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Abstract: The AlphaGo Zero series of algorithms have achieved superhuman performance in the game of
Go by use of deep neural network trained by reinforcement learning. However, according to ELF OpenGo,
the ability to solve with the inductive tactics, which human could get mastered quickly such as ladder
moves, oscillates significantly over the training process, even with significant amount of computation. In
this work, we propose a method which combines deep learning with back prediction to reconstruct the
game state in the game of Go. With our techniques, we estimate on the ladder moves dataset and found
that the back prediction network performs well. Although we so far have not tested on more datasets, we
hope that our techniques hold promise for making the neural network more robust and future research of
combining with the computer Go program.
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1. Introduction
In artificial intelligence, the game of Go is always viewed

as the most challenging game partly because of the diffi-
culty of evaluating the complex board positions and ex-
isting a large action space. Along with the history of
computer Go’s development, from program Zen to Alpha
Go Fan [1], and finally AlphaZero [2], the artificial intel-
ligence over-performed even the most powerful player in
this area. With the development of computer Go, there
comes many effective methods, such as tree search al-
gorithms which CrazySto used, Monte-Carlo Tree Search
(MCTS) [3], Neural Network (NN) and so on. In March
2016, Alpha Go Lee with deep neural network and tree
search, which is trained by the combination of super-
vised learning from human expert games and reinforce-
ment learning from games of self-play, defeated Lee Se-dol
4-1 in Seoul. After a year, a more powerful program, Al-
phaGo Zero, which solely depends on self-play reinforce-
ment learning that is based on deep neural network from
scratch, achieved state-of-the-art performance of winning
100-0 against the previously published Alpha Go without
human data, guidance or domain knowledge.

According to David Silver et al. [4], AlphaGo Zero
achieved state-of-the-art performance, however, reproduc-
tion of AlphaGo Zero algorithms requires large amounts of
computation which is an unattainable level of computing
resources for the majority of the research community, and
according to ELF OpenGo’s experiment [5], even at the
expense of phenomenal computation, deep reinforcement
learning models cannot perfectly master some basic tac-
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tics, such as ladder moves, which beginning human players
can also master without difficulty, and ability of playing
this kind of inductive move remains unstable status.

According to Hinton et al. [6], reconstruction can be re-
garded as a regularization method to improve neural net-
work’s robustness. In this paper, we introduce a neural
network called Back Prediction Neural Network(BPNN)
to reconstruct previous Go board state. Predicting pre-
vious move which needs important foresight is effortless
when compared to calculating the next move of the best,
and it purely requires small amount of computation and
costs only several hours to train, therefore, we are hoping
for solve the problem of fluctuation in learning inductive
capacity with our method. We train and test the neu-
ral network on ladder scenario with several kinds of net-
works. we try to equipment the model with the ability of
inductive reasoning, and the model has learned to predict
inductive moves that require important foresight to some
extent, however, we observe that there is high variance
in the model’s strength during training process, and this
property holds over the training period. Nonetheless, it
is promising that our techniques can serve as the seed for
future work of combining with the AlphaGo style program
to make a relatively robust agent.

2. Related Work
2.1 The game of Go

The game of Go is an adversarial two-player board game
with the objective of occupying more territories of the
board with one’s stones than the opponent. As the game
progresses, the players place stones on the board to map
out formations and potential territories. Contests between
opposing formations are often extremely complex and may
result in the expansion, reduction, or wholesale capture
and loss of formation stones. The board consists with
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a plain grid of 19 horizontal and 19 vertical lines. The
stones are supposed to be placed on the intersection of
the board if the position is empty. Black player makes
the first move, after which it is white player, and black
player switches turn to their moves, and one player can
choose to place a stone or pass his turn. When all the in-
tersections directly adjacent to a stone of group of stones
are occupied by the stones of the other color, they will
be removed from the board . The game ends when both
players choose to pass their turn. Players try to claim
their territory by walling off sections of the board and sur-
rounding each other’s stones, and the winner determined
by the score of final position. A player’s score is calculated
by all the positions which the player has either occupied
or surrounded. According to the final scores of two play-
ers, the state decides the winner who has a higher score
than the other. Traditionally, a bonus (”komi”, most com-
monly 7.5) is given to white as compensation for going sec-
ond [7]. There are different rule-sets (Japanese, Chinese,
AGA, etc.), which are almost entirely equivalent, except
for certain special-case positions.

