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Abstract: In recent years, agents trained to cope with various environments have received attention in the
machine learning field. An intuitive rational decision-making environment is card games and researchers are
especially focused on solving the game of poker. In this work, we focus on Collectible Card Games (CCGs)
which have rich diversity of game play and much more randomness compared to poker. In order to solve
such complicated card games, we create several simple models of the real game and conduct experiments on
these models with Counterfactual Regret Minimization (CFR) algorithms. As results, agents learn equilib-
rium strategies successfully in the simple model and we confirm the convergence of Counterfactual Regret
Minimization (CFR) algorithms.

1. Introduction

Researchers have been studies how to train game AI

agents to cope with various environments for many years.

The single-agent environments both with perfect informa-

tion and imperfect information are hot research fields, and

researchers have made many excellent contributions in these

fields which are studied via Monte Carlo Tree Search or re-

inforcement learning.There are already some promising ap-

proaches of perfect information games in multi-agent envi-

ronments such as mastering the game of Go [1]. But many

problems in imperfect information games remains.

Card games, which are intuitive rational decision-making

environments, have multiple players during game process

that make card games become systems in which multiple

agents share common environments. This is a constantly

changing system, in which agents interact with both en-

vironment and each participant. Collectible Card Games

(CCGs) are a very popular type of card games, and because

of the diversity of its game-play, it has become a platform

for researchers to do AI research. One of the games, named

Hearthstone, is a new research target in CCGs. Several al-

gorithms based on perfect information games, such as Monte

Carlo Tree Search, are also proposed to solve CCGs.

2. Background

2.1 Extensive Form Game

The extensive-form game is a natural model for sequen-

tial decision-making enviroments with multiple agents from

game theory [2]. It uses a game tree to represent the entire

game process. Tic-Tac-Toe is one of the simplest perfect in-
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Fig. 1 Part of game tree of Tic Tac Toe

formation games and part of its game tree is shown in Fig. 1.

On each non-terminal game state players have several avail-

able actions and every terminal state contains rewards for

each of players.

Players of Tic-Tac-Toe know exactly which game state

they are on currently, and also understand which game state

they would move to via observing the opponent’s actions.

However, in imperfect information games, the situation

is different because of the unobservability. The key differ-

ence is the information sets, which are sets of game states,

in which players cannot distinguish which current state ex-

actly they are in and so must choose actions for all such in-

distinguishable states with the same distribution. Thus the

extensive-form of imperfect information games is denoted

as:

• N is a finite set of players.

• H is a finite set of sequences which is the histories of

actions. Z ∈ H are the terminal histories.
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• A(h) are the actions available after a non-terminal his-

tory h ∈ H.

• P is the player function, P (h) is the player who takes

an action under that history.

• Ii is a information set of player i belongs to Ii which is

a information partition of player i.

• ui is a utility function for each player i from the ter-

minal states Z to the regrets R. If N = (1, 2) and u1

= -u2, it is a zero-sum extensive game. Define ∆u,i =

maxz ui(z) − minz ui(z) to be the range of utilities to

player i.

2.2 Strategies and Equilibria

A strategy of player i, σi in an extensive game, is a

function which represents a distribution over A(Ii) to each

Ii ∈ Ii, and
∑

i is the set of strategies of player i. A strategy

profile σ consists of strategies for each player, σ1, σ2,..., with

σ−i referring to all the strategies in σ except σi. Let πσ(h)

be the probability of history h if players choose actions ac-

cording to σ. It naturaly decomposes πσ(h) = Πi∈Nπσ
i (h)

into each player’s contribution to this probability. According

to these notions, the overall value to player i of a strategy

profile is the expected payoff ui(σ) =
∑

h∈Z ui(h)πσ(h),

combining with each player would obtain a value at each

final state of the game.

A tranditional solution concept of a two-player extensive

game is the Nash equilibrium and it refers to such a situation

in the game: for each player, as long as the other players do

not change their strategies, the player cannot improve his

own performance. The Nash equilibrium has been proved

to exist in the premise that each player has only a limited

number of strategic choices and allows for a mix strategy.

