
An Extension of Counterfactual Regret Minimization for
Multiplayer Card Games

Yu Cao1,a) Tomoyuki Kaneko1,2,b)

Abstract: Counterfactual Regret Minimization (CFR) [1] is one of the state-of-the-art methods for solving large
imperfect-information games. It shows great performance in solving 1-to-1 poker games. But there is still little re-
search about how to apply it to multi-player poker games. In this paper, we will apply CFR to an extension of poker
which is played by 4 players (2-to-2), and compare its performance with random policy.

Keywords: Machine Learning, Counterfactual Regret Minimization, MCCFR

1. Introduction
In the real world, there are cooperation and competition in the

teamwork. Members in the same team often get the same re-
wards just as team reward. It promotes cooperation among team
members. However, in some situations, players will be rewarded
based on their contribution to the team such as individual records
of NBA basketball players. NBA basketball players have individ-
ual records in their basketball careers. The more points they get,
the better treatment and higher salary they can get in the team.
So there is also competition among players in the same team. It
is a challenging problem of how to maximize personal benefits in
teamwork in incomplete information games.

It is more difficult and complex for incomplete information
games than complete information games. Players need to guess
opponents’ information according to the current state and their
own experience. When they make a decision, they will worry
about revealing their private information so that opponents can
beat them through the information. To solve incomplete infor-
mation games, a concept is proposed, which is called Nash Equi-
librium. Players can’t improve their rewards by only changing
strategies by themselves while other players keep unchanged.
This strategy profile and rewards consist of a Nash Equilibrium.
However, in a long time, the algorithm can only solve lightweight
problems. When it is needed to solve large information games, it
costs too much time and memory. In 2007, a breakthrough oc-
curred that Counterfactual Regret Minimization(CFR) was pro-
posed by Martin Zinkevich and others [1].

CFR is one of the state-of-the-art methods for solving large
imperfect-information games. It tracks past play to compute re-
gret values when choosing an action and makes strategies pro-
portional to regret values. It shows great performance in solving
1-to-1 poker games [2]. But there is still little research about how
to apply it to multi-player poker games. In this paper, we will

1 Interfaculty Initiative in Information Studies, the University of Tokyo
2 JST, PRESTO
a) souyu@g.ecc.u-tokyo.ac.jp
b) kaneko@acm.org

show how to maximize individual benefit while playing poker
games in teams. An extension of poker game, which is played
by 2 groups, 2 members for each, will be studied. This game’s
information sets are too large that CFR costs too much time and
space to compute it. In this situation, Monte Carlo Counterfactual
Regret Minimization (MCCFR) by Marc Lanctot, Kevin Waugh
and others [3] is proposed to reduce time cost. It makes sampling
rather than traverses the whole game tree on each iteration. We
will start study from 8 cards by applying CFR to the poker game,
and compare its performance with random policy. Then gradually
increase the number of cards. While CFR can’t solve the prob-
lem efficiently, in this case, Monte Carlo Counterfactual Regret
Minimization can be adopted instead of CFR.

2. Background and Related Work
2.1 Extensive Games

An extensive-form game [3] is a kind of model of sequential
decision-making multi-player imperfect information games. It is
composed of components as the following part, in which we fol-
lowed the standard notation in the study [3]:
• N: A finite set N of players.
• c: The chance factor of the game.
• −i: every player except player i.
• H: a sequence of actions that were played
• Z: a set of terminal histories, Z ⊂ H.
• A(h): a set of available actions after history h if h < Z.
• P(h): player function that assigns a player p to take an action

after history h, p ∈ N
∪{c}.

• Ii: information sets of player i, namely a partition of {h ∈
H : P(h) = i}. h and h′ being in the same information set is
equivalent to A(h) = A(h′).

• Ii: an information set for player i, Ii ∈ Ii.
• fc(a|I): probability of a occurring when given the informa-

tion set I.
• uz: a utility function that assigns a reward to each player

when the terminal state z is reached.

