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Abstract: This paper proposes automatic music completion - the automatic generation of music pieces from any
incomplete fragments of music - as a new class of music composition assistance tasks. This is a generalization of
conventional music information problems such as automatic melody generation and harmonization. The goal is to turn
musical ideas of a user into music pieces, allowing users to quickly explore new ideas and enabling inexperienced users
to create their own music. This principle is applicable to a wide variety of music, and as a first step, we present a system
that automatically fills in missing parts of a four-part chorale, as well as the underlying harmony progression. The user
can input any combination of melody fragments, and freely constrain the harmony. Our system searches for harmonies
and melodies that adhere to music-theoretical principles, which requires extensive knowledge and practice for human
composers. Accounting for the mutual influence of melodic and harmonic development in music composition, the
system is based on a joint model of harmony and voicing. The system was evaluated by analyzing generated music
with respect to music theory, in addition to a subjective evaluation experiment. The readers are invited to experiment
with our system at http://160.16.202.131/music completion.
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1. Introduction

Artificial intelligence is becoming increasingly popular in cre-
ative art. In particular, algorithmic music composition has been
a topic of research for several decades. However, instead of au-
tonomously generating music and replacing a human composer,
our motivation is to react to user input, with the aim of support-
ing human creativity and realizing fruitful collaboration between
human and computer. In previous research, multiple automatic
music generation systems were designed to process some sort
of input. In most cases, however, the type of information that
a user can input is very limited. For example, a typical prob-
lem is melody harmonization [1], [2]: Users insert a melody and
the computer returns melodies of the accompaniment. However,
what if the user has ideas for two melodies and wants the system
to add more, or what if the user would like to hear their favourite
harmony at a specific position? Furthermore, harmonization al-
gorithms usually cannot handle incomplete input melodies.

Therefore, we want to proceed in a new direction in algorith-
mic music composition, which we call “automatic music com-
pletion,” emphasizing the freedom of user input. Our goal is a
system that is able to generate music based on a wide variety
of musical ideas of the user, such as interesting melodic motifs,
rhythmic patterns, incomplete melodies of multiple instruments,
partial harmony progressions, and any combination thereof. Mu-
sic completion is the problem of filling in all missing elements,
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be it completing one or multiple melodies, deriving a harmony
progression, adding additional melodies, or everything at once.
This is a generalization of several music information tasks, e.g.,
an automatic music completion system could solve the problems
of melody generation and harmonization. However, it goes even
further by handling incomplete input in multiple domains and
solving several sub-problems simultaneously. Such a flexible sys-
tem can make music composition more accessible to users with
limited music-theoretical knowledge, and enables composers to
quickly explore new musical ideas, but it requires working to-
wards a complete model of music that accounts for a multitude of
musical aspects such as melody, harmony, rhythm and voicing.

As a first application of the principle of automatic music com-
pletion, we discuss the composition of four-part chorales, which
is a popular discipline of classical music. These chorales are
polyphonic music pieces for choirs or instrumental ensembles
with a strong focus on the relationship between the typically
four parts soprano, alto, tenor and bass. A multitude of music-
theoretical rules make chorale composition a complex task, and a
typical problem for music students to solve. An exemplary result
of our music completion system is shown in Fig. 1.

2. Related Research

Automatic music composition has been a topic of research
since the automatic generation of the Illiac suite [3] in the 1950s.
In the following years, a wide variety of methods have been ap-
plied in this field of research. For an overview we refer to a survey
of several hundred publications by Fernández and Vico [4].

Many of these publications present autonomous music compo-
sition algorithms, which generate music largely independent of
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Fig. 1 A result of the automatic music completion system. Notes and harmonies input by the user are
shown in black, and the output of the system in blue. While not illustrated, it is possible to specify
multiple harmony candidates for each beat, of which the algorithm will chose the optimal one.

the user input. Examples are David Cope’s Experiments in Mu-
sic Intelligence [5], the Melomics music database [6], which was
generated using a genetic algorithm, Kulitta [7], a composition
framework based on a formal grammar, and Google Magenta’s
recurrent neural network which generates human-like piano per-
formances [8]. While some autonomous automatic composition
systems are quite popular, they aim at completely replacing hu-
man creativity.

