be the minimum density among the densities of all
intervals in C (Fig.3). Thus,

ρmin = min
X∈X
ρ(X). (15)

Let Xmin be the set of all intervals in C of minimum density, i.e.,

Xmin = {X ∈ X | ρ(X) = ρmin}. (16)

An interval X ∈ Xmin is called an interval of minimum density. An
interval X of minimum density is called a minimal interval of min-

imum density if X contains no interval in Xmin properly. Simlarly,
an interval X of minimum density is called a maximal interval of

minimum density if no interval in Xmin contains X properly.
(Note that, an interval of minimum density is always a minimal

interval with respect to density.)

3. Structures of Intervals of Minimum Density

In this section, we discuss structures of intervals of minimum
density which play a central role in our mechanism.

Lemma 3.1 Let Xi = (x′i , x
′′
i ] and Xj = (x′j, x

′′
j ] be two distinct

minimal intervals in C with respect to density. Let

Xi ∩ Xj � ∅, Xi − Xj � ∅, Xj − Xi � ∅,
ρ(Xi) ≥ ρ(Xj), ρ(Xi ∩ Xj) ≥ ρ(Xj).

Then ρ(Xi ∪ Xj) ≤ ρ(Xi).

Proof: By symmetry we can assume x′i < x′j < x′′i < x′′j since
Xi ∩ Xj � ∅, Xi − Xj � ∅, and Xj − Xi � ∅ (Fig.4). Let

Y = Xi ∩ Xj = (y′, y′′], Z = Xi ∪ Xj = (z′, z′′].

Thus, y′ = x′j, y
′′ = x′′i , z′ = x′i , z′′ = x′′j . By Definition 2.7,

N(Xi) = {k ∈ N | Ck ⊆ Xi}, CN(Xi) = {Ck ∈ CN | k ∈ N(Xi)},

N(Xj) = {k ∈ N | Ck ⊆ Xj}, CN(Xj) = {Ck ∈ CN | k ∈ N(Xj)},
N(Y) = {k ∈ N | Ck ⊆ Y}, CN(Y) = {Ck ∈ CN | k ∈ N(Y)},

'
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Fig. 4 Two intervals Xi = (x′i , x
′′
i ] and Xj = (x′j, x

′′
j ] in Proof of 3.1. A val-

uation interval Ck = (αk , βk] is not in Xi nor Xj, but in Z = Xi ∪ Xj.

N(Z) = {k ∈ N | Ck ⊆ Z}, CN(Z) = {Ck ∈ CN | k ∈ N(Z)},
CN(Y) = CN(Xi) ∩ CN(Xj).

Let

nXi = |N(Xi)|, nXj = |N(Xj)|, nY = |N(Y)|, nZ = |N(Z)|,
and let

CW = CN(Z) − (CN(Xi) ∪ CN(Xj)), nW = |CW |.
Note that a valuation interval Ck = (αk, βk] ∈ CN with x′i < αk <

x′j and x′′i < βk < x′′j is in CW = CN(Z) − (CN(Xi) ∪ CN(Xj)) (Fig.4).
Then, by the inclusion-exclusion principle, we have

nZ = nXi + nXi − nY + nW .

Thus, the density ρ(Z) of interval Z = Xi ∪ Xj in Definition 2.7 is

ρ(Z) =
size(Z)

nZ
=

x′′j − x′i
nXi + nXj − nY + nW

=
x′′j − x′j + x′′i − x′i − (x′′i − x′j)

nXi + nXj − nY + nW
.

We first discuss the case of nY > 0. Since nW ≥ 0 and by the
definition of density of an interval in Definition 2.7, we have

nXi ρ(Xi) = x′′i − x′i , nXj ρ(Xj) = x′′j − x′j, nY ρ(Y) = x′′i − x′j,

ρ(Z) =
x′′j − x′j + x′′i − x′i − (x′′i − x′j)

nXi + nXj − nY + nW

≤
x′′j − x′j + x′′i − x′i − (x′′i − x′j)

nXi + nXj − nY

=
nXi ρ(Xi) + nXj ρ(Xj) − nY ρ(Y)

nXi + nXj − nY
.

Note that,

ρ(Z) =
nXi ρ(Xi) + nXj ρ(Xj) − nY ρ(Y)

nXi + nXj − nY

if and only if nW = 0. Since ρ(Y) = ρ(Xi ∩ Xj) ≥ ρ(Xj), we have

ρ(Z) ≤ nXi ρ(Xi) + nXj ρ(Xj) − nY ρ(Y)

nXi + nXj − nY

≤ nXi ρ(Xi) + nXj ρ(Xj) − nY ρ(Xj)

nXi + nXj − nY
.