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 28 -

2.2 An Extension of Poker
2.2.1 Original Rule

There is one of the famous poker games in China called 50K.
It is characterized by three cards of 5, 10 and K being presented
at the same time as the largest. 50K is played by two teams con-
sisting of four people, in the form of 2 vs 2. The game uses two
sets of poker without jokers, which means there are 104 cards in
the game, and each player will get 26 cards per round. Its playing
rule, which is showed in Table 1, is just like Dou Di Zhu [4].

Compared to Dou Di Zhu, 50K adds scoreboards and compute
total points of players who belong to the same team to determine
which team wins.

In the game, 5, 10 and K are scoreboards which represent
5, 10 and 10 points respectively. These points can be gotten
only by playing the biggest card when there is someone playing
scoreboard per round, just like player A played 5, and player
B played K, and no one has larger card in his hand to play, so
player B gets point card 5 and K, which means B gets 15 points.
And the team who gets more points wins.

2.2.2 Simplified Version
For our experiment, we simplify the game by reducing to 8 and

12 cards, which means we only use 1, 2, four for each when there
are 8 cards and use 1, 2, 3, four for each when there are 12 cards.
Scoreboards are not considered in our experiment. We just set
three different reward rules to show cooperation and competition
within the team. First, we set the basic rule. if all players of team
A play out all cards in their hands when both players of team B
doesn’t finish the game, team A gets 2 points, and team B loses 2
for each member. When there is one player in team B finishes the
game, team A gets 1 point with team B losing 1 for each member.
Second, we add the bonus rule to it. We give bonus to the player
in the winning team who first plays out his cards. He can get 2.5
rather than 2, and the other player in the winning team will get 1.5
in the first situation of the basic rule. And in the second situation,
players in the winning team will get 1.5 and 0.5 respectively. The
last one is that the punishment rule will be added to the losing
team. When the game is finished, there is one player in the losing
game who played out all his cards, he will be punished slightly
than his partner. They will lose 0.5 and 1.5 respectively.

2.3 Pluribus
Pluribus [6] is an efficient algorithm shown stronger than top

human professional players in multi-player card games. It makes
abstraction by removing some actions from consideration and
bucketing similar decision states into one state. And it trains AI
offline by self-play with Monte Carlo Counterfactual Regret Min-
imization, in which AI starts by playing randomly, and improves
itself by beating previous versions of itself. When playing with
human players, real-time search is taken to adjust strategies, in
which AI looks some moves ahead at a leaf node in a limited
depth unless it reaches terminal states to estimate expected util-
ity value at the node. It supposes that opponents take k different
strategies according to their bias. A more balanced strategy can
be found by this method because choosing an unbalanced strategy
will be more likely to lose when the opponents choose a strategy

that just dominates it. Pluribus’ success shows that it is possible to
produce superhuman strategies for large multi-player imperfect-
information games with a well-designed algorithm.

3. Methods
3.1 CFR
3.1.1 Nash Equilibrium

In terms of game theory, Nash Equilibrium [1], a concept
named after John Forbes Nash Jr., is proposed to solve a game
which is no cooperation among players. In Nash Equilibrium,
Each player is supposed to know what strategies of the other
players take, and all players can’t improve their own rewards by
changing their own strategies.

For example, if A is making the decision that maximizes his
benefit as he can under the consideration of B keeping unchanged,
and B is making the decision that maximizes his benefit as he
can under the consideration of A keeping unchanged, A and B
are in Nash Equilibrium. Similarly, if all players make the deci-
sion that maximizes their own benefits under the consideration of
other players keeping unchanged, they are in Nash Equilibrium.

