© 2019 Information Processing Society of Japan

The 24th Game Programming Workshop 2019

Counterfactual Regret Minimisation for playing the
multiplayer bluffing dice game Dudo

QUENTIN GENDRE!¥

Tomoyuki KANEKO?:

b)

Abstract: Counterfactual Regret Minimisation (CFR) is a powerful learning tool for making Als for incomplete in-
formation games, but the vanilla algorithms becomes impractical when confronted with large size problems. In this
paper, we propose to explore the capabilities of CFR-based algorithms on the test case of 4-player Dudo, a bluffing dice
game often used in the 2-player case, but hadn’t yet in multiplayer CFR research. To curb the overwhelming amount
of states and depth of the game, we combined two methods: The abstraction through imperfect recall, thus reducing
the size of the game space; and CFR training variations, such Pruning, Monte Carlo and/or Fixed-Strategy Iteration.
After implementing various combinations, some had very satisfying results when tested against hand-made Als, and
Pruned Fixed-Strategy Iteration — a training method introduced in this paper that combined existing ones — returned a
very encouraging insight on how training time can be reduced.

Keywords: Counterfactual Regret Minimisation, CFR, multiplayer, dudo, perudo, bluff

1. Introduction

Counterfactual Regret Minimisation (CFR) has proven itself to
be a good robust base-line for approximating Nash Equilibrium
for 2-player zero-sum incomplete information games, thus be-
coming a common starting point for 2-player poker-like games.
In these 2-player zero-sum cases, the Nash Equilibrium also has
very interesting properties, such as guaranteeing the player using
it a non-negative average utility (namely to “not lose”), regard-
less of the strategy of the other player [7]. Various algorithms
using CFR as a base-line have emerged to find this equilibrium
efficiently, in poker or other incomplete information games[4].

However, making Als outside of these constraints is still an
open problem. Other than the challenge of no longer having an
absolute solution, there also are difficulties such as the potential
explosion of the size of the state and action space. There has
been some research conducted on poker with more than two play-
ers, that show that CFR remains efficient in environments that re-
lax its original conditions. Typical examples are 3-Player Kuhn
Poker [9], 3-Player Leduc Hold’em [9], and multiplayer Limit
Texas Hold’em [5]. These research show that CFR applied to
multiplayer environment looks promising, although some extra
care is required as Nash Equilibrium doesn’t guarantee a positive
average utility anymore. A very recent study has even managed
to make a very powerful Al against humans in six-player no-limit
Texas hold’em poker [2].

Dudo — also known under different names such as Cacho, Pico,
Perudo or Liar’s dice — is an old bluffing dice game still popular
in South America. There exists a lot of variations to this game,

Graduate School of Interdisciplinary Information Studies, the University
of Tokyo

Interfaculty Initiative in Information Studies, the University of Tokyo

¥ gendre@g.ecc.u-tokyo.ac.jp

Y kaneko@graco.c.u-tokyo.ac.jp

but in all of them, players must make in turn higher and higher
claims of type “there is a certain amount of dice with a certain
value”, until one or more player doubts them, in which case the
trustfulness of the claim is verified and the liar(s) eliminated. It
shares some similarities to poker, randomness and bluffing , thus
making it a great candidate for testing CFR. 2-Player Dudo has
already been a test environment for CFR [3], [8]. However, to our
best knowledge, no research has tried using multiplayer CFR for
the game Dudo, although some research has already been done
using a different type of algorithm “Soar” [6]. Apart from the
even larger state and action space, 4-Player game Dudo offers
some additional challenges due to the break of symmetry. Since
there is a single player claiming, followed by three players doubt-
ing, the claim and doubt actions can no longer be combined, the
actions are no longer homogeneous and the players won’t always
take actions in the same order.

In this paper, we propose to explore the potential of CFR-based
algorithms on the 4-player game Dudo. Different candidates for
algorithms and abstraction have been implemented, tested, and
compared using base-line Als. Most of these agents are adapta-
tions of algorithms already tested for 2-player Dudo, and one of
them introduced in this paper — Pruned Fixed-Iteration Strategy
Counterfactual Regret Minimisation — was inspired by combin-
ing two others.

