F=R—=ZAVAT4H 113-12
(1997. 7. 14)

HitR D6 4y MELEDETOEIA Y2000V Fv—IF—F~_—2X

T B, BN B, &F B
MK BERER S 2T MMERBEHER

ARHRTIE, 64y MHEBOREL, ZOoBBEENLE INADA/ODMG @ 6 4
Ey MUZOWTHRE TS, INADARAEYwy 7 K7 74 VEBBIZE S F—F_—2
VAT ATHD. #-T, 328y MHERETII—ECRI OFF_IARITBARS 3.
64y Mbizk Y ZoHIBIX <23, X, 24 ¥ 2000y Fv—7DEREZOND
THb#ET 3.

64 Bit Shusse-Uo and Sequoia 2000 Benchmark Database on It

Botao Wang, Akifumi Makinouchi, Kunihiko Kaneko
Gradudate School of Information Science and Electrical Engineering, Kyushu University

In this paper, we discuss properties of 64 bit environment and the redesign of our
32 bit INADA/ODMG for 64 bit environment. INADA is a database system based on
memory mapped files. INADA 32 bit version has the limitation of maximum data size.
In 64 bit INADA, a very large database in disks can be mapped onto a large size virtual
memory, practically without considering the size limitation. At the same time, we give
our design of implementation on Sequoia 2000 benchmark on the extended INADA.

64 Bit Shusse-Uo and Sequoia 2000 Benchmark Database on It

Botao Wang, Akifumi Makinouchi, Kunihiko Kaneko
Department of Intelligent Systems
Graduate School of Information Science and Electrical Engineering
Kyushu University, Fukuoka, Japan 812-81
botaow@db.is.kyushu-u.ac.jp, {akifumi, kaneko}@is kyushu-u.ac.jp

Abstract
In this paper, we discuss properties of 64
bit environment and redesign of our 32 bit IN-
ADA/ODMG for 64 bit environment. The new
implementation is introduced based on the 64
bit properties. In the new design, a very large
database in disk can be mapped onto a large size
virtual memory without considering the size lim-
itation. High query performance and storage ca-
pability are expected in the new INADA/ODMG.
While designing the implementation of Sequoia
2000 benchmark, we think OQL is flexible to han-

dle mass and complicated data.

"1 Introduction

Since the computer applications become more
complicated, and the users become more sophis-
ticated based on 32 bit environment, the move to
64 bit environment is inevitable. Many computer
companies such as, DEC, SGI, IBM and Sun, an-
nounced their timetables for 64 bit operating sys-
tem. The gains from 64 bit computing environ-
ment can be summed up in three aspects: per-
formance, precision, and capacity[l]. The most
important thing for database management is the
ability to address Very Large Memory(VLM64)
and very large file system[2]. These aspects should
be reconsidered and would provide a new solution

for computing in the applications which manip- .

ulate multimedia, scientific, and data warehouse
databases. They are usually huge in size and com-
plicated in operations.

Now, DEC Digital UNIX is the world’s leading
64 bit UNIX operating system. Informix, Ora-
cle, and Sybase are combining the power of their
VLM64 database solutions with the power of Dig-
ital’s 64 bit AlphaServer system[3]. For the 64
bit architecture, LP64 model is chosen as the
solution by Open System community considering
the portability, and interoperability with 32 bit
environment[4].

In this paper, we present our design
of extending the object management system
INADA/ODMG([5][6]) based on benefits of 64
bit system - VLM64 and very large file systems.
What we want to do is to extend database space
with improvement of system performance.

The remainder of the paper is organized as fol-
lows. Section 2 describes the background. The
extension is presented in Section 3. Section 4 in-
troduces the design of implementing Sequoia 2000
benchma.tk[9] using our INADA /ODMG. Section
5 contains related systems. Finally section 6 con-
cludes the paper and describes the future work.