As is shown by mathematician Nash, there must be a Nash
Equilibrium for every finite game. Therefore, we can use Nash
Equilibrium to compute the optimal strategies while solving fi-
nite games.
3.1.2 Regret Matching

When an action was chosen in the current state, a regret will
occur that we didn’t choose another action if we can. The more
you regret, the more you should choose another action in the state.
So we compute the regret value of choosing a specific action in
actions that are available in the current state, and make strategies
proportional to the positive regret values. The greater the regret
is, the greater the possibility we should choose the action. Thus,
by choosing actions in this way, regrets will be minimized. This
method is called Regret Matching. Suppose that we are playing
Rock-Paper-Scissors. The winner can get a dollar from the loser.
If we play paper when the opponent plays scissors, the opponent
player wins and gets one dollar from us. We can make the dollar
losing become our reward, so our reward for this play is −1 under
this situation. The reward for playing scissors and rock against
the opponent’s scissors will be 0 and 1, respectively. We regret
not playing rock most because we will get a greater reward when
we play rock. The difference between the reward of choosing the
action we haven’t chosen and the reward of the action we actu-
ally chose under the situation that other players don’t change their
strategies.

For this example, we will have regret u(scissors,scissors) −
u(paper,scissors) = 0 − (−1) = 1, and we will have regret
u(rock,scissors)− u(paper,scissors) = 1− (−1) = 2. According to
regret matching, we will sum the regret values of all actions that
are available, then compute every action’s probability by divid-
ing their own positive regret by the sum. The next action will be
chosen proportionally to the positive regrets as choosing action
scissors, paper and rock with the probabilities 1

3 , 0, and 2
3 respec-

tively. So in next play, we will choose rock with probability 2
3

while the opponent player chooses paper. We will also update
our regret by adding the regret values of this play to the previous

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 29 -

Table 1 Rules of 50K

Type Form Comments

Single Card x ranking as 3<4<...<10<J<Q<K<A<2

Pair xx two cards of the same number, the ranking just like a single card

Triplet xxx three cards of the same number

Triplet with an attached
card xxx+a a triplet with any single card added such as 4445. These rank according to the rank of the

triplet such as 6663 is bigger than 5554.

Triplet with an attached
pair xxx+aa a triplet with a pair added, whose ranking is determined by the rank of the triplet such as

66633 is bigger than 55544.

Sequence abcde+... at least five cards of consecutive rank, from 3 up to A such as 8910JQ. 2 can’t be added
into it.

Sequences of pairs aabb+... at least two pairs of consecutive ranks, from 3 up to A. 2 can’t be added into it. For example
8899.

Sequence of triplets aaabbb+... at least two triplets of consecutive ranks from three up to A. For example 555666.

Sequence of triplets with
attached cards aaabbb+x+y

two single cards are added to triplets respectively. For example 44455529. The extra cards
must be different from other cards. 2 can’t be used as triplets, but it can be used as extra
cards

Sequence of triplets with
attached pairs aaabbb+xx+yy

two extra pairs are attached to triplets. Only the triplets have to be in sequence - for example
5556663344. The pairs must be different in rank from each other and from all the triplets. A
singled card and a pair can’t be attached to the triplets in the same time such as 555666344.

Bomb xxxx+... four or more cards of the same rank. A bomb can beat everything except 50K, and a higher
ranked bomb which means more same cards can beat a lower ranked one.

Quadplex set xxxx+a or xxxx+aa

it is just similar to triplets with attached cards and with attached pairs. What’s different is
that it needs 4 same cards rather than 3. And two single cards or pairs can be added into it
rather than one such as 222234 and 22223344. Its ranking rule is as same as a triplet with
an attached card or pair, such as 222234 is bigger than 555567. And it is smaller than bomb.

False 50k - only three, 10, K three cards, the patterns are not exactly the same

True 50k - 5, 10, K three cards with the same pattern and the same color

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 30 -

play’s. So we will get cumulative regret 3, 2, 1 respectively for
choosing action scissors, rock, and paper. So the mixed strategy
will be updated to (3

6 ,
2
6 ,

1
6).

3.1.3 Counterfactual Regret Minimization
The front part shows how to apply regret matching to single-

decision game. It is unclear that How to extend regret match-
ing algorithm to sequential games, where players should make
a sequence of decisions to finish one play of the game. To
solve sequential games, an extension of regret matching algo-
rithm is proposed as known as Counterfactual Regret Minimiza-
tion (CFR) [1]. Counterfactual Regret Minimization is one of the
efficient methods for solving large imperfect-information games,
which uses the regret-matching algorithm presented earlier. Here
will give some definitions in CFR algorithm.