2.2 Classical Search
In the first stage of game research for two-person zero-

sum games with perfect information, classical search is
widely applied on board games, such as Chess, and some
programs have defeated professional human players even
world champion in most classic games. Tree search is an
important method of classical search that recursively com-
putes the optimal value function in a search tree which con-
sists of bd possible moves, where b is the game’s breadth
(number of legal moves per position) and d is the tree
depth (game length), in some games, exhaustive search is
feasible so that these games are supposed to be solved by
this method. Some classical search methods, such as mini-
max search augmented by alpha-beta pruning [8], also en-
joyed initial success in the domain of board games. How-
ever, classical search is not a practicable method to lead to
even amateur level performance in large games, especially
the game of Go which is of great complexity.

2.3 Monte Carlo Tree Search (MCTS)
A Monte-Carlo evaluation consists in estimating a po-

sition by averaging the outcome of several random con-
tinuations. The method can serve as an evaluation func-
tion at the leaves of a search tree [9]. Monte Carlo Tree
search (MCTS) is a significant search method in board
games which combines tree search and Monte-Carlo eval-
uation [10]. Each search consists of a series of simulated
games that traverse as tree from root sroot to leaf [11]. At
each state, the value is determined by Monte-Carlo roll-
outs, and then it chooses child nodes of high values and
nodes that have not been completely explored. With the
simulation proceeding, the search tree becomes larger and
the value of each state develops into more accurate. MCTS
treats the tree search as an exploitation/exploration trade-

off. A common exploitation-exploration heuristic is Up-
per Confidence bounds applied to Trees (UCT) algorithm.
Concisely, UCT provides an exploration bonus propor-
tional to the inverse square root of a game state’s visit fre-
quency. Nowadays, most Go AIs collaborate with MCTS
to improve the model’s strength.

2.4 AlphaGo Series Algorithms
AlphaGo series algorithms are significant methods of

deep reinforcement learning, and they enjoy great success
due to the superhuman performance.
2.4.1 AlphaGo

AlphaGo proposed a new approach which uses value net-
work to estimate the board position and policy network
to select moves, and these two deep neural networks are
trained by the combination of supervised learning from hu-
man expert games and reinforcement learning from games
of self-play [1]. The neural networks join force with Monte-
Carlo Tree Search to achieve superhuman performance.
With this method, AlphaGo is proved to be the best of
the computer Go programs and defeated a human profes-
sional player on the 19 × 19 board for the first time.
2.4.2 AlphaGo Zero

Different from AlphaGo, AlphaGo Zero learns the game
of Go from scratch, without human data, guidance or do-
main knowledge beyond game rules. Value network and
policy network have been integrated into a single neural
network and the neural network is trained to predict own
move selections of AlphaGo and also the winner of self-
play games, starting from random play. Through train-
ing solely by deep reinforcement learning, AlphaGo Zero
outperforms AlphaGo with 100-0 match experiment. Al-
phaGo Zero achieves rapid improvement, precise learning
and stable learning [4].
2.4.3 Contemporary Reproductions

Besides of AlphaGo Zero, many implementations of
AlphaGo Zero series of algorithms with no extra data
or guide, such as Leela Zero [12], ELF OpenGo and
PhoenixGo [13], have made it available to the research
community in recent years. These open source reproduc-
tions master superhuman skill, and these programs pro-
mote the research community to better understand and
analyze many of considerations for large-scale deep rein-
forcement learning.