On the other hand, the goal of automatic composition assis-
tance systems is to support human creativity. They generally
allow a user to input some kind of musical idea, and generate
results based on this input. An example is the composition sys-
tem Orpheus [9], which uses an hidden Markov model to gener-
ate melodies based on user input, and provides a web-based user
interface that has been accessed by several thousand users. Re-
searchers have published many more algorithms for user-driven
automatic melody generation, some constrained by abstract pa-
rameters [10], others by input melodies in order to generate vari-
ations of it [11], to interpolate missing parts [12], or to improvise
a fitting countermelody [13].

Complementary to constrained melody generation, melody
harmonization describes the problem of adding harmonies to in-
put melodies. One type of harmonization algorithm computes
abstract harmonies, resulting in lead sheets, which consist of a
single melody and an accompanying harmony progression. Meth-
ods to obtain such lead sheets include genetic algorithms [14] and
Markov models [15]. The other type of harmonization algorithm
computes voicings, i.e., individual notes for additional voices and
instruments, which are usually subject to music-theoretical rules.
For an overview over approaches to automatic harmonization, we
refer to a survey by Pachet and Roy [1].

However, the goal of our research is to not only compute har-
monies for melodies or vice versa, but to allow the user to in-
put any combination of partial harmonies, melodies and voicings.
Similar to our approach in that respect is a system called Flow-
Composer [16], that assists a user in generating lead sheets. The
system allows users to constrain both melody and harmony, and
generates results using a Markov model.

The two approaches closest to ours are the four-part chorale
generation systems DeepBach [17], which uses recurrent neural
networks, and the similar Coconet [18], which is based on a con-
volutional neural network, and was developed in collaboration
with Google’s Magenta project. The aim of both systems is to
imitate the composer J. S. Bach, which is achieved by random

sampling. While not their focus, both systems can process rel-
atively free input for four voices, but they do not allow users to
constrain harmony and are limited to Bach-like music pieces.

3. Automatic Music Completion

3.1 New Direction: Free User Input
Our motivation is to provide automatic music composition as-

sistance with as much freedom to input musical ideas as possible,
which is mainly influenced by two factors.
( 1 ) Allowing input of any size: No input at all, an almost

complete melody with a short section missing, or multiple
melody fragments.

( 2 ) Providing multiple modes of input, e.g., pitch, harmony,
rhythm, structure, or tuning parameters that allow a user to
intuitively influence the automatic generation process.

Therefore, an ideal system would be able to compute solutions
without input, but also when subject to complex constraints in
multiple domains, including input that might be rare or unseen
in music data sets. This requires a powerful and flexible model
covering various aspects of music composition.

In this paper, we present a model that accounts for multiple
factors that influence the composition of four-part chorales. In-
stead of imitating a specific composer, such as J. S. Bach in re-
lated research [17], [18], our aim is to devise a model that does
not extract composer-specific characteristics, but music theoretic
principles that are valid for a wider range of music. While this
paper focuses on chorales, our approach can be applied to var-
ious musical styles. By training individual parts of the model
on different data sets, we could, in principle, combine classical
polyphony with jazz harmonies, for example.

The flexibility of our approach enables the system to target a
wide range of users. Our user interface was designed such that
even beginners with very little music knowledge can intuitively
input melodies in a piano roll format and then let the system gen-
erate the underlying harmony progression and all missing notes
of the four voices. However, the type of user that can benefit most
from our system would have basic knowledge of chords in order
to use them as constraints, as well as enough musical intuition to
insert notes in more than one voice (e.g., a countermelody). For
this type of user, our system can display its full potential by simul-
taneously responding to various different user input constraints.