2 Background for Extension

2.1 Issues

The Sequoia 2000 Project([7][8][9]) explores the
application of emerging database, network, stor-
age, and visualization technologies to earth sci-
ence problems, resulting in a “database-centric”
metaphor for scientific computation. The Sequoia
2000 Storage Benchmark[9] uses real data sets and
defines 11 queries. It is designed to represent the
needs of engineering and scientific computing. In
this paper, we consider two issues related to this
benchmark: :

o One is that the data size is huge. In Sequoia
2000 benchmark, the regional benchmark is
about 1GB bytes, the national benchmark
data is about 18 GBytes and the globe bench-
mark is multiple terabytes.

o Another is how to implement the special op-
erators such as POSTGRES defined build.in
operators “||”, ¢ <'| >" and* * &+" for geo-
graphic spatial operations which are used in
the queries[9]. The data processing functions
like clip and lowerRes are defined too. Such
special operations can not be avoided in en-
gineering and scientific computing. The se-
mantics of operations are different in differ-
ent applications, and new operations will be
required from application to application.

As mentioned in [9], above issues are not lim-
ited to geographic information system. Multime-
dia databases and data warehouse databases face

" the same issues. The implementation of Sequoia

2080 benchmark is meaningful for all such kind
of applications which deal with mass and compli-

- cated data.

2.2 INADA/ODMG

INADA offers an application platform for
building databases with a database language for

¢ C++ based Interface
¢ Persistent Objects

INADA

¢ Distributed Shared Memory
WAKASHI
¢ Persistent/Votatile Memory

(Network Of Workstations]

Figure 1: Architecture of Shusse-Uo

object management. It is a part of our ongo-
ing project “Shusse-Uo”. The object database
programming language provides the facilities to
manage persistent objects with C++ based inter-
face. “WAKASHI” [JIO] is used as distributed ob-
ject storage manager which is independent of data
models. ODMG93 C++ binding interfa»ce&ll]
is integrated into INADA and it is called IN-
ADA/ 8DMG. The figurel shows the architecture
of Shusse-Uo . ~

For the management of persistent heap where
persistent objects are allocated, INADA uses
UNIX mmap() function to map files to the vir-
tual memory. The current 32 bit INADA shows
some incapabilities to deal with files of huge size,
because of 2 GBytes memory size limitation. The
largest virtual memory available to the users is 2
GBytes. This means that very large database such
as Sequoia 2000 are very difficult, if not impossi-
ble with distribution of database, to be handled
by the current 32 bit INADA.

The target of our extension is to make good
use of the gains from the 64 bit architecture,
to build 64 bit INADA/ODMG to overcome the
above mentioned issues based on our current 32
bit INADA/ODMG, and to realize the Sequoia
2000 benchmark on it so as to show the perfor-
mance of INADA in running such a large and com-
plicated database application.

3 Extending INADA Address
Space

3.1 Adding Data Types

In LP64 (known as 4/8/8) model, the size of
basic data type long and pointer is 64 bit. In
current ILP32 (known as 4/4/4) model which
is the predominating data model’ available with
UNIX systems that execute on 32 bit computer
architecture, the size of basic data type long and
pointer is 32 bit. In ODMG93 [11], only. Long
and Unsigned Long are defined. There is no
Integer type. The variables with Long and Un-

Table 1: Bit Size Comparison

Pointer T Long Int Short
Unsigned | Unsigned
Long Int
INADA/ | 64 64 32 16
64
m none 64 none 16
for 64
INADA/T 32 32 none 16
32
ODMG | none 32 none 16
93
LP64 64 64 32 16
ILP32 32 32 32 16

signed Long become 64 bit long while being com-
piled with LP64 compiler. It’s problematic while
dealing with 64 applications because integer type
and long-integer type have different bit size, 32
and 64 in LP64, and only long-integer type is
defined currently. For some applications, 64 bit
integer is too long.

We think the new data type, integer type,
should be added into ODMG93 [11], which is de-
fined using keywords Int and Unsigned Int for
32 bit_size variables. The width of long-integer
type. Long and Unsigned Long should. be re-
defined from 32 bit te 64 bit. Without this ex-
tension, the applications based on ODMG93 are
limited, because long-integer type can not be 32
bit and 64 bit at same time. The table 1 shows the
different size definitions about the data types in
INADA /64, ODMG93 for 64 (current version with
%fl?‘l compiler), INADA /32, ODMG93, LP64 and

32.