Furthermore, since ρ(Xi) ≥ ρ(Xj) and nXj ≥ nY , we have

ρ(Z) ≤ nXi ρ(Xi) + nXj ρ(Xj) − nY ρ(Xj)

nXi + nXj − nY

=
nXi ρ(Xi) + (nXj − nY ) ρ(Xj)

nXi + nXj − nY

≤ (nXi + nXj − nY ) ρ(Xi)

nXi + nXj − nY
= ρ(Xi).
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The case of nY = 0 can be discussed similarly.
By the argument above, we have ρ(Z) = ρ(Xi) if and only if

nW = 0, nY > 0, and ρ(Y) = ρ(Xj) = ρ(Xi). �

By Lemma 3.1, we have the following corollaries.

Collorary 3.1 Let Xi = (x′i , x
′′
i ] and Xj = (x′j, x

′′
j ] be two dis-

tinct intervals in C of minimum density. If Xi ∩ Xj � ∅ then both
Y = Xi ∩ Xj and Z = Xi ∪ Xj are of minimum density.

Proof: If Xi − Xj = ∅ (i.e., Xi ⊆ Xj), then clearly Y = Xi and
Z = Xj are both of minimum density. Similarly, if Xj − Xi = ∅,
(i.e., Xj ⊆ Xi), then clearly both Y = Xj and Z = Xi are
of minimum density. Thus, we can assume Xi − Xj � ∅ and
Xj − Xi � ∅. Since ρ(Xi) = ρ(Xj) = ρmin, we have ρ(Xi) ≥ ρ(Xj),
ρ(Xi ∩ Xj) ≥ ρ(Xj) and ρ(Z) ≤ ρmin by Lemma 3.1. It is clear that
ρ(Z) ≥ ρmin and we have ρ(Z) = ρmin.

Furthermore, by the argument in the proof of Lemma 3.1,
ρ(Z) = ρ(Xi) = ρmin if and only if nW = 0, nY > 0, and
ρ(Y) = ρ(Xj) = ρ(Xi). Thus, we have ρ(Y) = ρmin. �

Collorary 3.2 If Xi = (x′i , x
′′
i ] and Xj = (x′j, x

′′
j ] are two distinct

minimal intervals of minimum density, then Xi ∩ Xj = ∅.
Similarly, if Xi = (x′i , x

′′
i ] and Xj = (x′j, x

′′
j ] are two distinct

maximal intervals of minimum density, then Xi ∩ Xj = ∅.

4. Our Mechanism

We give a brief outline of our mechanism. We first cut the cake
C = (0, 1] at both endpoints of each maximal interval of mini-
mum density. By Corollary 3.2, two distinct maximal intervals
of minimum density are disjoint and we can cut the cake at both
endpoints of each maximal interval of minimum density, inde-
pendently. By these cuts, we can reduce the original cake-cutting
problem into two types of cake-cutting subproblems (Fig.5):
(i) the cake-cutting problem within each maximal interval Xi =

(x′i , x
′′
i ] of minimum density (which consists of the players

whose valuation intervals in Xi), and
(ii) the cake-cutting problem with all valuation intervals ob-

tained by deleting all the valuation intervals within all the
maximal interval of minimum density.

Note that the cake-cutting problem of type (i) is almost the
same as the original cake-cutting problem. On the other hand,
the cake-cutting problem of type (ii) is different from the original
cake-cutting problem, because the resulting cake becomes a set
of two or more disjoint intervals and a resulting valuation interval
may also become a set of two or more disjoint intervals. However,
the cake-cutting problem of type (ii) has a nice property.

Lemma 4.1 For two distinct intervals Xi = (x′i , x
′′
i ] and Xj =

(x′j, x
′′
j ], let Xi ∩ Xj � ∅ and Xi − Xj � ∅. Furthermore, let

Z = Xi ∪ Xj, CN(Z − Xj) = {Ck − Xj | Ck ⊆ Z, Ck ∈ CN}.

Suppose that ρ(Xi) ≥ ρ(Xj) and ρ(Z) ≥ ρ(Xj). Then, by cut-
ting the cake at both endpoints of Xj and deleting Xj, Z becomes
Z − Xj = Xi − Xi ∩ Xj and CN(Z) = {Ck ∈ CN | Ck ⊆ Z} becomes
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Fig. 5 The cake-cutting problem can be reduced into two types of cake-
cutting subproblems by cutting the cake C = (0, 1] at both endpoints
of each maximal interval of minimum density: (i) one within each
maximal interval of minimum density (players S 1 = {1, 4} and play-
ers S 2 = {2, 3, 5}]), and (ii) one with all valuation intervals obtained
by deleting all the valuation intervals within all maximal intervals of
minimum density (players R = {6}).