3.2 The Complexity of Polyphonic Music
Musicians have derived a multitude of rules for composing
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Fig. 2 Two exemplary voicing rules. Parallel fifths and octaves, i.e., the
same motion of two voices into a perfect fifth or octave as shown
in red in (a) should be avoided (as in (b)). Large distances between
voices as shown in red in (c) should also be avoided (as in (d)).

polyphonic music [19]. Examples of such rules are illustrated in
Fig. 2. However, most of these rules are not absolute, and some-
times broken by composers. The rules can also conflict with each
other, e.g., avoiding parallel fifths and octaves (Fig. 2 (a)) can re-
sult in large intervals between two voices (Fig. 2 (c)). The prob-
lem becomes more complicated when voicing is constrained by
user input. This is especially important for freedom of user input,
which significantly increases when allowing users to break rules.
Instead of simply avoiding rule violation, we want to be able to
determine, for example, how to best complete a voicing in which
the user manually inserted a parallel fifth. In a sense, the problem
of polyphonic voicing is similar to solving a puzzle. While this
requires a lot of knowledge and practice for humans, computers
are well-suited for exploring solution spaces. Therefore, we ap-
ply an optimization algorithm to a probabilistic model designed
to balance various aspects of music theory.

Another difficulty is the modeling of nonharmonic tones.
These are melody notes that do not belong to the current chord,
complicating the relation between voicing and underlying har-
mony. A voicing can result from different harmonies depend-
ing on which of its notes are interpreted as nonharmonic. This
is a common problem in harmony analysis [20], and also in
our inverse task of automatically generating voicings from har-
monies. Ignoring the possibility of nonharmonic tones would
limit user input [21], while simply assuming that harmonies pro-
duce nonharmonic tones with a certain probability can result in
dissonance [22]. The algorithm presented here approaches this
problem by jointly optimizing voicing and harmony, thus com-
paring different harmonic interpretations of notes depending on
harmonic and melodic context. To avoid dissonance, the algo-
rithm considers how different classes of nonharmonic tones are
resolved according to music theory [23] (see Section 4.6).

4. Four-Part Chorale Model

In order to account for the inter-dependency of harmonic and
melodic development [19], we implemented a model of the joint
probability P(H,V) of harmony sequence H and voicing se-
quence V . Before explaining our mathematical model, we dis-
cuss the challenges of computational cost and data sparsity in the
context of polyphonic music.

4.1 Computational Cost
The number of possible harmony and note combinations is very

large. We denote the range of a voice (number of notes a partic-

ular voice can sing) as r and the number of harmony candidates
as c. A brute force algorithm exploring all possibilities of a four-
part chorale with n time steps would have a computational cost of
O((c r4)n). We implemented an efficient beam search algorithm,
which reduces the complexity to O(c r4 nw) for beam width w.
The ideal value for w strongly depends on the user input. With-
out user input, w = 1 generally suffices. However, to properly
account for user input constraints, a wider range of possibilities
has to be explored. For example, when the user inserts a low note
at the first bar of the piece and a high note at the nth bar, the
state at bar n − 1 with the highest probability (i.e., retained with
w = 1) likely also contains a low note, since small step move-
ment is highly probable. This would result in a large and highly
improbable jump from this low note to the high user input note
at bar n. With sufficiently high beam width w, the algorithm can
consider states at bar n−1 that contain higher notes, which would
eliminate the jump and thus lead to overall more likely results. In
our experiments, we allowed users to tune the beam width, and
most users chose values between 100 and 1000. In our music
theoretic evaluation (Section 5.1) w = 100 was used.

However, considering that typical values are c > 100 and
r ≈ 40 (for Bach chorales), the cost is generally still too high,
since our system is meant for interactive composition assistance,
where computation should finish within several seconds. Simply
reducing the search space according to strict rules would strongly
limit the freedom of user input. Instead, we allow the user to in-
put any note within the range of a voice, and only heuristically
restrict which note candidates the algorithm considers for filling
in the gaps:
• Voice crossings: The algorithm does not insert notes that are

lower than that of a voice below and vice versa. Motivation:
Would sound very similar when interchanging notes. Re-
striction on user input: Weak; e.g., will not yield solutions
when a tenor note is higher than a soprano note in the same
voicing, which is possible, but very unusual.

• Large melody intervals: Only intervals up to octaves are con-
sidered. Motivation: Large jumps would create the impres-
sion of two separate melodies. Restriction on user input:
Slight; will not yield solutions when two notes with only one
time step in between are more than two octaves apart, which
is very uncommon and very difficult for singing voices.