This is an important property of extensive games. A Nash

equilibrium is a strategy profile σ where

u1(σ) ≥ max
σ

′
1∈

∑
1

u1(σ
′

1, σ2),

u2(σ) ≥ max
σ

′
2∈

∑
2

u1(σ1, σ
′

2).
(1)

2.3 Collectible Card Games

Since the release of Magic : TheGathering in the 1990s,

Collectible Card Games (CCGs) [3] have been one of the

most popular and profitable products in the entertain-

ment industry. Recently, the digital version also appeared,

HearthStone : Hero of Warcraft is one of the most popu-

lar digital CCGs. CCGs are turn-based card games in which

players set their decks in advance and carefully select cards

to have the opportunity to take advantages of powerful com-

binations during real matches. Because each card has a spe-

cific function, there are always complex and diverse game

modes.

In addition to the game modes, cards are obviously a ma-

jor component of the game. However, as the number of

cards increases, the number of interactions or ‘combos’ also

increases, which makes the strategy of such games depen-

dening on the player’s constructed deck. Therefore, most of

the previous research focuses on the strategic exploration of

fixed decks.

2.4 Hearthstone

HearthStone : Heros of Warcraft is an online digital

CCG (DCCG) launched in 2013 by Blizzard Entertainment.

2.4.1 Cards

Players can create a deck consisting of 30 cards from a

huge pool of cards. In order to win, the player needs to

use several types of cards to reduce the health of opponents

from 30 to 0, such as spells that affect the battlefield discard-

ing directly after be played, and the minions, that could be

considered as servants, are put into the battlefield and can

attack the enemy or other minions. In addition, weapons

that allow heroes to use special equipment to attack other

characters in a few rounds. An example of minion is shown

in Fig. 2 which cost/mana of four with four attack and five

health points.

Fig. 2 Example of minion

2.4.2 Mechanism

Each card has an associated cost, also called crystals,

equivalent to mana, which is reduced after playing, but re-

plenished at the beginning of each turn. Each player starts

with one crystal, and adds one more per turn up to ten crys-

tals, the maximum. Deckbuilding is limited to neutral pools

and to the cards belonging to a specific hero that players se-

lect for the game from a total of seven heroes. In addition,

each hero has a different hero power (costing two crystals),

combined with their special cards, making each hero a spe-

cial prototype. There is a screenshot of Hearthstone match

shown in Fig. 3 which shows the various features of the bat-

tle.
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Fig. 3 Screenshot of Hearthstone match

2.4.3 Challenge

According to the definition, the differences between CCGs

and ordinary card games are very obvious. Although

Hearthstone and poker are both games of imperfect informa-

tion, we are familiar with the card features of poker. Each

card of poker has a different number which represents the

strength of this card. Poker has a total of 54 cards. Play-

ers perform an action in one round in most modes of poker

games. Similarly, in Hearthstone, players also play cards

in hands which draw from a deck containing 30 cards. But

the opponent’s deck is unpredictable, and unless he finishes

all the cards, we cannot fully know his deck. This deck is

selected from a larger card pool which contains more than

two thousands cards. In addition, poker players can perform

only one action to play cards or pass, but Hearthstone play-

ers can perform many different sequences of actions in one

round. In most CCGs, players have several action options,

and their combinations make up the real sequence of actions.

The order in which the actions are performed in every unique

action sequence is crucial and determines interactions which

we call ‘combo’. The different card features and performed

actions make the game tree too deep and large to handle.

2.5 Previous Methods

For Hearthstone, there are already several mature sim-

ulators in the Hearthstone community named Hearthsim.

Some of those simulators implement the main game mech-

anism and include several artificial intelligence agents that

allows players to play against, or run simulations, and pro-

vide statistics after the game is over. Those methods are:

• Random

The agent always chooses one action randomly from all

possible actions without any logic.

• Noaggression

The agent never actively attacks the opponent, it just

randomly chooses between PLAY CARD and PASS

which means end-turn.

• Greedy

The agent always chooses the most valuable action, and

does not consider too much. Its actions are driven by

an algorithm built on several game metrics using an

evolutionary approach.