CN(Z −Xj) = {Ck −Xj | Ck ∈ CN , Ck ⊆ Z, Ck −Xj � ∅} (17)

and the density ρ(Z) in the original cake-cutting problem becomes
from

ρ(Z) = ρC(Z) =
size(Z)
|CN(Z)|

to the density ρC−Xj (Z − Xj) in the cake-cutting problem with the
cake C − Xj, players N − N(Xj) and valuation intervals

CN(C − Xj) = {Ck − Xj | Ck ∈ CN , Ck − Xj � ∅} (18)

such that

ρC−Xj (Z − Xj) =
size(Z − Xj)

|CN(Z − Xj)| ≥ ρ(Xj). (19)

Furthermore, if ρ(Z) > ρ(Xj) then ρC−Xj (Z − Xj) > ρ(Xj).

Proof: We divide the case into two subcases: (i) when Xj−Xi � ∅
and (ii) when Xj − Xi = ∅.

(i) when Xj − Xi � ∅: By symmetry we can assume

x′i < x′j < x′′i < x′′j

since Xi ∩ Xj � ∅, Xi − Xj � ∅, and Xj − Xi � ∅ (Fig.4).
Let nZ−Xj = |CN(Z−Xj)|, nZ = |CN(Z)| and nXj = |CN(Xj)| by Eqs.

(6), (7) and (8). Then

nZ−Xj = nZ − nXj ≥ 0,

size(Z − Xj) = size(Xi) − size(Xi ∩ Xj) = x′j − x′i

and, by ρ(Z) ≥ ρ(Xj), we have

ρC−Xj (Z − Xj) =
size(Z − Xj)

nZ−Xj

=
x′j − x′i
nZ−Xj

=
x′′j − x′i − (x′′j − x′j)

nZ − nXj

=
nZρ(Z) − nXjρ(Xj)

nZ − nXj

≥ (nZ − nXj ) ρ(Xj)

nZ − nXj

= ρ(Xj).

Note that, ρC−Xj (Z − Xj) = ρ(Xj) if and only if ρ(Z) = ρ(Xj).
Thus, if ρ(Z) > ρ(Xj) then ρC−Xj (Z − Xj) > ρ(Xj).

(ii) when Xj−Xi = ∅ (i.e., Xj ⊂ Xi and Z = Xi): we can assume

x′i ≤ x′j < x′′j < x′′i or x′i < x′j < x′′j ≤ x′′i
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by symmetry since Xi ∩ Xj � ∅, Xi − Xj � ∅, Xj − Xi = ∅. Thus,

Z−Xj = Xi−Xj, size(Z−Xj) = x′′i −x′i−(x′′j −x′j), nZ−Xj = nXi−nXj ,

and, by ρ(Xi) = ρ(Z) ≥ ρ(Xj), we have

ρC−Xj (Z − Xj) =
x′′i − x′i − (x′′j − x′j)

nZ−Xj

=
x′′i − x′i − (x′′j − x′j)

nXi − nXj

=
nXiρ(Xi) − nXjρ(Xj)

nXi − nXj

≥ (nXi − nXj ) ρ(Xj)

nXi − nXj

= ρ(Xj).

Note, ρC−Xj (Z − Xj) = ρ(Xj) if and only if ρ(Xi) = ρ(Z) = ρ(Xj).
By the argument above, we have the following: If ρ(Z) > ρ(Xj)

then ρC−Xj (Z − Xj) > ρ(Xj). �

Using Lemma 4.1 repeatedly we have the following corollary.

Collorary 4.1 For the cake C = (0, 1], n players N =

{1, 2, . . . , n}, CN with valuation interval Ci = (αi, βi] of each
player i ∈ N and

⋃n
i=1 Ci = C, let H1 = (h′1, h

′′
1 ], H2 =

(h′2, h
′′
2 ], . . . , HL = (h′L, h

′′
L ] be all the maximal intervals of mini-

mum density. Then by cutting the cake at both endpoints of each
H� = (h′�, h

′′
� ] we can reduce the original cake-cutting problem

into two types of cake-cutting subproblems:
(i) the cake-cutting problem within each maximal interval H� =

(h′�, h
′′
� ) of minimum density (which consists of the players

N(H�) and valuation intervals CN(H�) = {Ck ∈ CN | Ck ⊆ H�},
(ii) the cake-cutting problem with cake D = C−∑L

�=1 H�, players
P = N −∑L

�=1 N(H�) and valuation intervals

DP = {Di = Ci −
L∑

�=1

H� | Ci ∈ CN −
L∑

�=1

CN(H�)}.

Furthermore, the minimum density of intervals in each cake-
cutting problem of type (i) is equal to ρmin.

On the other hand, the minimum density of intervals in the
cake-cutting problem of type (ii) is greater than ρmin.

We denote, by Procedure CutCake(P,D,D), a method for solv-
ing the cake-cutting problem with the cake D which is a single
interval, players P and valuation intervals DP (where each val-
uation interval is a single interval in D). Thus, the original the
cake-cutting problem with the cake C, players N and valuation in-
tervals CN can be solved by setting P = N, D = C and DP = CN ,
and calling Procedure CutCake(N,C,C).