2.5 Capsule Network
2.5.1 Capsules

A capsule is a group of neurons whose activity vector
represents the instantiation parameters of a specific of en-
tity such as an object or an object part, and the length
of the activity vector represents the probability of exist-
ing entity [6]. Capsule Network introduces a new method
called dynamic routing between capsules, and by use of
dynamic routing, capsules network achieves state-of-the-
art performance on MNIST dataset and reaches a low test
error previously only achieved by more complex networks.
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Capsules are supposed to better represent hierarchical rela-
tionships inside of internal knowledge of features captured
by neural network and learn more robust representations
than traditional convolutional neural network.
2.5.2 Dynamic Routing

Capsule Network treats the length of vector as the prob-
ability of existing instantiation, therefore, vectors are sup-
posed to be solved by a non-linear ”squashing” function so
that long vectors’ length get diminished to a small degree
which is below 1, and short vectors’ length narrow down
to almost zero.

v j =
||s j||2

1 + ||s j||2
s j

||s j||
(1)

where v j is the vector output of capsule j and s j is its total
input.

Output ui of capsule i in the layer below is multiplied
by a weight matrix Wi j to produce a prediction vector û j|i,
and the input to capsule s j is represented by a weighted
sum over prediction vector.

û j|i = Wi jui, s j =
∑

i

ci jû j|i (2)

where the ci j are coupling coefficients calculated by the
iterative dynamic routing process.

The coupling coefficients represent the log prior prob-
abilities which capsule i should be coupled to capsule j,
therefore, we should solve the initial logits bi j with routing
softmax function to make ci j sum to 1.

ci j =
exp(bi j)∑
k exp(bik)

(3)

The coupling coefficients can be learned discriminatively
at the same time as all the other weights.

Capsule layers outputs a local grid of vectors which rep-
resent different information of the neural network.

Algorithm 1 Routing algorithm.
1: procedure ROUTING(û j|i, r, l)
2: for all capsule i in layer l and capsule in layer (l+1): bi j ← 0.
3: for r iterations do
4: for all capsule i in layer l : ci j ← softmax(bi)
5: for all capsule j in layer l + 1 : s j ←

∑
i ci jû j|i

6: for all capsule j in layer l + 1 : v j ← squash(s j)
7: for all capsule i in layer l and capsule in layer (l + 1):

bi j ← bi j + û j|i · v j.

8: end for
9: return v j

10: end procedure

3. Proposed Method
We will propose a neural network called back prediction

network, and the network is trained to use the current
board state to predict previous board state. Based on su-
pervised learning method, we train the network on ladder
scenario.

3.1 Data Representation
In recent years, deep convolutional neural network

achieves superhuman performance across a wide range of
domains, handwritten digits recognition, face recognition,
image classification and so on. We treat the board of Go
as an image, and employ convolutional neural networks
to capture features of the position. We test two different
kinds of input and output to train our network.
3.1.1 One-plane Representation

The input of the network is simply set to be a 19 ×19
image stack, and the output is a 361-dimension one-hot
vector to represent the move from previous board state to
the current board state.
3.1.2 Multi-plane Representation

We separate the board into 3 parts, a black board and
a white board which illustrate the presence of the current
player’s stones, and a feature board which indicates the
next player’s color. We will take 5 board states as an ex-
ample to explain the input of the network, as shown in Fig-
ure 1. The input to the back prediction network’s shape is
set to be as 19 × 19 × 11, and this network consists of cur-
rent position of white and black stones, 10 feature planes
which represents the 5 previous states of black player and
white player respectively, and a plane which determines
the turn to move (if it is black player’s turn to play, the
plane is set to be all 1, otherwise 0), and the output is
represented by a 722-dimension one-hot vector which in-
dicates the move and the turn(if it is black player’s turn
to play, the value 1 is placed on the first 361-dimension
location, otherwise the last 361-dimension location).

Fig. 1 Input: Input with board size × 11 stack

3.2 Architecture
3.2.1 Basic Architecture

As shown in Figure 2, We employ traditional convolu-
tional neural network to train our model on ladder sce-
nario. Our basic network is composed of 4 convolutional
layers, and in order to stop the board size from becoming
extremely small, we zero pad the input of every convolu-
tional layer.Then two fully-connected layers are followed.