• Large inter-voice intervals: Only intervals up to tenths are
considered. Motivation: Voices would sound disconnected.
Restriction on user input: Slight; similar reason as above.

• Repeated note doubling: The algorithm inserts at most two
notes of one pitch class into a single voicing. Motiva-
tion: Further doubling would result in incomplete and empty
sounding chords. Restriction on user input: None; at least
three pitch classes are available to choose four notes from;
however, slightly restrictive in combination with voice cross-
ing avoidance, e.g., will not yield solutions when a soprano
note is identical to a tenor note, which is slightly stricter than
the restriction when only avoiding voice crossings.

• Many nonharmonic tones: At most one nonharmonic tone of
the current key’s scale is inserted per voicing. Motivation:
A high number of nonharmonic tones implies that another
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Fig. 3 A graphical representation of the model used in our system. Har-
monies hi are treated as hidden states of observable voicings v j. Har-
monies can be of variable length to account for harmonic rhythm.
In addition to dependencies of a conventional hidden Markov model
(black), we consider larger harmonic contexts (purple) and depen-
dencies between consecutive voicings (green) in order to capture
properties of the voices’ melodies.

harmony is likely to be of significantly higher probability.
Restriction on user input: None; same reason as above.

These heuristics generally avoid uncommon musical patterns and
thus in most cases do not affect optimality of search results. They
also coincide with principles of music theory.

4.2 Data Sparsity
Compared to the large amount of possible note combinations,

only a very small subset is contained in training data. This would
be less of a problem without user input, since the search space
could be limited to common musical patterns more easily. How-
ever, we want to allow the user to input ideas that do not oc-
cur in data, and still be able to react meaningfully to it. On the
other hand, if the model is too simple, the generated music will be
equally simple. Imagine the same harmony continuing through-
out the whole piece. Thus, we need to efficiently extract relevant
information from small amounts of data.

Still, the size of data sets of four-part voicings and harmony
progressions is quite limited. In particular, the largest data set
available to us that contains information on both harmony and
voicing comprises only about 40 four-part chorales with har-
mony annotation [24]. We also had access to around 400 four-
part chorales without harmony annotation [25], and harmony an-
notation of around 80 classical pieces, but without four-part voic-
ing [26]. Since the amounts of data are small, our model was de-
signed to be able to extract information from different data sets.

4.3 Joint Model and Optimization Objective
The model follows the concept that harmonies are hidden states

of observable voicings [27], [28], which are arrangements of mul-
tiple notes according to the underlying harmony. This means that
an individual harmony can result in many different note combi-
nations, including nonharmonic tones. A graphical representation
of the model is shown in Fig. 3. In addition to dependencies of
a conventional hidden Markov model, we account for extended
harmony context, considering the trade-off between combinato-
rial complexity and the ability to capture characteristic chord se-
quences, and allow harmonies to be of different lengths in order
to model the harmonic rhythm. Furthermore, the model captures
dependencies between consecutive voicings in order to model
melodic development, which allows accounting for principles of
music composition concerning melodies. However, this consid-
erably increases the complexity of the model, which is why we

discuss how to capture important contextual information while
reducing the problem of data sparsity in the following sections.

Denoting a chorale’s harmony progression as H ≡ (h1, . . . , hM)
and its sequence of voicings as V ≡ (v1, . . . , vN), the objective of
obtaining the optimal sequences H∗ and V∗ can be formulated as
follows.

H∗,V∗ = arg max
H,V

∏

i

⎛⎜⎜⎜⎜⎜⎜⎝P(hi | hi−1, hi−2)
∏

j

P(v j | v j−1, v j−2, hi)

⎞⎟⎟⎟⎟⎟⎟⎠

(1)

We apply modified Kneser-Ney smoothing [29] to all conditional
probabilities of our model in order to compute probabilities for
candidates that do not appear in the training data. This increases
the freedom of user input. For details on the smoothing imple-
mentation, we refer to our previous paper [21].