The cake-cutting problem of type (i) can be also solved by this
procedure. However, we use a slightly different method for solv-
ing the cake-cutting problem of type (i) with the cake H = H�,
players R = N(H�) = {i ∈ N | Ci ⊆ H�} and valuation in-
tervals DR = CN(H�) = {Ci ∈ CN | i ∈ N(H�)}, since H is
a maximal interval of minimum density. We call it Procedure
CutMaxInterval(R,H,DR).

Similarly, we denote, by Procedure CutMinInterval(S , X,DS ),
a method for solving the cake-cutting problem of type (i) where
the cake is a minimal interval X of minimum density in H = H�,
players S = N(X) = {i ∈ N(H) | Ci ⊆ X} and valuation intervals
DS = CN(X) = {Ci ∈ CN(H) | i ∈ S }.

On the other hand, as mentioned before, the cake-cutting prob-
lem of type (ii) with the cake D = C − ∑L

�=1 H�, players P =

N−∑L
�=1 N(H�) and valuation intervals DP = {Di = Ci−∑L

�=1 H� |
Ci ∈ CN − ∑L

�=1 CN(H�)} may be different from the original cake-
cutting problem with the cake C, players N and valuation inter-
vals CN , because the cake D = C−∑L

�=1 H� may be a set of two or
more disjoint intervals and valuation interval Di ∈ DP may be so.
However, we can consider the cake-cutting problem of type (ii) to
be of almost the same type as the original cake-cutting problem
by contraction of H1,H2, . . . ,HL.

By contraction of H� = (h′�, h
′′
� ] which is deleted from the cake

C (H� becomes an empty piece in the remaining cake), we vir-
tually consider two endpoints h′�, h

′′
� of H� to be the same point

h� = h′� = h′′� . Thus, we can consider the cake D = C − ∑L
�=1 H�

as a single interval, and also valuation interval Di ∈ DP as a sin-
gle interval in D. Note that, before the contraction and the after
the contraction, the size of an interval in the cake D = C−∑L

�=1 H�
and valuation intervals Di ∈ DP remains the same, since the con-
tracted intervals can be considered of size 0.

Thus, by contraction, we can solve the cake-cutting prob-
lem of type (ii) with the cake D = C − ∑L

�=1 H�, players P =

N−∑L
�=1 N(H�) and valuation intervals DP = {Di = Ci−∑L

�=1 H� |
Ci ∈ CN − ∑L

�=1 CN(H�)} in the same way as the original cake-
cutting problem. Of course, in a final output, all contracted point
h� should be replaced by an empty cake H� = (h′�, h

′′
� ], because

H� = (h′�, h
′′
� ] will be allocated to the players in N(H�). We call

this operation as inverse contraction of H�.
Thus, we can describe a method for solving the cake-cutting

problem of type (ii) with the cake D = C − ∑L
�=1 H�, play-

ers P = N − ∑L
�=1 N(H�) and valuation intervals DP = {Di =

Ci −∑L
�=1 H� | Ci ∈ CN −∑L

�=1 CN(H�)} as follows:
(a) First perform contraction of all H� = (h′�, h

′′
� ) (� =

1, 2, . . . , L). Let D′, D′P be obtained from D, DP by per-
forming contraction of all H� = (h′�, h

′′
� ).

(b) Then recursively call CutCake(P,D′,D′P).
(c) Finally perform inverse contraction of all H� = (h′�, h

′′
� ).

We will give detailed descriptions of Procedures
CutCake(P,D,DP) (for the cake D, players P and valuation
intervals DP), CutMaxInterval(R,H,DR) (for the cake H of
maximal interval of minimum density, players R and valuation
intervals DR), and CutMinInterval(S , X,DS ) (for the cake X of
minimal interval of minimum density, players S and valuation
intervals DS ) later. By using them, we can write our mechanism.

Mechanism 4.1 Our cake-cutting mechanism.

Input: A cake C = (0, 1], n players N = {1, 2, . . . , n}, and
valuation intervals CN with valuation inteval
Ci = (αi, βi] of each player i ∈ N and

⋃n
i=1 Ci = C.

Output: Allocation AN = {A1,A2, . . . ,An} to players N.

Algorithm {
for each i ∈ N do ai = αi; bi = βi; Di = (ai, bi];
P = N; D = C; DP = CN ;
CutCake(P,D,DP);

}
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Procedure 4.1 CutCake(P,D,DP) {
Find all the maximal intervals of minimum density

in the cake-cutting problem with cake D, players P

and valuation intervals DP;
Let H1 = (h′1, h

′′
1 ], H2 = (h′2, h

′′
2 ], . . . , HL = (h′L, h

′′
L ]

be all the maximal intervals of minimum density;
// H1,H2, . . . ,HL are mutually disjoint by Corollary 3.2

for � = 1 to L do
cut the cake at both endpoints h′�, h

′′
� of H�;