3.2 Using 64 Bit Address Space
Address space becomes vast on the 64 bit pro-
cessor. Besides directly addressing much large
memory, the file sizes become much more huge
than current 2 GBytes limitation. So the GBytes
of data, such as multimedia data or data ware-
house data, need not to be stored in different files
any more and all the data can be accessed via a
single file if necessary. The file can be mapped on
the virtual memory using the mmap() function.
With this, the record I/O which would be required
in handling the traditional files is expected to be
improved too, which can help the performance of
DB. It means it becomes possible that data op-
erations can perform in the memory(ie. virtual
memory) with the whole data set such as data or
indexes in the memory address space. The larger
the main memory is, the smaller the number of
data swapping is. So the number of I/O oper-
ations will be reduced benefited from the 64 bit
very large memory. ‘And 64 bit computers are

usually provided with much more physical mem-
ory than 32 bit computers.

The INADA/ODMG is built on WAKASHI
which supports persistent virtual and distributed
shared memory on Network Of Workstations
(NOW). The basic storage unit is heap. It is the
unit used in mmap() function. One heap is one
clustering unit too. Logically, the heap offers stor-
age space for objects practically without size limi-
tation. In the 32 bit implementation, one heap file
can not exceed 2 GBytes. So the DBMS system,
if the size of DB is larger than that size, has to
manage multi heaps distributed on multi sites.

In the extended design based on 64 bit archi-
tecture, the size of one heap can be much larger
than 2 GBytes, which allows DBMSs to get a file
mapped on the very large virtual memory. Based
on this property, the management method is de-
signed as follows. Simply, one database file is de-
fined as one heap. A very large database may have
different types of data. At least, it usually has
a dataset and indexes which accelerate access to
the data. One heap is dedicated to data of a sim-
ilar characteristic. A very large database may be
composed of many heaps. In 64 bit environment,
it becomes possible to map all these database files
on the virtual memory while opening DB.

The mass data are saved with the same image as
its memory binary image. They do not need to be
put on different location in different format. The
user can manipulate all the data in the same view
as that in the main memory. In the implementa-
tion of Sequoia 2000 benchmark, one index file is
stored in one heap. For example, for Point data,
there are one data heap file, one Btree index heap
file and one Rtree index heap file. For Polygon
data, there are one data heap file, one Btree index
heap file and one Rtree heap file.

3.3 Extension of OID

Besides the above changes the OID structure
is redesigned too. OID represents the identity
of an object. In INADA/ODMG, OID is com-
posed of two parts, Heap Identifier(h.id) and Ob-
ject Reference Table Entry No. (ortdd). H.d
is used to identify the heap file where the ob-
ject that OID referees to exists and ort_id is used
to identify the object inside the heap. The size
of hid is changed from 8 bit to 16 bit, and
the size of ort.id is changed from 24 bit to 48
‘bit. Figure 2 show the structure of OID and its
changes. The maximum heap number is changed
from 28(256) to 21%(65,536). The maximum ob-
ject entry number is changed from 224(16,777,216)
to 248(281,474,976,710,656). Apparently the stor-
age capability is improved greatly by this change
in 64 bit INADA/ODMG.

4 Benchmark Design

4.1 Schema

The implementation of Sequoia 2000 bench-
mark is designed in INADA/ODMG in order to

Heap Object Refrence Table
Identifier Entry NO.
32bit OID

— J
Heap Object Refrence Table
Identifier Entry NO.
64bit OID

Fo‘ixglslre 2: INADA/ODMG 32 bit OID and 64 bit

test the performance. Based on the object ori-
ented design method, the schema classes Point,
Raster, Polygon, Graph and additional classes
BTree, RTree are defined. The instance objects
of a type are stored in a set. There are four col-
lection types, Set, Bag, List and Array. In
ODMG93, the extent of a type is the set of all
instances of the type within a particular database.
For example the extent of Polygon is defined in
INADA/ODMG C++ binding d_Set as following:

d_Set<d_Ref<Polygon>> POLYGONS;

According to ODMG93, OQL is a superclass of
SQL. It allows method invocations with or with-
out parameters wherever the result type of the
method match the expected type in the query.
With the methods the complicated queries can be
performed easily and directly in OQL without sys-
tem extension, especially in the case of the appli-
cation like GIS or MMDB which usually requires
special operations for data processing as well as
the queries.