2. Environment

2.1 Rules of Dudo

In the most simple rule of Dudo, each player will roll 5 stan-
dard 6-sided dice, look at the result and keep it hidden from the
other players. Then, players will each in turn make a “claim”.
These claims are a die value (1 to 6) and an amount of die repre-
senting a statement “there are amount dice of value”. After each
statement, opponents can challenge the last caller, or keep going

- 181 -

© 2019 Information Processing Society of Japan

The 24th Game Programming Workshop 2019

with the claims. If challenged, everyone shows their dice and the
dice with the same value as the claim are counted. The caller
loses if there are collectively less dice with the correct value than
the amount claimed. Otherwise, if there are as many or more dice
than the claim, it is the player(s) that challenged the claim that
lose. The loser or losers are eliminated from the game, and if
there are two or more player left, the game continues. *!

In order to force players to take risk, and prevent the game
from going in circles, there is an additional rule : Claims have to
increase either the “value” or the “amount” of the previous claim,
and the amount can not be decreased.. For example, after calling
2x4 (ie. 2 dice of value 4), you can call 3x2, 3x 3, and 3 x4 (be-
cause the “amount” has been increased); 2 X 5 and 2 X 6 (because
the “value” has been increased), but not 2 X 3 or 2 X 4 (neither the
“amount” nor “value” has been increased) nor 1 X5 and 1 X 6 (the
“value” was increased but the “amount” was decreased).

2.2 Restrictions in this paper

Our paper added some restrictions on the game, in order to
better fit to the computer’s specificities, and simplify training and
testing.

2.2.1 Four players, Single Round

Since we are looking at the specificity of a multiplayer game,
we want to focus our Al on the 4-player case. Therefore the envi-
ronment of the paper is a 4-player game of Dudo that stops after
the first round. Since a final winner hasn’t necessarily been deter-
mined, the players remaining will receive a reward correspond-
ing to one divided to the amount of remaining players — namely
% each if 3 players are remaining, % for 2 players, and 1 for 1
player.

2.2.2 Turn based

In the original game, challenging the claimer is done in real-
time. The first player to say “dudo” will usually be the only
doubter, unless someone else speaks at the same time. This is
a moment where there is supposed to be tension, as every player
(except the claimer) hope someone else will challenge the claim
before being next.

However, this dimension was completely removed in the com-
puter implementation. In real-time the optimal solution would
of course be waiting until the last moment, and then answering.
This isn’t interesting from an Artificial Intelligence point of view.
Therefore in our environment, each Al answers if they would like
to challenge the claim or not, without knowing the actions of the
other players. This can be done in parallel. The end of the turn is
resolved normally.

Furthermore, CFR requires a turned base game, so a claim &
challenge turn was cut down in 4 smaller steps :

e Player A makes a claim

e Player B decides if she wants to challenge the claim

e Player C decides if she wants to challenge the claim

e Player D decides if she wants to challenge the claim, and
players B, C and D’s intentions are revieled. If at least player
challenged the claim, the claim is resolved and the game
ends. Otherwise restart after rotating the players.

*I' " In some other rules, the loser can lose only one die, or loses a variable

amount of dice depending on how far his claim was from reality.

2.2.3 Limiting Claim Space

In a 4 players 5 dice game, there are 20 dice in total, and 6
different values (1 to 6). Therefore there are a maximum of 120
different possible claims, all of which are supposed to be avail-
able at the start of the game.

However, in the overwhelming majorities of games, claims are
always close to the previously announced claim. In order to sim-
plify the environment without altering the rules too much, the
allowed possible claims are being limited to the next 18 (order
of strength). In other words, the “amount” of the claim can be
increase by 3 at most. For example, if the previous claim was
2 X 4, the next claim has to be selected between 2 X 5 and 5 x 4
(included).

Table 1 Probabilities of rolling identical dice when rolling 20 dice

Identical dice Probabilities

5 92.85%

6 55.41%

7 21.95%

8 6.74%

9 1.70%
10 0.36%
11 0.063%
12 0.0092%
13 0.0011%
14 0.0001%

Furthermore, the probability of there being more than 11 dice
of the same value is very low: 0.063% (Table 1). Therefore we
decided to force our Als to challenge any call with an amount
higher than 11, regardless of the situation. This divides the maxi-
mum depth of the game tree by 2, increasing training speed, while
diminishing our win-rate by an insignificant amount.