• GameStateV alue

The agent makes an action selection based on the value

of the current state. It is a recursive Alpha-Beta prun-

ing algorithm controlled by a heuristic algorithm.

• MonteCarloTreeSearch

Researchers have tried to apply the Monte Carlo tree

search algorithm, which is very mature in the perfect in-

formation game, to Hearthstone, and made some adap-

tive improvements recently [4]. It makes use of a real

player-based deck database to make Monte Carlo tree

search possible on imperfect information situations.

Besides those game playing methods, researchers are also

trying to solve it in several different aspects. Such as deck

building [5], card generation and data mining [7].

3. Proposed Approach

As we mentioned before, the GameStateV alue algorithm

apparently calculates the value based on fixed decks and

the MonteCarloTreeSearch algorithm are not suitable for

CCGs which is an imperfect information game. In order to

solve such a complicated imperfect information game, we

use a mature algorithm Counterfactual Regret Minimiza-

tion (CFR) [8] which is one of the most efficient methods

for computing Nash equilibria in large, zero-sum, in imper-

fect information games. In the domain of poker, CFR has

proven effective, and produced a lot of variants, such as MC-

CFR [9], CFR+ [10] and DisCFR [11].

3.1 Counterfactual Regret

Counterfactual Regret Minimization is an iterative algo-

rithm that contains a sequence of strategies σ0, σ1,..., σT ,

the average strategy σ̄T of which converges to an approxi-

mate Nash equilibrium as T → ∞ in the two-player zero-

sum game. In order to obtain the average strategy, it should

computes counterfactual value at first,

vi(σ
t, I) =

∑
(h,z)∈ZI

πσt

−i(h)uσt

i (h, z), (2)

where πσt

−i(h) has been introduced before, the probability,

and uσt

i (h, z) is the value players can get at final state Z.

Also there is an action-dependent counterfactual value,

vi(σ, I, a) =
∑

(h,z)∈ZI

πσt

−i(ha)uσ(ha, z), (3)

where ha is the sequence h followed by action a. So the

counterfactual regret for not taking action a at I is:

rt(I, a) = vi(σ, I, a) − vi(σ
t, I). (4)

Then the regret can be accumulated as RT (I, a) =∑T
t=1 r

t(I, a).

3.2 Regret Minimization

If we define (x)+ = max(x, 0), so the strategies can be
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Fig. 4 Game Tree

updated as:

σT+1(I, a) =
(RT (I, a))+∑

a∈A(I)(R
T (I, a))+

. (5)

If we run CFR for T iterations, then we can get overall regret

of the strategies as:

RT
i = max

σ
′
i

T∑
t=1

(vi(σ
′

i, σ
t
−i) − vi(σ

t)). (6)

CFR gives an assurance that RT
i /T → 0 as T → ∞, which

means when two players minimize regret, it guarantees to

converge to a Nash equilibrium.

4. Experiment

The final target of solving Hearthstone is too complicated

to ensure convergence of algorithms of CFR family. So we

follow the previous research route which is used to solve

Texas hold’em. That is we simplify the original large game

into a small model and increases its complexity step by step.

In this paper, we conduct our experiments on several simple

models.

4.1 Environment

The goal of simplification is to reduce the number of in-

formation sets for each player so that the small model can

be solved.

4.1.1 Model

Firstly we create one-card game models in which each

player has only one card, which is a minion in the deck

and can play this card after drawing it. Besides this sim-

plest model, we also conduct experiments on two-card game

models in which each player has two minion cards. One is in

hand at the beginning of one battle and draw another one

from the deck later. After that, we adjust these models to

an unbalance situation in which players may have different

numbers of cards or Hero have different health points. In

our simple model, players only have minions but no spells

or weapons. We also remove hero power and mechanics of

minion cards. Another significant difference between poker

and CCGs is judgment on winning and losing. In normal

poker games, after the players play cards according to cer-

tain rules, the players win or lose within a certain number of

rounds. But there is an infinite round of games in Hearth-

stone when players choose ‘pass’ all the time. To prevent

this unexpected situation, we limit the maximum number of

rounds of game. The game tree is shown in Fig. 4.