R� = {i ∈ P | Di ⊆ H�}; DR� = {Di ∈ DP | i ∈ R�};
CutMaxInterval(R�,H�,DR� );

for � = 1 to L do
P = P − R�; D = D − H�;

if P � ∅ then
D = ∅;
for each Di ∈ DP with i ∈ P do

Di = Di − (H1 + H2 + · · · + HL); D = D + {Di};
Perform contraction of all H1,H2, . . . ,HL;
Let D, D become D′, D′P after contraction;
CutCake(P,D′,D′P);
Perform inverse contraction of all H1,H2, . . . ,HL;

}

Procedure 4.2 CutMaxInterval(R,H,DR) {
Let X1 = (x′1, x

′′
1 ], X2 = (x′2, x

′′
2 ], . . . , XK = (x′K , x

′′
K]

be all the minimal intervals of density ρmin in H;
// X1, X2, . . . , XK are mutually disjoint by Corollary 3.2

for k = 1 to K do
cut the cake at both endpoints x′k, x

′′
k of Xk;

S k = {i ∈ R | Di ⊆ Xk}; DS k = {Di ∈ DR | i ∈ S k};
CutMinInterval(S k, Xk,DS k );

for k = 1 to K do
R = R − S k; H = H − Xk;

if R � ∅ then
D = ∅;
for each Di ∈ DR with i ∈ R do

Di = Di − (X1 + X2 + · · · + XK); D = D + {Di};
Perform contraction of all X1, X2, . . . , XK ;
Let H, D become H′, D′R after contraction;
CutMaxInterval(R,H′,D′R);
Perform inverse contraction of all X1, X2, . . . , XK ;

}
To describe Procedure CutMinInterval(S , F,DS ), we need

some definitions.

Definition 4.1 Let X = (x′, x′′] be a minimal interval of mini-
mum density ρmin. A minimal interval Y = (y′, y′′] with respect to
density which is properly contained in X (i.e., Y ⊂ X) is called a
separable interval of X, if size(Y) is less than (nY +1) ρmin, where
nY is the number of players whose valuation intervals are entirely
contained in Y (Fig.6).

If there is no separable interval of X = (x′, x′′], then X is called
nonseparable.

Note that, since X is a minimal interval of minimum density,
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Fig. 6 Players N = {1, 2, . . . , 10} and their valuation intervals C1 = (0, 1],
C2 = (0.01, 0.24], C3 = (0.02, 0.25], C4 = (0.05, 0.34], C5 =

(0.28, 0.52], C6 = (0.29, 0.59], C7 = (0.3, 0.65], C8 = (0.32, 0.77],
C9 = (0.45, 0.85], C10 = (0.7, 1]. In this case, X = (0, 1] is a min-
imal interval of minimum density ρmin = 0.1, and there are several
separable intervals of X = (0, 1] such as (0.01, 0.27], (0.01, 0.25],
(0.01, 0.59], (0.01, 1], (0.28, 0.65], (0.28, 0.77], (0.28, 0.85]. The
largest left endpoint y∗ of the separable intervals in X is 0.28 and
the set of separable intervals with the largest left endpoint y∗ = 0.28
is {(0.28, 0.65], (0.28, 0.77], (0.28, 0.85]}.

size(Y) for each Y ⊂ X is always larger than nY ρmin by the defi-
nition of a minimal interval of minimum density.

We first consider the case when a minimal interval X of mini-
mum density is nonseparable. This has a nice property.

Lemma 4.2 Let X = (x′, x′′] be a nonseparable minimal in-
terval of minimum density ρmin. For simplicity, we assume
X = (0, 1], N(X) = N, CN(X) = CN . Let I j = (( j − 1)ρmin, jρmin]
for each j ∈ N, and let IN = {I1, I2, . . . , In}. Let G = (CN , IN , E)
be a bipartite graph with vertex set CN + IN and edge set E where
(Ci, I j) ∈ E if and only if I j ⊆ Ci. Then G has a perfect matching
M = {(Ci, Iπ(i)) | i ∈ N} ⊆ E (π is a permutation on N).

Lemma 4.2 can be proved by Hall’s Theorem [4]: if Ci1 ∪
Ci2 ∪ · · · ∪ Cik contains � intervals I j1 , I j2 , . . . , I j� and � ≥ ik
for all subsets {Ci1 ,Ci2 , . . . ,Cik } ⊆ CN , then the bipartite graph
G = (CN , IN , E) has a perfect matching.

Lemma 4.2 can be also proved by using the expansion process
with unlocking proposed in the paper [1], [6].

Let M = {(Ci, Iπ(i)) | i ∈ N} be a perfect matching of the bi-
partite graph G = (CN , IN , E) defined in Lemma 4.2. Then we
can allocate Ai = Iπ(i) ⊆ Ci of the cake X = (0, 1] to player
i ∈ N. Since a perfect matching can be obtained in polynomial
time of n, we call this Procedure AllocateInterval(N(X), X,CN(X))
and will use in Procedure CutMinInterval(N(X), X,CN(X)).