4.4 Harmonic Rhythm
We want to model harmonic rhythm in order to reduce

the probability of exceedingly long harmonies or unrhythmic
changes. However, this restricts us to training the model on data
with suitable harmony annotation, which is only available in rel-
atively small amounts. Therefore, we approximate trigrams of
harmonies hi ≡ (ci, ri) by assuming the approximate indepen-
dence of harmonic content ci (root degree and chord quality) and
harmonic rhythm ri (onset beat and duration).

P(hi | hi−1, hi−2) = P(ci, ri | ci−1, ri−1, ci−2, ri−2)

≈ P(ci | ci−1, ci−2) P(ri | ri−1, ri−2)
(2)

An exemplary value for ri is [onset = first beat of a bar; duration
= 2 beats]. In a trigram, the information of two of the three onsets
is redundant given the duration of all harmonies, since after the
exemplary ri, the onset of ri+1 has to be the third beat of a bar.
However, not using onset information would ignore, that, for ex-
ample, a trigram with the durations [2 bars, 2 bars, 4 bars] should
be more likely to start on a first beat of a bar than on a second
beat, because the latter would result in an unusual syncopatic har-
monic rhythm where harmonies change on weak beats and cross
bar lines. If we do not use rhythmic information at all, the con-
tinuation of the same harmony becomes the most likely, i.e., if a
user, for example, inserts no input in three consecutive bars, the
system would most likely output one single harmony spanning
all three bars, which we want to avoid. Not using Eq. (2) to ap-
proximate independence between harmonic content and rhythm
results in frequent fallback to bigrams or even unigrams due to
data sparsity, which can cause less smooth harmony progressions.
In addition to reducing data sparsity, Eq. (2) allows us to train
harmonic content and rhythm on different data sets. We can use
rhythm information from chorales in combination with harmony
information of a larger number of classical pieces. The harmony
information of the latter is tonality-independent, and thus more
relevant for harmony progressions [30].

4.5 Voicing Structure
In a four-part chorale, each voicing v j comprises the four notes

nS
j , nA

j , nT
j and nB

j of soprano, alto, tenor and bass, respectively.
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We process notes as MIDI note numbers, i.e., the middle C equals
the number 60, and the C# or D� above equals 61. We denote in-
tervals between notes as follows.

IS
j−1→ j ≡ nS

j − nS
j−1 (3)

where IS
j−1→ j is the melodic interval from beat j − 1 to beat j.

To reduce the problem of data sparsity, we apply multiple
heuristic approximations, considering how a human might ap-
proach music composition. First, we define a voicing transition
probability PT (v j | v j−1), and discuss how to account for the ad-
ditional context v j−2 and hi in Section 4.6. Despite the reduced
context, the combinatorial complexity of note combinations is
of O(r8), of which only very small subset appears in the train-
ing data. Therefore, we further approximate the probability of
voicing transitions by considering inter-voice distance and rela-
tive melody motion separately as follows.

PT (v j | v j−1) ≈
P(v j) P(Ivj−1→ j)∑
v j−1

P(v j) P(Ivj−1→ j)
(4)

where P(Ivj−1→ j) ≡ P(IS
j−1→ j, I

A
j−1→ j, I

T
j−1→ j, I

B
j−1→ j) denotes the

probability of the melody intervals of the four voices between
voicings v j−1 and v j. P(v j) ≡ P(nS

j , n
A
j , n

T
j , n

B
j ) captures inter-

voice distance, which is important because the sound of a chord
significantly varies depending on the relative position of its notes,
and music theory encourages keeping the distance between these
notes within certain bounds. On the other hand, P(Ivj−1→ j) cap-
tures the relative motion of voices and thus the relation between
similar (same direction) and contrary motion, where the latter is
encouraged by music theory. Our approximation allows learning
how to balance these aspects by learning from training data, while
reducing the combinatorial complexity from O(r8) to a maximum
ofO(r4). The normalization factor in the denominator is required,
because v j affects both P(v j) and P(Ivj−1→ j). Its computation takes
a lot of time, but has to be done only once.