3. Training Agents

This paper will be first presenting the theory of Counterfactual
Regret Minimisation, followed by descriptions of the different op-
timisations and variations tested in this research.

3.1 Counterfactual Regret Minimisation

In Counterfactual Regret Minimisation (CFR), the algorithm
trains agents through self play. At each training iteration, it will
improve its current strategy by improving the probability distri-
bution of one situation, comparing one player in opposition to the
others. It is important to note that this is possible in CFR as the
training algorithm knows perfectly the behaviour of every agents.
The following notations are strongly inspired by [8].

We start by defining the counterfactual value v;(o,) for player
i, at a state h, following strategy o as:

v h) = 2% () X 77 (h,2) X ui(2) M

€Z

Where Z denotes the terminal states, u;(z) the utility for player
i at terminal state z, 77 (h, z) the probability of reaching state z
starting from /& and following strategy o, and 7, (h) the proba-
bility of reaching & without taking player i into account. In other
words, 77,(h) represents the probability of reaching state /1 having
every player follow o, except for player i that will play its actions
with probability 1.

-182 -

© 2019 Information Processing Society of Japan

The 24th Game Programming Workshop 2019

The counterfactual regret for not taking action a at state & is
defined as

r(h,a) = vi(015q,) = vi(0 h).

This regret represents how much the agent regrets not having
picked a, in other words “what would have been my increase in
utility had I picked a”.

Therefore, if we call / the information set (infoset) of player i
at state A, such as player i can not distinguish / from other states
of the set /, we define the counterfactual regret of an information
set as

(I, a) = Z r(h, a).

hel
We then update o so that the probabilities distributions of ac-
tions in a information set / is proportional to the cumulative re-
grets for each action, ignoring actions with negative regrets. If we
call r;(I, @) the cumulative regrets of actions a in an information
set I, and r;(1,a)* = max(r;(1, @), 0), we can write the probability
of picking action a when in [as

ri(l,a)*
Daeay i, a)*

If all actions have negative regrets, namely >, r;(I,a)* = 0, it

O-i(l’ a) =

defaults to the homogeneous distribution o(1, a) = m.
A more detailed explanation of the algorithm and proof can be

found in [7].

3.2 Pass-Through types

One way to implement this theory is using a Pass-Through type
algorithm. At each iteration, the algorithm will simulate an initial
game state. Then the game will be played from start to finish, but
each time a state is reached, the regret of each actions is com-
puted, and the strategy for this state is updated.

However, computing the exact regret would require to have the
algorithm iterate over all possible end states, in order to deter-
mine the precise probability and utility for reach each of them.
This in practice takes too long, so we tested different types of
optimisations described bellow.

3.2.1 Pruned Pass-Through CFR (PPT)

One way to shorten the time is pruning branches during the
exploration on the tree. This consists in artificially consider-
ing some states to be end states, and replace its real utility by
an approximation. Therefore the real children end states (and
all states in between) won’t be explored, saving computational
power. However, these pruned states must be picked carefully,
otherwise the approximated regret will be too far from the real
one.

In the Pruned Pass-Through (PPT) used in the paper, branches
contributing for less than 10~ of the utility will be replaced by
the average utility % (because there are 4 players).

3.2.2 Monte Carlo Pass-Through CFR (MCPT)

Similarly to above, this algorithms will estimate the utilities of
the different states in encouters during a training iteration. Here,
the utility is approximated using Monte Carlo. Namely, a game is
simulated until the end multiple times, and the average utility of

those games is used as an approximation. Since the probability
distributions of every player are known, the average utility is well
approximated.

In the Monte Carlo Pass-Through (MCPT) used in the paper,
branches are 1000 times.

3.3 Full exploration types

Another way to implement CFR is to generate a initial game
state, explore all the possible states of the game tree, and update
the strategy for each of these situations. The main advantage of
this technique is that resources can be saved by using computed
values multiple times, such as when the utilities of the leafs are
calculated and propagated back to their parents. Since the regrets
for every states have to be computed, and not only one path, one
of these iterations takes much longer than one of a Pass-Through
type. However, in a proportional way, there is also more learning
done.

The variations of this type tested in this paper are described
bellow.