Next we consider the case when the cake X = (x′, x′′] is a min-
imal interval of minimum density and has a separable interval.

Let X = (x′, x′′] be a minimal interval of minimum density
ρmin. Let Y be the set of separable intervals in X and let

y∗ = max
Y=(y′, y′′]∈Y

y′. (20)

That is, y∗ is the largest left endpoint of the separable intervals in
X. Let

Yy∗ = {Y = (y′, y′′] ∈ Y | y′ = y∗}. (21)

That is, Yy∗ is the set of separable intervals in X whose left end-
points are y∗ (Fig.6).

For each interval Y = (y′, y′′] of X, let

γ(Y) = size(Y) − nY ρmin. (22)

If Y = (y′, y′′] is a separable interval of the minimal interval X
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of minimum density, then Y is a minimal interval with respect to
density and

nY ρmin < size(Y) < (nY + 1) ρmin (23)

and we have
0 < γ(Y) < ρmin. (24)

Let γ∗ be the minimum γ(Y) among the separable intervals Y =

(y∗, y′′] with the largest left endpoint y∗, i.e.,

γ∗ = min
Y∈Yy∗

γ(Y). (25)

Clearly, by Eqs. (24), (25),

0 < γ∗ < ρmin. (26)

Let Zy∗ be the set of right endpoints of the separable intervals
whose left endpoints are y∗, i.e.,

Zy∗ = {y′′ | Y = (y∗, y′′] ∈ Yy∗ }. (27)

Let Yγ
∗
y∗ be the set of separable intervals Y = (y∗, y′′] in Yy∗ with

γ(Y) = γ∗, i.e.,

Y
γ∗
y∗ = {Y = (y∗, y′′] ∈ Yy∗ | γ(Y) = γ∗}. (28)

Let Zγ
∗
y∗ be the set of right endpoints of the separable intervals in

Y
γ∗
y∗ and J be the cardinality of Zγ

∗
y∗ , i.e.,

Zγ
∗
y∗ = {y′′ | Y = (y∗, y′′] ∈ Yγ∗y∗ }, J = |Zγ∗y∗ |. (29)

Let

Zγ
∗
y∗ = {z∗1, z∗2, . . . , z∗J}, z∗1 < z∗2 < · · · < z∗J . (30)

For simplicity, we consider

z∗0 = y
∗ + γ∗, Y0 = (y∗, z∗0]. (31)

Furthermore, if z∗J < x′′ then we consider z∗J+1 = x′′ and YJ+1 =

(y∗, z∗J+1] = (y∗, x′′]. Let, for each k = 1, 2, . . . , J,

Yk = (y∗, z∗k]. (32)

In the example of Fig.6, Zy∗ = {0.65, 0.77, 0.85}, Y
γ∗
y∗ =

{(0.28, 0.65], (0.28, 0.85]}, Zγ
∗
y∗ = {0.65, 0.85}, J = 2, z∗1 =

0.65 < z∗2 = 0.85.
Then we have the following lemma and corollary.

Lemma 4.3 Let X = (x′, x′′] be a minimal interval of minimum
density ρmin in the cake C. Let Y = (y∗, z] be an interval of X

such that z = βi for some Ci = (αi, βi] ∈ CN . Then γ(Y) = γ∗ for
z ∈ Zγ

∗
y∗ and γ(Y) > γ∗ for z � Zγ

∗
y∗ , i.e.,

γ(Y)

⎧⎪⎪⎨⎪⎪⎩
= γ∗ (z ∈ Zγ

∗
y∗ )

> γ∗ (z � Zγ
∗
y∗ ).

(33)

Proof: By the definition of γ(Y) of Y = (y∗, z] in Eq.(22),

γ(Y) = size(Y) − nYρmin = z − y∗ − nYρmin.

It is clear that if z ∈ Zγ
∗
y∗ then γ(Y) = γ∗ by the definitions of Yγ

∗
y∗

and Zγ
∗
y∗ . Therefore, we can assume z � Zγ

∗
y∗ below.

We first consider the case when Y = (y∗, z] is not a separable
interval. Thus, size(Y) ≥ (nY + 1) ρmin and by Eq. (26),

γ(Y) = size(Y) − nYρmin ≥ ρmin > γ
∗.

We next consider the case when Y = (y∗, z] is a separable in-
terval. Thus, nYρmin < size(Y) < (nY + 1)ρmin. By the definition
of Zγ

∗
y∗ = {y′′ | Y = (y∗, y′′] ∈ Yγ∗y∗ } and Eq. (25), we have

γ(Y) = size(Y) − nYρmin > γ
∗

since z � Zγ
∗
y∗ . �

Collorary 4.2 Let X = (x′, x′′] be a minimal interval of mini-
mum density ρmin in the cake C. Let Y = (y∗, z] be an interval of
X such that z∗k < z < z∗k+1 for some Yk = (y∗, z∗k] ∈ {Yj = (y∗, z∗j] |
j = 0, 1, . . . , J} and that z is a right endpoint of some valuation
interval Ci = (αi, βi] ∈ CN . Then z − z∗k = size(Y) − size(Yk) =
(γ(Y) − γ(Yk)) + ρmin(nY − nYk ) > ρmin(nY − nYk ) by γ(Yk) = γ∗.