In addition, P(v j) and P(Ivj−1→ j) are factorized into conditional
probabilities as follows in order to benefit from smoothing tech-
niques (P(Ivj−1→ j) in analogy to P(v j)).

P(v j) = P(nS
j ) P(nA

j |nS
j ) P(nT

j |nA
j ,n

S
j ) P(nB

j |nT
j ,n

A
j ,n

S
j ) (5)

P(Ivj−1→ j) = P(IS
j−1→ j) . . .P(IB

j−1→ j|IT
j−1→ j, I

A
j−1→ j, I

S
j−1→ j) (6)

The smoothing is applied to account for unseen candidates. For
example, a tenor note nT

j might not appear in the training data
in the context two specific notes nS

j and nA
j . However, thanks to

applied smoothing, the context of only the neighboring nA
j is con-

sidered as well. Since this is more likely to appear in training
data, we can obtain more meaningful probabilities for some user
inputs, where the non-factorized probability P(v j) would be 0.
When we furthermore only consider relative voice distance in-
stead of absolute pitch in P(v j), the system becomes more flexible
towards user input with uncommonly high or low notes.

Lastly, in order to identify parallel fifths and octaves, informa-
tion about both distance (perfect fifth or octave) and motion (par-
allelity) is required, which is not captured by the approximated
probability. Therefore, we multiply PT (v j | v j−1) with a heuristic
penalty factor Hp(vi, vi−1).

Hp(vi, vi−1) = α
Np(vi ,vi−1)
p α

Nhp(vi ,vi−1)
hp (7)

where Np(v j, v j−1) and Nhp(v j, v j−1) are the numbers of parallel
and hidden parallel fifths and octaves between the voicings v j

and v j−1, respectively. Hidden parallel motion describes the state
where two voices move towards a perfect fifth or octave in the
same direction but are not perfectly parallel. This motion should
also be avoided according to music theory, but the rule is not as
strict as for parallel motion, thus αp < αhp < 1.

4.6 Harmonic and Melodic Context
The amount of data containing both four-part voicing and har-

mony annotation is very small compared to the complexity of the
problem. Therefore, we implemented a harmonic dependency
heuristic Hh(v j, hi) that reduces the context information to the
number of occurrence of certain pitch classes in a voicing. In
case of a triad harmony, the heuristic is defined as follows.

Hh(v j, hi) = P(Nroot,Nthird,Nfifth,Nnonharmonic) (8)

where Nroot is the number of root notes of the harmony hi in the
voicing v j. Nthird, Nfifth, and Nnonharmonic are the numbers of thirds,
fifths and nonharmonic tones, respectively. Separate probabilities
are computed for seventh chords. The heuristic does not capture
the order or distance of these notes, and thus there is little infor-
mation overlap with the voicing structure probability PT (v j | v j−1).
The combinatorial complexity is low enough to make training on
a small data set feasible. It allows the algorithm to not only natu-
rally penalize nonharmonic tones, but also capture note doubling.
To handle unseen user input, additive smoothing is applied.

However, simply penalizing nonharmonic tones does not al-
ways result in a favorable outcome [22]. According to music
theory, there are several classes of nonharmonic tones, such as
passing tones and suspensions, which are defined by the intervals
surrounding the nonharmonic tone [23]. Our algorithm tracks
whether nonharmonic tones are properly resolved and if not, pe-
nalizes the corresponding voicing’s probability. In our experi-
ments, we considered the major nonharmonic tone classes found
in Bach’s chorales: Passing tones, neighboring tones and suspen-
sions. Additionally, nonharmonic tones that do not belong to the
current musical key’s scale are penalized.

Lastly, PT (v j | v j−1) considers only one previous voicing and
is therefore unable to capture music-theoretical rules concern-
ing consecutive melody intervals. For example, consecutive large
jumps in a melody should be avoided, and instead jumps should
be followed by small movements in the other direction [19].
Adding an additional voicing v j−2 to the context of PT would be
infeasible considering the combinatorial complexity. However,
from a composers standpoint, one could view longer melodic
dependencies separately from the immediate voicing transition.
Furthermore, most rules for melody can be formulated by group-
ing intervals I j−1→ j into movement types Mj−1→ j: Minor sec-
onds (one semitone) and major seconds (two semitones) are both
so-called step intervals, and any larger interval is a skip. Many
melodic rules concern the relation between consecutive steps and
skips. We implement the melodic probability as follows, where
C denotes all the context information already considered.
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Fig. 4 A result of the automatic music completion system. Notes and harmonies input by the user are
shown in black, and the output of the system in blue. While not illustrated, it is possible to specify
multiple harmony candidates for each beat, of which the algorithm will chose the optimal one.