In CFR, σt means a strategy profile consisting of all players’
strategies at time t. Let σI→a denote a strategy profile that ac-
tion a is always chosen while other strategy profile is same as
σ. And πσ(h) represents the reach probability of history h while
players’ strategy profile is σ. πσ−i(h) means counterfactual reach
probability of history h. So we can get counterfactual regret value
equation as:

vi(σ,h) =
∑

z∈Z,h⊏Z

πσ−i(h)πσ(h,z)ui(z). (1)

When action a is not taken at history h, the counterfactual regret
will be:

r(h,a) = vi(σI→a,h)− vi(a,h). (2)

Likewise, if action a is not taken at information set I, the counter-
factual regret will be:

r(h,a) =
∑
h∈I

r(h,a). (3)

Then the cumulative counterfactual regret is denoted as:

RT
i (I,a) =

T∑
t=1

rt
i(I,a). (4)

Like regret-matching algorithm, CFR making its strategies pro-
portional to cumulative regrets just as shown:

σT+1
i (I,a) =

RT,+
i (I,a)∑

a∈A(I) RT,+
i (I,a)

if
∑

a∈A(I) RT,+
i (I,a) > 0

1
|A(I)| otherwise.

(5)
In this equation, RT,+

i (I,a) denotes non-negative counterfactual
regret value of player i until turn T for choosing action a after
getting to the information set I. Player i’s strategy in turn T +1 is
proportional to positive cumulative regrets of past plays if the cu-
mulative regret is positive. If it is not, a uniform random strategy
is used.

3.2 MCCFR
It is unfeasible to solve large incomplete information games by

CFR because of its large cost in traversing large information set.

Fig. 1 {1,2}, each for 4 cards—basic rule

Fig. 2 {1,2}, each for 4 cards—bonus rule

An extension of CFR, Monte Carlo Counterfactual Regret Mini-
mization [3], is proposed by Marc Lanctot and Kevin Waugh and
others to reduce time cost of traversing the game tree on each it-
eration. On each iteration only some of the terminal histories will
be considered to update the counterfactual value. There are many
sampling methods, such as outcome-sampling, external sampling
and average strategy sampling [5].

4. Experiment
We start our experiment from studying situations where there

are 8 cards, two for each player. Playing rule is also simplified,
in which players can only play a single card or a pair. And we
will do our experiment by using three kinds of reward rules to
compare the performance of the algorithm under different reward
mechanisms. We set the game iterations to be 1000 times. It
means we will play the game 1000 times. And iteration times of
the algorithm will be set to 1 and 10 times to compare the influ-
ence of different iteration times to performance of the algorithm.
The winning rate is plotted to show the performance. The result
is shown in following figures:

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 31 -

Fig. 3 {1,2}, each for 4 cards—punish rule

Fig. 4 {1,2,3}, each for 4 cards—punish rule

Table 2 Final winning rate

iteration times 2-basic 2-bonus 2-punish 3-punish

10 0.745 0.722 0.709 0.662

There are two teams, {S, N} and {E, W}. They sit in the cor-
responding place in the direction. At the start of the game, one
player will be selected randomly to use AI, and other players will
be random players, which means that the player will randomly
select an action in the available action set. When it is the turn
for AI to play, it gets the current state of the game, and simu-
lates based on this state. AI will know its cards in its hand and
the history of the current play, but it doesn’t know other players’
cards. Thus, AI simulates the card states of each player 1 or 10
times, and plays the game until a terminate state is reached. The
counterfactual regret value of every action in the available action
set under the initial state of simulating will be computed to get its
strategy.