4.1.2 Information set

As Hearthstone has more than one actions in one round

such as ‘attack’, ‘play cards’, ‘cast spells’ or ‘pass’ and has

a few types of cards such as summon ‘minions’, ‘spells’ and

‘weapons’, we consider action sequences as variable that de-

termines state transition in the game tree instead of actions

in normal poker games. Summon minions could be con-

sidered as servants. Spells affect the battlefield which are

discarded after being played. Weapons which give heroes

strength to attack. Creating a node for every action would

cause the game tree to be too deep. The information set

for each indistinguishable group of nodes not only contains
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Fig. 5 Game Tree of One-card Game

the action sequences token before, but also includes hand

information which means what cards are in hand.

4.1.3 Vanilla CFR and Chance Sampling CFR

We apply two different CFR algorithms from the CFR

family to every model. The vanilla algorithm would tra-

verse the whole game tree while the chance sampling algo-

rithm just samples one action sequence from the available

action sequences. We plot two results of the same model in

one table in different colors.

4.2 Result

In order to let the agent learn to avoid draw in limited

rounds which cause many draws, we make the agent regret

reaching a draw and become much more positive when it

reduces opponents hero’s health point below zero. We con-

duct experiments on several one-card games which have dif-

ferent cards. Part of game tree of one model is shown in

Fig. 5. Agents learned probability distributions for every

action available and we show the final probabilities which

also are strategies in the tree. As we mentioned before, in

order to obtain the strategies, we compute counterfactual

value at first. So there is a value for every node and in order

to verify the convergence and observe it, we calculate the

value of Player 1 at the root node and plot these values over

iterations.

The results of two one-card game models are shown in

Fig. 6. In Fig. 6(a), two players have the same card so

Player 1 wins in most branches. In Fig. 6(b), Player 1 has a

minion card that costs two crystals and Player 2’s card costs

one crystal. That makes Player 1 lose in most branches.

Another two results of two-card game models are shown

in Fig. 7. Both players have two cards that cost one and two

crystals for Fig. 7(a). Player 1 has two cards that cost two

and three crystals while Player 2 has two cards that cost one

and two crystals for Fig. 7(b). In Fig. 7(c), Player 1 has two

cards that cost one and three crystals while Player 2 has two

cards that cost two and three crystals.

Fig. 8 shows the results of two players in the unbalanced

situation in which players has different number of cards or

different health points. In Fig. 8(a), Player 1 has two cards

that cost one and two crystals while Player 2 has one card

that costs one crystal. In Fig. 8(b), Player 1 has three

cards that cost one, two and three crystals respectively while

Player 2 has two cards that cost one and two crystals. In

Fig. 8(c), two players have same card that costs one crystal

but Player 1 only has one health point and Player 2 has two.

In Fig. 8(d), Player 1 has three cards that cost one, two and

three crystals while Player 2 has two cards that cost one and

two crystals, and Player 1 has one health point but Player 2

has two health points.
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(a) Players have same card (b) Players have different card

Fig. 6 One-card game

(a) Players have same cards (b) Players have different cards

(c) Players have different cards

Fig. 7 Two-card game

5. Conlusion

In this work, we propose a novel approach to solve Col-

lectible Card Games (CCGs) from a traditional imperfect

information perspective. In order to solve the complicated

card games like Hearthstone, we create several battle envi-

ronments based on Hearthstone rules and apply Counterfac-

tual Regret Minimization (CFR) algorithms on those mod-

els. In each model, we calculate the value of player that

makes the action first. Although the model tested is small,

we confirm the convergence of CFR algorithms.

For future work, we would like to find equilibrium strate-

gies in larger or more complicated CCGs like Hearthstone.

But we think there are some difficulties to apply traditional

CFR algorithms to the real game which has a larger action

space and not traversable game tree. In that case, we would

like to try some newer methods in imperfect information

research fields [13][12].
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(a) Players have different number of cards (b) Players have different number of cards

(c) Players have different health points (d) Players have different number of cards and health
points

Fig. 8 Unbalanced game
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