For Sequoia 2000 benchmark, the data are com-
plicated. The raster image data are large in size.
The data size of polygon and graph are variable.
At the same time, there are special operations
on spatial relationships and results. For exam-
ple, spatial operation between Raster and Poly-
gon “ polygon intersects rectangle” is defined in
POSTGRES as operator “||” [9]. On the retrieved
objects, there are operations such as clip, low-
erRes, which clips raster image by shape and
lowers the resolution of the raster image, respec-
tively. OQL shows great flexibility to deal with
these kinds of complicated queries. In the follow-
ings, we list Raster and Polygon schema classes
defined by INADA/ODMG C++ binding:

"The definition of Raster is shown as followings:

class RasterBase:d_Object{
// RasterBase definition
public:

// Attributes

Boxdata data;
// Boxdata is a literal structure
// describing box data.

class Raster:RasterBase{
// RASTER definition
enum { DataSize = 2048 };
//8MB for regional data

public:

// Attributes
d_Int “time;
d_Int band;

// wavelength to get data.
d_Short image [DataSize] [DataSize];
// Raster image data

// Constructor and Destructor

Raster();

Raster(Boxdata Location, d_ Int time, d_Int
band, d_Short image[DataSize] [DataS:.ze]);
'Raster(); .

// Operation for queries

Raster clip(Boxdata box);

// clip operation for Raster.

Raster lowerRes(d_Int size);

// do resolution reduction on Raster.
d_Double raster-avg();

//calculates the average value

//of all pixels

b

In the above definitions, class RasterBase de-
fines the primitive geometric attributes. Class
Raster inherits these attributes and adds its own
attributes for raster image, such as, time, band
and image. The image data is defined as 2D short
integer array with the size of 8 MBytes [9]. The
methods for raster image processing used in the
queries are defined too. They are clip, lowerRes
and raster-avg,

The definition of Polygon is deﬁned as follows:

struct Polygondatad{
d_Varray<Pointdata> data;

// Polygon data, variable length array
// Point data is a literal structure
// describing point data.

.
»

d_Object{

PolygonBase:
// PolygonBase definition
public:

// Attributes
Polygondata data;

// Method for Rtree Creating and
// Searching

Boxdata gatBoundlngbox(),

// gets its boundingbox

d_UInt size();

// gets polygon size.

};

class Polygon: PolygoﬁBase{
// POLYGON definition

public:
// Attributes
d_Int landuse;

~ // Constructor and Destructor

Polygon();
Polygon(d_Int landuse, Polygondata location);
“Polygon();

// Method for queries

d_Boolean interactBox(Boxdata rectangle);
//represent operator ‘‘||’’ in query 6,8
d_Boolean insideCircle(Circledata circle);
//represent operator ‘‘<|>’’ in query 7
d_Boolean includePoint(Pointdata point);
//represent operator ‘‘||’’ in query 10

i

In the above polygon definitions, Poly-
gonBase defines the primitive geometric at-
tributes too. Class Polygon inherits these at-
tributes and adds its own attributes for query
operations too. Polygon data is defined as vari-
able length array by d_Varray. In class Poly-
gonBase, the methods for creating and searching
Rtree are defined. Class Polygon is a subclass
of PolygonBase and a new attribute landuse is
added. Further, the spatial predicates , such as
interactBox, insiderCircle and includePoint
are defined. They represent Postgres build_in op-
erators, “||” and “ < | >”. For the detail of each
query, plea.se referee to [9)].

The relationship of the schema classés is shown
in figure3. Based on the the ODMG object model,
the system is easy to extend to other applications.
The reason we define two level classes is that we
want to distinguish the geometric attributes which
are not dependent on applications from the other

attributes which are dependent on applications.