3.3.1 Fixed-Strategy Iteration CFR (FSI)

During the exploration of the tree, the agent might encounter
states that are very similar. If the states are similar enough, the
players would play similarly in both of theses cases, and the next
states would also be similar. The natural intuition would be to
“merge” these states together, so one would only need to explore
them one time in total.

With the vanilla algorithm, this wouldn’t be possible, as the
strategy of the player keeps on changing as the tree is explored.
To counter this problem, the paper [8] propose Fixed-Strategy It-
eration: during the whole iteration, the saved cumulative regrets —
and so the strategy — remains untouched, and will only be updated
completely at the end.

Two states can be merge if the same actions will lead to the
same utilities, and if every player would play the same. The rules
of Dudo are relatively simple, so the dice of the players, the cur-
rent claim, and the next actions is enough to completely deter-
mine the outcome — no history of the past actions are required. If
agents had perfect memory, no state could be merge, as they could
be behaving differently. However training a CFR agent with per-
fect memory is impractical, so we use infoset Abstraction (Cf.
Part 4). Now, if these two states have the same abstraction, and
the game is in the same configuration, they can be merged. This
can be summarised as: If neither players nor the rules can distin-
guish the states, then they are the same.

A specificity of a game of Dudo is that, since the claims can
only go higher, the states of a game can be represented as directed
acyclic graph. Namely, the states can be ordered, and taking an
action at a certain state can only lead to a state further in the or-
der. For Dudo, the states can be ordered according to the Claim,
and the next player’s turn (claim, first doubt, second doubt, and
third doubt). The algorithm can therefore be efficiently divided
into two iterative passes:

e One top to bottom, where the probabilities of being reached

will be propagated

e One bottom to top, where the utilities and regrets will be

back-propagated

- 183 -

The 24th Game Programming Workshop 2019

During the top to bottom iterations, the states will propagate on
the lists 77,(h) probabilities for each player. (See Part 1 for no-
tations.) Every node only needs the 77,(/) corresponding to their
player i (Equtation 1), but they need to transmit the whole list to
their children that might need a different one (cf. Algorithm 1).

With :

h state of parent;

p current player playing;

P (a'p h— h’) probability of player p at state i and following
strategy o of choosing an action leading to /’;

for each child in state h. do
for each player i do
if i # p then
| 7%he) « 7% he) + P (o = h = he) x 77 (h);
else
| 77, (he) « 77, (he) + 77, (h);

-p -p -p
end
end
end

Algorithm 1: FSI probability propagation

Similarly, during to bottom to top iterations, the states will
back-propagate their average utilities for every player, which is
a list of sum 1. Once a node has all the average utilities of its
children, it will compute the regret of the state and add it to cu-
mulative regret.

3.3.2 Pruned Fixed-Strategy Iteration CFR (PFSI)

The FSI algorithm described above will compute and update
every state in the game tree. Every branch is explored, regardless
of their contribution to the regrets of the parents node, and by how
much the update would impact the strategy. Since a lot of these
states have actually a very low probability of being reached, we
had the idea of combining the Fixed-Strategy Iteration base-line
with the Pruning optimisation.

RN Low Probability
Descendants eligible for pruning

O Probability too low
X
66 o0

\ y Maximum depth exceeded

© O

Fig. 1 Representation of Prunning method introduced for FSI
Green : Unflagged
Purple : Flagged
Grey : Unexplored

Our Pruned Fixed-Strategy Iteration (PFSI) algorithm follows

a very similar process from FSI, except for the following points :

e During the top to down iterative pass, if a step doesn’t have a

high enough probability of being reached, the children states

will be flagged as “’can be approximated”. In our case, states

with a probability 77,(h) < 1072 have a probability of 0.98

of flagging their children. Once states are flagged, their chil-
dren can be subjected to pruning.

© 2019 Information Processing Society of Japan

e During the top to down iterative pass, a flagged state will be
more selective on its children, and will continue to propa-
gate flags to their children. *2 A flagged state will only ask
for the average utilities of actions with a probability higher
than 10~*, and approximate the rest. Furthermore, after a
certain depth of consecutive flagged children, the step will
stop exploring deeper and approximate its utility. Approxi-
mates utilities are 41 for each player (similarly to Pruned-Pass
Through).

e During the bottom to top iterative pass, the states that
are flagged will only be computing their utility and back-
propagating it to their parents — the regret can not be calcu-
lated, and it will not used to update the strategy.