As shown in Fig. 1, Fig. 2 and Fig. 3, we can see that with the

winning rule becoming more complex, the final winning rate de-
creased slightly. As shown in Table 2, when there are 8 cards, {1,
2}, four for each card, the final winning rate of the basic rule is
0.745, and the bonus rule’s winning rate is 0.722, and the punish-
ment rule’s winning rate is 0.709. We can infer that the coopera-
tion and competition mechanisms may influence the performance
of CFR algorithm. However, there are still many shortcomings
in our experiments, such as limited experimental objects and too
few trials. Whether this conclusion is correct or not remains to
be discussed. And one more conclusion is that, the more times
CFR simulates, the higher the winning rate it can get. What’s the
upper bound of iteration times is not studied yet. We will study it
in the future.

This experiment is conducted with AMD Ryzen 7 1700 eight-
core processor × 16, and develop software is pycharm with
python 3.6.

When the situation that there were 8 cards were studied, the
number of cards will be increased to 12. Compare the results in
Fig. 3 and Fig. 4, we can see that with information sets increas-
ing, the performance of the algorithm became worse, and itera-
tion times of algorithm should be increased to improve the perfor-
mance. With the number of cards increasing, a shortcoming is ex-
posed that the computing time increased sharply, because it took
more time to iterate one play. To solve this problem, Monte Carlo
Counterfactual Regret Minimization algorithm will be adopted.
However, due to limited time, we haven’t implemented it. We
will do this experiment in the future.

5. Conclusion
Counterfactual Regret Minimization is one of the state-of-the-

art methods for solving large incomplete information games. We
apply it to an extension of poker games which is played by two
teams, 2 members for each team. It shows great performance
in winning the game while playing with random players. We
get three conclusions from the experiment. First of all, with
the winning rule becoming more complex, the final winning rate
decreased slightly. Second, the more times CFR simulates, the
higher the winning rate it can get. At last, with information sets
increasing, the performance of the algorithm became worse, and
iteration times of algorithm should be increased to improve the
performance. However, there are still many shortcomings in our
experiments, such as limited experimental objects and too few
trials. Whether this conclusion is correct or not remains to be
discussed.

There are lots of work that can be done in the future. We only
have studied the situation where there are 8 or 12 cards, but in
the real game, there are 104 cards, and there are more complex
playing rules. The number of information sets will be bigger than
1027, so MCCFR may not possible to handle the problem effi-
ciently. In this case, we can try to apply Pluribus algorithm or
new methods to reduce the cost of traversing the game tree. And
we found that the more times CFR simulates, the higher win-
ning rate it can get. But optimal iteration times of CFR algorithm
hasn’t been found.

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 32 -

References
[1] Neller, T. W. and Lanctot, M.: An Introduction to Counterfactual Regret

Minimization, Proceedings of Model AI Assignments, The Fourth Sym-
posium on Educational Advances in Artificial Intelligence (EAAI-2013)
(2013).

[2] Zinkevich, M., Johanson, M., Bowling, M. and Piccione, C.: Regret
minimization in games with incomplete information, Advances in neu-
ral information processing systems, pp. 1729–1736 (2008).

[3] Lanctot, M., Waugh, K., Zinkevich, M. and Bowling, M.: Monte Carlo
sampling for regret minimization in extensive games, Advances in neu-
ral information processing systems, pp. 1078–1086 (2009).

[4] McLeod, J.: Dou dizhu, https://www.pagat.com/climbing/
doudizhu.html.

[5] Burch, N., Lanctot, M., Szafron, D. and Gibson, R. G.: Efficient
Monte Carlo Counterfactual Regret Minimization in Games with Many
Player Actions, Advances in Neural Information Processing Systems
25 (Pereira, F., Burges, C. J. C., Bottou, L. and Weinberger, K. Q.,
eds.), Curran Associates, Inc., pp. 1880–1888 (online), available from
⟨http://papers.nips.cc/paper/4569-efficient-monte-carlo-counterfactual-
regret-minimization-in-games-with-many-player-actions.pdf⟩ (2012).

[6] Brown, N. and Sandholm, T.: Superhuman AI for multiplayer poker,
Science, p. eaay2400 (2019).

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 33 -