P(Mj−1→ j |C,Mj−2→ j−1)

≈ P(Mj−1→ j |C) P(Mj−1→ j |Mj−2→ j−1) P(Mj−1→ j)
−1

(9)

which results from Bayes’ rule if assuming approximate inde-
pendence between immediate context C (voicing transition) and
melodic context Mj−2→ j−1. Since P(Mj−1→ j |C) is already con-
tained in PT (v j | v j−1), and the number of movement types is low
compared to the number of intervals, the added context does not
increase computational complexity very much. When consider-
ing the melodic context separately for each voice, the extension
of the context to several melody intervals is quite computation-
ally cheap. Thus, we combine detailed context in the immediate
vicinity of a voicing with efficiently reduced but very relevant
context information for longer distance dependencies.

In summary, the probability of a voicing in its context is ob-
tained as follows.

P(v j | v j−1, v j−2, hi)

∝∼ PT (v j|v j−1) Hp(vi, vi−1) Hh(v j, hi)
P(Mj−1→ j |Mj−2→ j−1)

P(Mj−1→ j)

(10)

Using this probability in combination with P(hi | hi−1, hi−2), our
algorithm explores harmonies and voicings for filling in gaps left
open by the user and searches for the most probable solution.

5. Evaluation

5.1 Music-Theoretical Evaluation Experiment
Our algorithm was designed to find solutions that best adhere

to various principles of music theory. Therefore, we statistically
analyzed how often music-theoretical rules are violated by the al-
gorithm. However, following music theory is easy without input
constraints. To generate a variety of randomized inputs, we ran-
domly chose 100 excerpts of 4 bars length from a test set contain-
ing 10% of the 380 four-part chorales obtained from the Classical
Archives [25]. We randomly removed 50% percent of the notes
and shifted some pitches. The musical key was estimated by min-
imizing the number of notes not contained in the corresponding
scale. The joint optimization of harmony and voicing allowed the
algorithm to find a solution for every input, which is an improve-
ment over our previous results of a 90% success rate [21]. An
exemplary output is shown in Fig. 4.

A selection of results of our analysis is displayed in Fig. 5. Par-
allel fifths and octaves were almost completely suppressed by

Fig. 5 Exemplary results of music-theoretical analysis. Since rules of music
theory are not absolute, statistics from Bach’s chorales are shown for
comparison. Occurrence of hidden parallels is compared, because
true parallel fifths and octaves were almost completely suppressed.
Intervals between soprano, alto and tenor exceeding octaves are clas-
sified as large. Melody intervals that should be avoided according to
music theory (such as tritones) are classified as unmelodic.

our algorithm and hidden parallels were fewer than in Bach’s
chorales. Likewise, intervals between voices exceeding a tenth
were almost completely suppressed and intervals exceeding oc-
taves were avoided to a similar extent as by Bach. Melody in-
tervals that should be avoided according to music theory were
equally few in generated music and Bach’s chorales. However,
the amount of step intervals (one or two semitones) in melodies is
significantly higher in Bach’s chorales (76%) than in the automat-
ically generated results (61%), resulting in less smooth melodies.
The balance between similar and contrary voice motion (18.5%
and 19.1%) differs slightly but not greatly from Bach (16.4% and
15.7%). These results indicate that the algorithm succeeds at
computing valid voicings for various inputs, but for evaluating
the actual sound we conducted the next experiment.