We tests this algorithm with two different sets of parameters :

e PFSI-1 where the flagged exploration depth is 1

e PFSI where the depth is 4

4. Abstractions

Since remembering the previous calls made during a game can
offer information, would want to distinguish situations with dif-
ferent histories. However, there is a colossal amount of differ-
ent possible histories, a the action and state space of Dudo can
quickly explode. For a regular game of only 2 players playing
with 5 dice each, there are already 10x 6 different possible claims,
and approximately 3 x 10%° different information sets [8]. For 4-
player Dudo, there are 120 different claims, and so 2'?° different
histories. If we combine this with the 252 possible dice a player
can have, we would have a infoset size of 3 x 1038, Tackling a
size this big is impossible for current machines.

To curb this problem, we can use abstraction. Each infoset
is simplified into fewer characteristics, becoming indistinguish-
able from similar ones, thus reducing the size of the data to train.
However, the more abstracted an infoset is, the more information
is lost. The simplest way to do this would be to truncate the pre-
vious action history, keeping only the more recent ones: this is
called Imperfect Recall.

We present bellow different abstractions used in our tests.

4.1 No Recall (NR)
This is the most radical abstraction : No memory is kept.
The only information available to make decisions are the current

claim, and the visible dice.

4.2 Type Recall (T)

The history is truncated, and among the previous claims, only
the “type” or “value” of the dice is kept, not the amount. In this
paper, a memory of 3 is used.

For example, if the current claim is 4 X 3, and the previous
claims were 4 X 1,3 x4,3x2,2x1 and 1 X 6, the abstraction will
keep the current claim (4 X 3) and the last 3 claim values (? X 1,
?7x4,7x%x2).

Not saving the amounts helps having a faster FSI algorithms,
as many branches can be merged pretty early (Cf. 3.3.2)

*2If a flagged state is combined with an unflagged state, the resulting state

will be unflagged. The state shouldn’t be approximated anymore because
at least one parent state needs it.

184 -

© 2019 Information Processing Society of Japan

The 24th Game Programming Workshop 2019

4.3 Wait & Type Recall (WT)

This is a slight improvement of the previous abstractions. The
Al will still remember the last 3 types, but will also know the
player’s relative position to the current claimer. Namely, it knows
how much claim turns it must wait before it is its turn to make a
claim.

5. Experimental Results

5.1 Method
5.1.1 Implementation

The algorithms described in Part 3, as well as the Abstrac-
tions described in Part 4 were implemented in Python 3.7.4. The
numpy library was extensively used to optimise the operations.

We tested the trained Als on a clean environment: a Python
Client/Server-based implementation of the game Dudo.

5.1.2 Baseline Als

The performance of our agents were tested on by playing
against two base-line Als for Dudo. Due to the lack of canon-
ical Als for testing performances in Dudo, we implemented the
following two using our own knowledge of the game:

e A Random AL It plays completely randomly, without taking
its own dice into consideration, but with weighted probabil-
ities. Its chances of picking each claim is é if it’s among the
first 6, ﬁ if in the next 6, or 7—12 if among the last 6. It also
has a % chance of challenging each claim.

o A Heuristic Al. At the start of the game, once it knows its
dice, the Al computes the probability P(C) of each claim C
of being true knowing already 5 dice among them. For the
rest of the game, when picking a claim, the Al weights its
choices by theses P(C;). When doubting, the Heuristic Al
will only challenge the claim if it’s the next in line for claim-
ing and with a probability of 1 — P(C).

5.1.3 Win-Rates

The performance of agents are always evaluated by pairs.
Since this is a 4-player game, multiple positions have to be oc-
cupied by the same types of Als.

When writing A vs B = (?7%, ?7%, 7?%), the displayed per-
centage correspond to the average win-rates of when playing 3A
vs 1B, 2A vs 2B, and 1A vs 1B.