The first convolutional layer filters the 19 × 19 ×
num states input image which represents the Go board
with several consecutive board states, (The board image
is from Sabaki [14]) with 48 kernels of size 7×7 with a stride
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of 1 and ReLU activation function. The second convolu-
tional layer takes the output of the first convolutional layer
as the input, and the input is filtered by 32 kernels of size
5×5. The third and fourth layer function similarly with the
second layer. The first fully-connected layers have 512 neu-
rons with ReLU activation, and the second fully-connected
layer generates the final output vector with softmax acti-
vation.

Fig. 2 Convolutional Neural Network Architecture

3.2.2 Additional Architecture
A simple capsule network architecture is shown in Fig-

ure 3. The network is combined with convolutional neural
network. The architecture is shallow with one convolu-
tional layer and one capsule layer. Convolutional layer has
256, 9 × 9 kernels with a stride of 1 and ReLU activation.
The layer scans the image to capture features of the board
and passes them to the capsule layer. The capsule layer
scans the input with 361×dim kernels(dim is set to be same
as the input of board states to save each states’ informa-
tion) and then generates 361 vectors which represent the
information of every position on the board. The length of
the activity vector indicates presence of an each position.

Fig. 3 Capsule Neural Network Architecture

4. Experiments and Results
Our training uses NVIDIA® GeForce GPU 1080TI with

12GB of memory. All our training codes are run on an
AMD ® Ryzen 7 1800X Eight-Core Processor machine with
an NVIDIA® GeForce GTX 1080 Ti GPU. The Python 3
interpreter version is 3.7.3, the Keras version is 2.2.4, and
the Tensorflow backend version is 1.14.0.

4.1 Dataset
Ladder move is an inductive tactic which even beginning

human player can master effortlessly however, it is difficult
for computer Go program to master the skill.

As shown in Figure 4 [5], the left figure shows the be-
ginning of a ladder scenario, and the right figure indicates
the end of a ladder scenario.

We train and test our networks on ladder move
dataset [15]. Ladder scenario consists of 116 go games
which include ladder moves, and the dataset yields about
11000 states-move pairs for training and testing.

Fig. 4 A sample of ladder moves

4.2 Evaluation
We will curate ladder dataset to evaluate the model’s

ability of handling ladder move, and observe the accuracy
and validation accuracy to judge whether the model is able
to learn the ability of inductive reasoning.

4.3 Preconditions
We parse the ladder moves dataset and train the net-

work modified from the betago program [16], and we set
convolutional neural network parameters the same as the
betago program. Additionally, we also adjust the capsule
program [17] to fit for our model.

4.4 Details of Learning
We partition the datasets into two parts, training set

and validation set, which is compose of states-move pairs
from different games of Go. We use 85% for training and
15% for validation. Dropout and pooling is not adopted in
our program, partly because doing so would lose some in-
formation. We trained our model using adam with a batch
size of 128 examples, and a learning rate of 0.001, and the
loss function is set to be categorical crossentropy.

We make eight experiments which use 1-8 continuous
states to predict previous move, and we find that using 5
states is more robust and effective so that the following ex-
periment is supposed to take the experiment of predicting
previous move with 5 continuous board states as an exam-
ple to illustrate. Other results of ConvNet with one-plane
representation, ConvNet with multi-plane representation
and CapsNet are shown in Appendix A, B and C sepa-
rately.

4.5 ConvNet Model with One-plane Representation
We have trained the model with one-plane input with

4-layer convolutional neural network. As shown in Fig-
ure 5, we can observe that the model can achieve high ac-
curacy, and the accuracy on the validation set converges
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to over 50%. The loss continuously decreases, however,
after nearly 30 epochs, the validation loss begins to in-
crease. It shows that we can get a network of high quality
rapidly but the network starts to overfit the training set
when validation loss sets about increasing.