5.2 Subjective Evaluation Experiment
Evaluating music is inherently difficult due to the involvement

of a listener’s personal taste. In our case, copying any specific
composer is not the goal of the algorithm, so there are no original
pieces that would allow users to compare their generated music
for making an evaluation. Furthermore, an important factor of
our system is the response to individual user input, which is why
preparing music samples prior to an experiment does not make
much sense, and makes comparative evaluation even more diffi-
cult. Therefore, we instead implemented a graphical user inter-
face, that can be accessed online. We conducted an experiment,
in which 48 participants were asked to use the system with their
individual input and evaluate the generated results.
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Fig. 6 An example of a problematic solution (input notes and harmonies in black, generated ones in
blue). This example contains hidden parallel motion (beat 7 and 11) and a problematic nonhar-
monic tone: The F in the tenor at beat 7 is treated as a nonharmonic tone of a C major chord
despite being accented (i.e. the harmony changes) and on a heavy beat.

Fig. 7 The results of our subjective evaluation experiment, averaged over
48 participants. Generated music was rated with respect to the shown
criteria, where 1 is the worst and 5 the best rating.

In the experiment, the system was rated according to the four
criteria shown in Fig. 7. The participants were first asked to judge
whether the generated music adheres to classical music theory,
especially with regard to rules for polyphonic voicing (such as
shown in Fig. 2). However, we also received some feedback re-
garding the harmony. To interpret the participants’ answers to
this question, they were also asked to rate their music-theoretical
knowledge on a scale from 1 to 5. Answers from participants
without knowledge in music theory (rating 1) were ignored, and
the other answers linearly weighted. In other words, the an-
swers of a participants with extensive knowledge (rating 5) were
weighted 4 times higher than that of a participants with little
knowledge (rating 2). The received feedback was mostly posi-
tive: Voicing rule violations were rare (occasionally, hidden par-
allel or consecutive seventh movement was observed) and also
the chord progressions were generally perceived as smooth, al-
beit quite conservative. Some users pointed out a few problematic
nonharmonic tones which were ambiguous and lead to incorrect
interpretation of a harmony, i.e., the voicing sounded different
from the annotated chord. An example for such a nonharmonic
tone is the tenor note on the 7th beat in Fig. 6. To account for
participants without music-theoretical knowledge, we also asked
for an evaluation of coherence, namely the subjective musicality
or validity of the generated music. The results (not weighted ac-
cording to knowledge) were slightly better than for correctness,
but similar problems with the harmony were pointed out, mainly
occasional occurrence of unexpected harmonies.

To evaluate how well our system fulfills its goal of support-
ing music creation, we also asked participants to rate how in-
teresting the generated music was, and how well it fit their in-

put. Interestingness was rated highest, but might be influenced
by the fact that having their musical idea completed by a com-
puter was a new experience for the participants. Most users re-
acted positively to this experience and reported that their musical
idea was realized in the generated piece. Critique included har-
mony progressions being too conservative and the wish to choose
a style for the music to be generated. However, the ratings var-
ied significantly due to personal tastes involved. Therefore, we
invite the reader to experiment with the system themselves at
http://160.16.202.131/music completion.

6. Conclusion

In this paper, we propose automatic music completion as a gen-
eralization of several tasks such as melody generation and har-
monization, which were usually treated separately in previous re-
search. We present a system that allows a user to freely insert any
combination of melody fragments and harmony constraints. It
computes a complete four-part chorale by using an optimization
algorithm based on a probabilistic model of harmony and voic-
ing. Statistical analysis of generated music confirmed that the
algorithm follows multiple music-theoretical principles. We also
received positive feedback in a subjective evaluation experiment.

Our current system could be improved by implementing a so-
phisticated model of harmonic and melodic rhythm. Furthermore,
providing tuning parameters that allow users to intentionally in-
fluence the automatic generation process, e.g., by encouraging
interesting harmonies or rhythms, could improve both the user
interaction and the generated music.

Our main goal is to apply the principle of automatic music
completion to a wider variety of music. Since the idea is not con-
strained to chorales, future research in this direction could realize
systems that allow users to create their own jazz or pop songs, or
even orchestral pieces. The focus of such systems is to realize
the musical ideas of their users, making music composition more
accessible to inexperienced users, and providing an entertaining
collaboration between human and computer.
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