Due to the one round nature of our environment, most games
will end up with a % score for 3 agents. This means that even very
bad players will often indirectly gain scores when other players
win, and so the win-rates are always very close to 25%. If the
reader wants to be convinced, one can consider an example were
one player A is always making the wining move and eliminating
another player, and players B, C and D are passive, the final win
rates would be approximately 33% for A, and 22% for the others :
the huge gap of skills between these agents would be compacted
in an 11% difference. Therefore, in order to evaluate the actual
performance between the different agents, there needs to have a
very good accuracy.

The win-rates displayed in graphs have been determined by
using the average score of 100 000 games. For an confident in-
terval of 95%, this guaranties a theoretical uncertainty lower than

0,32%. Empirically, the uncertainty is actually 0.10%."3 These
graphs uses the 1vs3 win-rates because they are the ones with the
largest amplitudes.
5.1.4 Hardware

The code was executed on a mutlicore server. Since all our
training code is sequential, each agent was trained on equivalent
single cores, and so their training time can be compared.

5.2 Results

5.2.1 Speed
17
PPT & WT
08 MCPT & WT
—— MCPT &NM
PFSI-1 & WT
g5 —— PFSiawr
“ PFSI&T
8 — FSI&WT
[
m 04
02
Bl ——

0 6 12 1B M 33 ¥ £2 &£ 4 8 6B T2 |
times (hours)

Fig. 2 TIteration speed of the different algorithms

100000

PFSI-L&WT
— PESI&WT
_ PFSI&T
0000
Y — FSIEWT
o 60000
5
[
£
2 w000
20000

0 6 12 13 M 30 3% 4£2 £ M 80 6B W2
times {hours)

Fig. 3 Iteration speed of the FSI algorithms

Table 2 Average number of iteration per hour

Agent Speed
PPT & WT 419709
MCPT & WT 589974

MCPT & NM 47431
PFSI-1 &WT 158889
PFSI-4 & WT 63774
PFSI-4 & T 72489
FSI & WT 357

As it can be seen on figure 2, the different Als have very dif-
ferent training speeds. The speed of PPT for example is more

#3 o

Z*W where z* is 1.96 (because of 95% confidence interval) o is the
standard deviation of the sample, and N is the number of sample. The
standard deviation is not really know, but in the worst case scenario, the
score would alternate between 0 and 1 with probability p, in which case
the standard deviation would be +/p(1 — p), itself maximised by 0.5.

Empirical test conducted during training show that the standard devi-
ation is actually closer to 0.15, thus having a maximum uncertainty of
0.10%

- 185 -

The 24th Game Programming Workshop 2019

than 1000 times faster than FSI. Comparing the evolution of their

o . . . B
criteria using only the number of iterations wouldn’t give much
insight on their actual performance. Therefore, graphs compar- a
ing Als of different type will always use time (in hours) as their %
X-axis. :1) =
5.2.2 Completeness £
— z ‘,’ PFSL1 & WT
—_— _ — PFSI&WT
10 zZ | PFSI&T
" I — FSI&WT
_ || 0 20000 40000 80000 0000 100000
£ 10° terations
T
2 ST Fig.7 Evolution of FSI Als’ performance by iteration amount
E 1 MEPT &WT against 3 Heuristic Als
= —— MCPT & NM gans § $
PFSI-1 & WT
102 FFSI&WT Table 3 Final win-rates of various Als (left) against other Als (top)
PFSI&T . .
in 3vsl, 2vs2 and 1vs3 configurations
006 12 B M N B L 8 B K0 B T VS Random Al
fimes (hours) PPT & WT 26.29% 26.5% 27.30%
MCPT & NM 24.09% 23.09% 21.99%
Fig. 4 Evolution of the proportion of untrained states FSI& WT 2637% 27.24% 28.45%

PFSI& T 2582% 2680% 28.27%

PFSI & WT 26.12% 27.00% 27.85%
The above graph represents the speed at which the different vs Houristic Al

CFR agents fill in their data. The “Untrained” is computed dur- PPT & WT 26.64% 27.00% 26.78%