Let X = (x′, x′′] be a minimal interval of minimum density ρmin

in the cake C and let S = N(X). For each j = 1, 2, . . . , J, let

Zj = (z∗j−1, z
∗
j],

DS (Zj) = {Di ∈ DS | Di ⊆ (y∗, z∗j],Di � (y∗, z∗j−1]}, (34)

S (Zj) = {i ∈ S | Di ∈ DS (Zj)}.
Note that

DS (Zj) = {Di ∈ DS | Di ⊆ (y∗, z∗j]} − {Di ∈ DS | Di ⊆ (y∗, z∗j−1]}.

Furthermore, for each j = 1, 2, . . . , J, let

D′S (Zj) = {D′i = Di − (y∗, z∗j−1] | Di ∈ DS (Zj)}. (35)

We also consider the remaining cake-cutting problem after
deletion of the interval (z∗1, z

∗
J]. Note that (z∗1, z

∗
J] = Z1 + Z2 +

· · · + ZJ and S (Z1) + S (Z2) + · · · + S (ZJ) = S ((z∗1, z
∗
J]). Let

S ′ = S − S ((z∗1, z
∗
J]), (36)

D′ = D − (z∗1, z
∗
J], (37)

DS ′ = {D′i | D′i = Di − (z∗1, z
∗
J],Di ∈ DS ,Di � (y∗, z∗J]}.(38)

Similarly, let D′′ and D′S ′ be obtained from D′ and DS ′ by per-
forming contraction of all the Z1,Z2, . . . ,ZJ .

Thus, we reduce the remaining cake-cutting problem with the
cake D′, players S ′ and valuation intervals DS ′ by performing
contraction of all the Z1, Z2, . . . , ZJ to the cake-cutting problem
with the cake D′′, players S ′ and valuation intervals D′S ′ .

Then the following lemmas hold.

Lemma 4.4 Each interval Zj = (z∗j−1, z
∗
j] ( j = 1, 2, . . . , J) is a

minimal interval with minimum density ρ′min = ρmin for the cake-
cutting problem with the cake Zj, players S (Zj) = {i ∈ S | Di ∈
DS (Zj)}, valuation intervals D′S (Zj)

in Eq.(34) and the density ρ′.
Similarly, if we proform contraction of all the Z1,Z2, . . . ,ZJ ,

then the interval D′′ obtained from D′ = D − (z∗1, z
∗
J] in Eq.(37)

is also a minimal interval with minimum density ρ′min = ρmin for
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the cake-cutting problem with the cake D′′, players S ′ in Eq.(36),
valuation intervals D′S ′ obtained from DS ′ in (38) and the density
ρ′.

Proof: We first show that each Zj = (z∗j−1, z
∗
j] ( j = 1, 2, . . . , J) is

a minimal interval with minimum density ρmin.
It is clear that ρ′(Zj) = ρmin, since

size((y∗, z∗j]) = ρminn(y∗ , z∗j ] + γ
∗,

size((y∗, z∗j−1]) = ρminn(y∗ , z∗j−1] + γ
∗,

nZj = n(y∗ , z∗j ] − n(y∗ , z∗j−1],

size(Zj) = size((y∗, z∗j]) − size((y∗, z∗j−1])

= ρmin(n(y∗ , z∗j ] − n(y∗ , z∗j−1]) = ρminnZj .

Let Z = (z′, z′′] be a proper subinterval of Zj (i.e., Z ⊂ Zj) such
that z′ is z∗j−1 or a left endpoint of some valuation interval and
that z′′ is a right endpoint of some valuation interval in D′S (Zj)

. If
z′ � z∗j−1 then ρ′(Z) = ρ(Z) > ρmin, since Z ⊂ X (Z � X) and X is
a minimal interval with minimum density ρmin. Thus, we assume
z′ = z∗j−1 < z′′ < z∗j . Now consider the intervals Y ′j = (y∗, z′′]
and Yj−1 = (y∗, z∗j−1]. Then nZ = nY ′j − nYj−1 . By Corollary 4.2,
we have size(Z) = z′′ − z∗j−1 > ρmin(nY ′j − nYj−1 ) = ρmin nZ and

ρ′(Z) = size(Z)
nZ
> ρmin. Thus, Zj = (z∗j−1, z

∗
j] is a minimal interval

with minimum density ρ′min = ρmin.
Next we show that D′′ is also a minimal interval with mini-

mum density ρmin. ρ′(D′′) = ρmin can be obtained in an almost
the same argument above.