A 4-layer convolution neural network with one-plane
representation can reach good performance in the early
training period. We can extract the network with robust-
ness and effectiveness by the technique of early stop.

Fig. 5 Convolutional Networks with One-plane Accuracy. acc5
indicates the model accuracy of predicting previous move
with 5 continuous board states, and val acc shows the level
of validation.

Fig. 6 Convolutional Networks with One-plane Loss. loss5 indi-
cates the model accuracy of predicting previous move with
5 continuous board states, and val loss shows the loss of
validation.

4.6 ConvNet Model with Multi-plane Representation
Considering that the game of Go is not fully observable

from the current board state, we divide the input image
into 3 binary channels, the board of black stones, the board
of white stones and a board which indicates the color fea-
ture. As shown in Figure 7, the accuracy is approach-
ing close to 100% and the validation accuracy converges
to about 40%. The Figure 8 illustrates that the training

loss is almost reaching 0 but validation loss is increasing
rapidly from the beginning. Compared to the model with
one-plane representation, we utilize more board features
and network parameters, but the problem of overfitting
seems like more serious.

Fig. 7 Convolutional Networks with Multi-plane Accuracy.

Fig. 8 Convolutional Networks with Multi-plane Loss.

4.7 Capsule Network
Capsule network has many approaches to construct, and

we purely give a simple implementation and show that cap-
sule network makes sense and dynamic routing helps. We
train our model with one-plane representation, from the
Figure 9 and 10, we found that the accuracy fluctuates
in the training process but the validation loss converges
to a certain value about 4. The result indicates that the
network has some effect on reducing overfitting.

5. Discussion
Through supervised learning, the network is supposed

to learn the ability of predicting ladder moves, and three
kinds of networks achieve high performance. Compared to
ConvNet with multi-plane representation, ConvNet with
one-plane representation achieves better performance and
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Fig. 9 Capsule Networks Accuracy without Share Weights

Fig. 10 Capsule Networks Loss without Share Weights

saves training time, partly because there is no need to con-
sider about the issue of illegal moves and ko states for pre-
diction of previous move, therefore, using a simple data
representation is more fit for this experiment. However,
there exists a problem of overfitting on the 2 convolutional
networks. Indicated by the result, capsule network which
has a shallow structure can reduce overfitting and learn
more robust representations, additionally, the structure is
supposed to save more important details. We also found
that using more than 2 board states can make the training
process quicker and robust by conducting the experiments
of predicting the previous move with 1-8 continuous board
states.

6. Conclusion and Future Work
In this work, we have introduced a method called back

prediction. We found that a shallow neural network can
acquire inductive ability from back prediction effectively.
Back prediction is a simple but efficient method to simplify
the problem of increasing the model’s robustness, and back
prediction network works well on ladder scenario without
significant computation resource, and the most obvious
next step is to test our method on other datasets. We

hope that our method is helpful for combining with value
network and policy network to make a more robust Go AI.

The easiest and most common method to reduce over-
fitting is to artificially enlarge the dataset [18], transform-
ing the input board image into 8 symmetrical transformed
image is a promising method to enlarge the ladder move
dataset, and we would like to reduce overfitting by data
augmentation.
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A. Results of ConvNet with One-plane Repre-
sentation

Fig. 11 CNN Model Accuracy with One-plane

Fig. 12 CNN Model Validation Accuracy with One-plane

Fig. 13 CNN Model Loss with One-plane

Fig. 14 CNN Model Validation Loss with One-plane

B. Results of ConvNet with Multi-plane Rep-
resentation

Fig. 15 CNN Model Accuracy with Multi-plane

Fig. 16 CNN Model Validation Accuracy with Multi-plane
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Fig. 17 CNN Model Loss with Multi-plane

Fig. 18 CNN Model Validation Loss with Multi-plane

C. Results of CapsNet

Fig. 19 Capsule Network Accuracy

Fig. 20 Capsule Network Validation Accuracy

Fig. 21 Capsule Network Loss

Fig. 22 Capsule Network Validation Loss
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