MCPT & NM 23.83% 22.28% 19.35%
FSI& WT 2642% 27.33% 27.81%

ing the evaluation part, and represents the proportion of states that

where not yet encountered during training. PFSI&T 26.05% 2677% 27.40%
52.3 Win-Rates PFSI& WT 2642% 27.00% 27.85%
Vs FSI & WT
. PPT & WT 25.14% 25.01% 24.82%
MCPT & NM 23.00% 20.45% 15.78%
50 PFSI&T 24.22% 23.36% 22.38%
PFSI& WT 24.61% 24.15% 23.55%
“9 Vs PFSI & WT
Z 200 PPT & WT 25.70% 26.21% 26.60%
. MCPT & NM 22.49% 19.50% 14.35%
Eus FSI& WT 2548% 2585% 26.16%
= 50 PFSI& T 2456% 24.05% 23.52%
125 PPT & WT .
MCPT & WT In table 3, the Als used were the ones that were trained longer,
00 - . . L
T A —— MCPT&NM ie. the same Als that were used to determine the last points in
0 68 & B # 0 % £ & 5 0 &6 2 each graphics. It should be noted the training time of the different
times (hours) . . .
Als are very different : the PFSIs algorithms were trained for 18
Fig.5 Evolution of Pass-Through Als’ performance hours, while the PPT, MCPT and FSI were trained for over 60
against 3 Heuristic Als h
ours.

5.3 Interpretation

o 5.3.1 Pass-Through Algorithms
a7 The Monte-Carlo Pass-Through Algorithms have difficulties
% rivalling the Fixed-Strategy Iterations algorithms. This can be
z seen clearly it Figure 5, but we could already see symptoms in
= 5 .
& Figure 4, the couldn’t explore new states as fast. The MCPT
s algorithm with Wait&Type abstraction in particular slows down
e PESL1 & WT very quickly and takes a huge amount of training to go over 80%.
— PRSI&WT When retrying MCPT with the maximum abstraction possible
= PFSI&T
—_— EELWT No Memory” — so the minimal amount of abstracted infosets
2 0 06 2 1B M W OE L 8 W o B T — it was starting to fare better, implying one bottleneck for theses
times {hours) types of Als are the size of the abstracted infosets to train.
Fig. 6 Evolution of FSI Als’ performance by time Another problem is that these Pass-Through algorithms are in
against 3 Heuristic Als essence less stable than the other ones. They rely on the ran-

domness of the exploration to be trained in every case, which is

© 2019 Information Processing Society of Japan - 186 -

© 2019 Information Processing Society of Japan

The 24th Game Programming Workshop 2019

less efficient than bulk exploring. When this randomness is su-
perposed to the randomness of Monte-Carlo, we can end up with
very low performance, as with what happened to the MCPTs.

The Pruned Pass-Through, although having a lower win-rate
against the Heuristic Al, offers surprisingly good results when
playing against the other trained Als: it beats the PFSI player and
is on par against FSI (Table 3). PPT does take five times as long
as the PFSI, but beating it is nonetheless impressive. This implies
that even if the PPT doesn’t have a very fully trained all-rounded
behaviour, it has a good strategy when playing against other sim-
ilar players. This is likely due to its greater amount of iterations:
the more iteration a CFR agent does, the more it learns to out-
play the previous learned strategies. PPT must have a very good
strategy for the 95% more likely states it encounters.

5.3.2 Fixed-Strategy Iterations Algorithms

We can see we gained a lot of speed with the PFSI algorithm
compared to the FSI one (fig 3). The PFSI-1 is even ~ 500 times
faster. If we look at evolution of the win rates per time, we see
that the PFSI have a small lead at the beginning, and that the
FSI takes 4 times longer to catch up. When we look at the itera-
tions (fig 7), we see that their is a significant loss in efficiency in
terms of per iteration, meaning doing full iterations without prun-
ing gives better quality feedback. Even if the PFSI-1 Al trained
faster, we see that it actually never gets a win rate higher than the
other PFSI, meaning pruning too roughly is counterproductive.
The lower win-rate of the PFSI using only the Type abstraction
rather than the Wait&Type one is likely caused by the fact that
the position of the player relatively to the claimer is a very useful
information for making a decision.

A more optimal Al in terms of training speed would likely be
an PFSI with dynamic parameters pruning, similarly to [1]. It
would likely start off with a very severe pruning, but finish train-
ing with a behaviour close to FSI with few pruning.

6. Conclusion

This paper compared the implementations of different CFR-
based Artificial Intelligence in 4-player Dudo.