For example, while creating Rtree indexes, only
geometric attributes are used. The raster image
data and polygon landuse data are the data used
in GIS queries. It is not necessary to include these
data while creating Rtree indexes.

4.2 Queries
Based on the above definitions of Raster and

Polygon, the benchmark query 3 written - in
POSTGRES

retrieve (raster—avg{
c¢lip(RASTER.data), RECTANGLE})
where RASTER.time = TIME ;

which selects AVHRR data for a given time and
geographic rectangle, and then calculates an arith-
metic function of the five wavelength band values
for each cell in the rectangle to be studied can be
written in OQL as follows:

d_Objcet

PointBase GraphBase

< Point) (Raster) Polygon (Graph >

Figure 3: Classes Relationship

_ select (r.clip(RECTANGLE)).raster-avg
from RASTERS r
where r.time = TIME

Since we have not yet developed IN-
ADA/ODMG OQL on our platform, the query
is directly implemented using ODL C++ binding
and OML C++ binding. The procedure is shown
as the follows:

1)Find all rasters which meet the given condition
using time Btree index.

2)Call the Raster.clip method for step 1) result.
3 Cla.l] the Raster.raster-avg method for step 2)
result. .

The benchmark query 6 written in POSTGRES

retrieve into F00-2(POLYGON.all)
where POLYGON.location| |RECTANGLE

finds all the polygons that intersect a specific rect-
angle and store them in database. Operator “||"
means 'polygon intersect rectangle’. The query
can be written in OQL as follows:

select polygon
from polygon in POLYGONS
where polygon.interactBox(RECTANGLE)

The procedure using OML C++ binding is shown
as follows: ‘

1)Find all polygons whose bounding box interacts
with RECTANGLE using polygon Rtree index.
2)Check step 1) result by Polygon.InteractBox
method, and get the polygons which interact with
RECTANGLE.

Compared the queries based on relational model
or extended relational model, the queries based
on OQL describes the operation in a more natural
and clear way, because the methods defined in the
classes can be called in the queries.

5 Related Systems

The systems related to Sequoia 2000 storage
benchmark have two sorts. One is geographic in-
formation oriented systems, such as ARC-INFO,
GRASS and IPW, which are introduced in [9].
Another one is the extension of existing systems,
Paradise ([12][13][14]) and Monet([15][16]) are

some examples. Because the formers are geo-
graphic information application systems, which
differ from INADA, an object database for gen-
eral data extensive applications. The following
comparisons focus on the later two systems be-
cause they are database systems on which sequoia
2000 are built.

Paradise is a database system aimed at han-
dling GIS applications and provides an extended-
relational data model for modeling GIS applica-
tion. The build_in data types for GIS management
are provided. The spatial data types provide a set
of spatial operators that can be accessed from an
extended version of SQL. All the types are imple-
mented based on Abstract Data Types (ADT).

Monet is a type- and algebra-extensible data
system based on %inary Association Tables(BAT).
It is table-oriented. For user-defined types, AD
facility is provided too. Besides allowing addition
of new datatypes and operators like Paradise, it
further allows for addition of new relation opera-
tors. Its implementation strategy is “extensible-
toolkit” approach. The support for new data
types and accelerators is implemented through
ADT interfaces and the C compliant object-code
are linked by Monet utility for new relation op-
erators.

Paradise uses extended build-in datatypes. Its
capabilities of data processing is limited to its
buildin datatypes. Momnet has good capability
for extension on new datatypes and relation oper-
ations. To extend the operators, Monet system
utility is used and the operators are added using
dynamic linkage of C object-file or library. At im-
plementation level, the operator is a kind of mod-
ule, it is not internal part of the data.

In our implementation the database design is
based on OBMG object database model. The
data and operations on it, are defined together.
This is very flexible to handle above complicated
data.

For very large arrays, Paradise chunks arrays
into subarrays, and stores them in a file differ-
ent from other data. The data compression is
used for performance enhancement. The Monet
performs all operations in main memory based on
unix mmap(), on which INADA /ODMG is based
too. Monet puts fixed-sized type and variable-
size type data in different storage location. In IN-
ADA/ODMG, fixed-sized type and variable-size
type data are put together. This is allows cluster-
ing the data.