Let Z = (z′, z′′] be a proper subinterval in D′′ (i.e., Z ⊂ D′′).
Thus, z′ < z∗1 or z′′ > z∗J . We will show that ρ′(Z) > ρmin by
dividing into two subcases: (i) the case of z′ < z∗1 and (ii) the case
of z∗1 ≤ z′ and z′′ > z∗J .

We only discuss the case of z′ ≤ y∗ < z∗1 < z′′ ≤ z∗J in (i) (the
other cases in (i) can be discussed similarly). Since the contrac-
tion of Z1 +Z2 + · · ·+ZJ = (z∗1, z

∗
J] is performed, we can consider

z′′ = z∗J , size(Z) = z′′ − z′ = z∗J − z′, ρminn(y∗ , z∗J ] = z∗J − z∗1.

Thus, after the contraction is performed, Z becomes Z′ = Z −
(z∗1, z

∗
J] and nZ′ = nZ − n(y∗ , z∗J ] and size(Z′) = z∗1 − z′, we have

ρ′(Z′) =
size(Z′)

nZ′
=

z∗1 − z′

nZ′
> ρmin

by

ρ(Z) =
size(Z)

nZ
=

z∗J − z∗1 + z∗1 − z′

nZ′ + n(y∗ , z∗J ]
=
ρminn(y∗ , z∗J ] + z∗1 − z′

nZ′ + n(y∗ , z∗J ]
> ρmin.

We only discuss the case of z∗1 ≤ z′ < z∗J < z′′ in (ii) (the
other cases in (ii) can be discussed similarly). By corollary 4.2
for k = J, YJ = (y∗, z∗J] and Y = (y∗, z′′], we have Z′ = (z∗J , z

′′],

size(Z′) = z′′ − z∗J = size(Y) − size(YJ) > ρmin(nY − nYJ )

and nZ′ ≤ nY − nYJ . Thus, ρ′(Z′) = size(Z′)
nZ′

≥ size(Z′)
nY−nYJ

> ρmin. �

Based on Lemma 4.2 and Lemma 4.4, we can write Procedure
CutMinInterval(S , X,DS ) as follows.

Procedure 4.3 CutMinInterval(S , X,DS ) {
if X = (x′, x′′] is nonseparable then

AllocateInterval(S , X,DS );
// this finds an allocation of X to players S by Lemma 4.2

else // there is a separable interval in X

Find y∗, γ∗, Yγ
∗
y∗ , and Zγ

∗
y∗ defined by

Eqs. (20), (25), (28), and (29), respectively;
Let Zγ

∗
y∗ = {z∗1, z∗2, . . . , z∗J} and assume

z∗0 = y
∗ + γ∗ < z∗1 < z∗2 < · · · < z∗J ≤ zJ+1 = x′′;

for j = 1 to J do
Zj = (z∗j−1, z

∗
j];

cut the cake at both endpoints z∗j−1, z
∗
j of Zj = (z∗j−1, z

∗
j];

let DS (Zj) and D′S (Zj)
be defined in Eqs. (34) and (35);

S (Zj) = {i ∈ S | Di ∈ DS (Zj)};
CutMinInterval(S (Zj),Zj,D

′
S (Zj)

);
S ′ = S − S ((z∗1, z

∗
J]); D′ = D − (z∗1, z

∗
J];

if S ′ � ∅ then
DS ′ = ∅;
for each Di ∈ DS with i ∈ S ′ do

D′i = Di − (z∗1, z
∗
J]; DS ′ = DS ′ + {D′i };

Perform contraction of all Z1, Z2, . . . ,ZJ ;
Let D′, DS ′ become D′′, D′S ′ after contraction;
CutMinInterval(S ′,D′′,D′S ′ );
Perform inverse contraction of all Z1, Z2, . . . , ZJ ;

}
Based on Corollary 4.1, Lemma 4.2 and Lemma 4.4, we can

show that Mechanism 4.1 correctly finds, in O(n3) time, an allo-
cation AN = {A1,A2, . . . ,An} of the cake C to n players N with
Ai = {Ai1 , Ai2 , . . . , Aiki

} such that Ai = Ai1 + Ai2 + · · · + Aiki
⊆ Ci

for each player i ∈ N. Envy-freeness and truthfulness of Mecha-
nism 4.1 can be obtained by induction on the number of calls on
Procedure CutCake(P,D,DP) by Corollary 4.1. Truthfulness of
Mechanism 4.1 can be also shown in a similar way as in papers
[2], [6]. We can show that the number of cuts is at most 2(n − 1)
in a similar way as in paper [6].

Thus, we have the following theorem.

Theorem 4.1 Mechanism 4.1 is envy-free and truthful, and the
number of cuts made by Mechanism 4.1 on the cake is at most
2(n − 1).
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