Since the amount of infoset in this environment can’t be tackled
even by our modern computers, we started by reducing its size by
abstracting the information. Using imperfect recall, a method that
already proved itself efficient in 2-player Dudo [8], we were able
to summarise states by truncating the game history. We then used
CFR variants that had been shown working for 2-player Dudo
as inspiration to build Als specifics for 4-player Dudo, either by
tweaking their input and parameters, or by combining them.

The experiments confirm that 3 out of the 4 implemented Als
are able to learn how to beat the hand-coded ones, and the Als
introduced in this paper, Pruned Fixed-Strategy Iteration, reaches
similar win-rates 4 times faster then the other ones. If we look
at the training per iterations, the Fixed-Strategy Iteration (FSI)
without pruning proved itself more efficient. The Pass-Through
types had in opposite a very bad learning per iteration, but com-
pensate this by speed: the Pruned variation could run an iteration
more than 1000 times faster than FSI. When having Als of differ-
ent types with similar win-rates compete between on another, we
notice the slower Als — Pruned Pass-Through and Fixed-Strategy

Iterations — are better when playing against the fastest PFSI, im-
plying the quality or quantity of the training can more impact
against better opponents.

Visualising the difference of performance between the best Als
was difficult, as the win-rates were all tightly around 25%. Future
works could envision extending the environment until the actual
end of the game (only one player left), or play with more com-
plexes variations of Dudo were round loosers lose dice instead of
being directly eliminated. It would also very be interesting to test
this Al against human players, to know if these Als are efficient
against human-style game-play.

The Als are also only using past training, but analysing the
strategies of the other players one is opposing is an efficient way
to find and exploits weakness in their strategies. We believe fur-
ther research in CFR applied to Dudo can be accomplished in this
direction.

References

[1] Brown, N., Kroer, C. and Sandholm, T.: Dynamic Thresholding and
Pruning for Regret Minimization, AAAI Conference on Artificial Intel-
ligence (2017).

[2] Brown, N. and Sandholm, T.: Superhuman AI for multiplayer poker,
Science, (online), DOI: 10.1126/science.aay2400 (2019).

[3] Burch, N., Lanctot, M., Szafron, D. and Gibson, R. G.: Efficient
Monte Carlo Counterfactual Regret Minimization in Games with Many
Player Actions, Advances in Neural Information Processing Systems 25
(Pereira, F., Burges, C. J. C., Bottou, L. and Weinberger, K. Q., eds.),
Curran Associates, Inc., pp. 1880-1888 (2012).

[4] Chen, C. and Tomoyuki, K.: Counterfactual Regret Minimization for
the Board Game Geister, Game Programming Workshop 2018 Proceed-
ings, Vol. 2018, pp. 137-144 (20183).

[5S] Gibson, R. and Szafron, D.: Regret Minimization in Multiplayer Ex-
tensive Games, International Joint Conference on Artificial Intelligence
(2011).

[6] Laird,J. E., Derbinsky, N. and Tinkerhess, M.: Online determination of
value-function structure and action-value estimates for reinforcement
learning in a cognitive architecture, Advances in Cognitive Systems,
Vol. 2, pp. 221-238 (2012).

[7]1 Lanctot, M., Waugh, K., Zinkevich, M. and Bowling, M.: Monte Carlo
Sampling for Regret Minimization in Extensive Games, Advances in
Neural Information Processing Systems 22 (Bengio, Y., Schuurmans,
D., Lafferty, J. D., Williams, C. K. I. and Culotta, A., eds.), Curran
Associates, Inc., pp. 1078-1086 (2009).

[8] Neller, T. W. and Hnath, S.: Approximating Optimal Dudo Play with
Fixed-Strategy Iteration Counterfactual Regret Minimization, Advances
in Computer Games (van den Herik, H. J. and Plaat, A., eds.), Berlin,
Heidelberg, Springer Berlin Heidelberg, pp. 170-183 (2012).

[91 Risk, N. A. and Szafron, D.: Using Counterfactual Regret Minimiza-
tion to Create Competitive Multiplayer Poker Agents, Proceedings of
the 9th International Conference on Autonomous Agents and Multia-
gent Systems: Volume 1 - Volume 1, AAMAS 10, Richland, SC, Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
pp. 159-166 (2010).

- 187 -