6 Conclusion and Future Work

In this paper, we discussed properties of 64
bit environment and redesign of our 32 bit IN-
ADA/ODMG for 64 bit environment. The exten-
sion provides very large space for database system,
and high performance operations can be expected
based on our design. The design has same inter-
face as that of ODMG C++ binding. The size of
build in data type in ODMG93 are upgraded and
extended. ‘

We discussed also an implementation of Sequoia
2000 benchmark on INADA/ODMG extension for
64 bit address space. The memory address lim-
itations derived from 32 bit cpu architecture are
eliminated by its extension and can run the bench-
mark. The database is built using ODMG object
database methodology.

Now we are implementing the 64 bit IN-
ADA/ODMG and Sequoia 2000 benchmark and
hope that the performance result will be reported
soon.

References

[1] Solaris Products White Papers: 64-bit Com-
puting in Solaris, 1996, December. //http:
www. sun. com/ sunsoft/ solaris/ whitepa-
per/ solaris64.html

2

—

Digital Announces New Release of Indus-
try’s Leading 64-bit Unix Operating System,
1996, March. http://www. digital.com/ in-
for/ PROOHG

[3] Digital Opens Database Technology Center
Supporting Transition to 64-Bit, Very Large
Memory (VLM64) Computing. 1995, Decem-
ber. http://www. europe. digital. com/ infor/
PROOF7

{4] 64-bit

~ Computing Today, http:// decwww. epfl. ch/
connections/ cdrom /html/dec.unix/ 64bit/
index.html

[5) Kan Yamamoto, Multimedia Data Storage
for the Object-Oriented Persistent Program-
ming Language INADA, 1997, February.
Master thesis, the Department of Intelligent
Systems, Kyushu University, Japan

[6

—

Yamamoto, Kan, et.al, “Integrating ODMG
interface into the object database
SHUSSEUO”, Information Processing Soci-

ety of Japan, the 53th national convention, -

1996, Japan
[7

—

1992. http://s2k-ftp
EDU:8000/ sequoia/demo/

(8] Micahael Stonebraker, et.al, “THE SE-
QUOIA 2000 ARCHITECTURE AND DM-
PLEMENTATIONS STRATEGY”, Sequoia
2000 Technical Report,93/23. 1993, Univer-
sity of California, Berkeley, CA 94720

[9] Stonebreaker, M. et.al., “The SEQUOIA
2000 Benchmark”, Proc. of 93 ACM SIG-
MOD Conference on Management of Data,
1993, Washington

[10] G.Yu, K Kaneko, G.Bai, and A. Makinouchi,
“Transaction Management for a Distributed
Object Storage System WAKASHI-Design,
Implementation and Performance”, Proc. of
ICDE 96, New Orleans, Louisiana, USA.

CS.Berkeley.

Allison Woodruff, Sequoia 2000 slide show,

- [11] R.G.G. Cattell, et.al., “The Object Database

Standard:ODMG-93 Rel 1.2”, Morgan Kauf-
mann Publishers, San Francisco, California
Inc. 1996

[12] Computer Sciences Department University
of Wisconsin, Madison, Paradise Version 0.1
Reference Manual. 1994, January. file:// ftp.
cs. wisc. edu/ paradise/ papers,

[13] David J. DeWitt, Navin Kabra, et.al,
“Client-Server Paradise”, Proc. of VLDB 94

[14] Jignesh Patel, JieBing Yu, et.al. , “Building a
Scalable Geo-Spatial DBMS:Technology, Im-
plementation, and Evaluation”, Proc. of SIG-
MOD 97

[15] Peter A. Boncz, Martin L.Kersten. “Monet:
An Impressionist Sketch of an advanced
Database System”, Proc. of BIWIT 95

[16] Perter A. Boncz, Wilko Quak, Martin L.
Kersten, “Monet And Its Geographic Exten-
sions”, Proc. of EDBT 96

