
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

BET Estimation on Power Saving
by Intermittent Disabling Network Interface on Android

TsubasaMurakami1,a) Takeshi Kamiyama2 Akira Fukuda3 Masato Oguchi4

Saneyasu Yamaguchi1

Received: October 9, 2018, Accepted: July 11, 2019

Abstract: The large power consumption of smartphones is an important issue. Smartphone operating systems such
as Android have a function that invokes an application without user’s operation. That is, an application runs and may
communicate using its network interface in the screen-off state without user’s operation. This behavior consumes large
batteries. Temporarily disabling its network interface is one of the promising methods for reducing power consumption
in the screen-off state. Less power is consumed while its network interface is disabled, but processes of disabling and
enabling its network interface consume battery. Therefore, it is necessary to keep the interface disabled for a suffi-
ciently long period such that the power consumption decreased by disabling the network interface exceeds the power
consumption increased by the transition process of disabling and enabling the interface. In this paper, we focus on a
method of reducing power consumption in the screen-off state by repeating to disable and enable the network interface
and discuss estimation of its Break-Even Time (BET) with which the sizes of increased and decreased power consump-
tion are the same. We then propose two methods for estimating BET. One method estimates BET by integrating the
electric current. The other method estimates it according to the average electric current. We evaluate the methods with
practical applications and Android devices and show that the method based on the average electric current can estimate
BET accurately. In the case of our experiments, the difference between the actual and estimated BETs was less than
16.4%.

Keywords: Android, power consumption, Wi-Fi, smartphone, power saving, network interface

1. Introduction

A smartphone severely consumes battery. Reduction of its
power consumption is one of the most important issues [1], [2],
[3]. Smartphone applications run without users’ operation in the
screen-off state. These applications sometimes perform commu-
nication using their network interfaces and consume battery heav-
ily [4], [5]. Disabling network interfaces, such as Wi-Fi interfaces
and cellular interfaces, is a simple and effective method for de-
creasing its power consumption. Most of the applications assume
that they sometimes cannot connect to networks in the screen-
off state. We then expect that temporal disabling the network
interface does not occur serious problems. We assume that dis-
abling their network interface for a long time declines users’ ex-
periences. Therefore, we argue that a system should keep its net-
work interface normally disabled to save its power consumption
and occasionally enable the interface in a short time to prevent a
severe decline of the user experience.

The method that normally disables its hardware component and
enables the component shortly on demand was proposed [6] for
some components. For example, the studies of Refs. [7], [8], [9]
demonstrated that the method was effective for hard disk drives

1 Kogakuin University, Shinjuku, Tokyo 163–8677, Japan
2 R&D Center for Smart Mobility, Kyushu University, Fukuoka 819–0395,

Japan
3 Kyushu University, Fukuoka 819–0395, Japan
4 Ochanomizu University, Bunkyo, Tokyo 112–8610, Japan
a) sane@cc.kogakuin.ac.jp

(HDDs).
State transition to enable and disable a hardware component

temporally increases its power consumption with many kinds of
components. Thus, frequent transition increases its energy con-
sumption. The power consumption decreased by disabling a com-
ponent must be greater than the power consumed for the transi-
tion in order to save power consumption. The longer the disabling
time is, the larger the power consumption is reduced. The period
of being disabled with which the decreased and increased power
consumptions are same is called Break-Even Time (BET) [6].

BET is not provided in typical cases. Thus, investigation of the
BET is important if a user saves the power consumption by re-
peating to disable and enable its network interface. In this work,
we focus on Android devices and discuss methods for estimating
BET of intermittent disabling network interface. We propose two
methods for estimation. One is based on an integration of electric
current. The other is based on the average electric current. We
then evaluate the methods and demonstrate that the latter method
can estimate the BET accurately.

Android is a popular operating system for mobile devices such
as smartphones and tablet PCs with a market share of 85.0% in
Q1 2017 [10]. The Linux kernel of the operating system provides
a function by which a software program can obtain the electric
current of the device. Consequently, we focus on this operating
system and present our evaluation based on this operating system
in this paper.

This paper is an extended version of the previously published

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

work of Refs. [11], [12], [13], [14]. In this paper, we focus on the
method for reducing power consumption. The method repeats to
disable and enable the network interface longer than BET. We
then propose methods for estimating BET and evaluate the meth-
ods by repeating to disable and enable the interface of our de-
vice in which practical applications are installed. The evaluation
shows that the method based on the average electric current can
estimate more correctly. This method is explicitly activated by a
user for reducing the power consumption.

The remainder of this paper is organized as follows: Section 2
explains a method for saving power by repeating to disable and
enable the Wi-Fi interface. Section 3 proposes methods for es-
timating BET. Section 4 shows the results of the preliminary
experiment. Section 5 evaluates the proposed methods. Section 6
discusses the proposed methods. Section 7 introduces the related
work. Section 8 concludes this study.

2. Power Saving by Intermittent Disabling
Network Interface

This section describes a method for reducing power consump-
tion by intermittent disabling the network interfaces and explains
its BET.

2.1 Power Consumed by State Transition of Network Inter-
face

We observed the power consumed by the state transitions
of Wi-Fi interface, which is the temporally increased power
consumption just after enabling and disabling the network
interface. We evaluated power consumption by installing a set of
applications, leaving the Android device untouched, and mea-
sured the electric current. The application set was composed of
the top 20 applications ranked in the Google Play Store on Dec.
6, 2016. The used device and the network interface are Nexus
7 (2013) and its Wi-Fi interface, respectively. Table 1 presents
the specification of the device. In this paper, we started our
measurements with the battery fully charged. We assumed that
the voltage was constant and the power consumption per minute
was proportional to the electric current during the measure-
ments. We then measured the electric current instead of power
consumption per minutes for discussing power consumption.
We obtained the remaining battery level and the electric current
from /sys/class/power supply/battery/capacity and
/sys/class/power supply/battery/current now, respec-
tively. Some applications in the set made the device into the
screen-on state at their communications. In order to highlight the
effect of the network interface on the power consumption, we
invoked our application that performed WakeLock of the screen
with “SCREEN DIM WAKE LOCK” during the measurements.
The screen kept lighting very darkly. This application did not
do anything except for issuing WakeLock and worked as the
foreground application. Thus, the foreground application did not
give any effect on the experimental results.

Figure 1 to Fig. 3 show the results of the observation. Fig-
ure 1 depicts the transition of the absolute electric current in our
measurement in which the interface was disabled and enabled at
13 and 113 seconds, respectively. Figure 2 and Fig. 3 show the

Table 1 The specification of the experimental device.

Fig. 1 Transition of the electric current.

Fig. 2 Transition of the electric current around disabling the network inter-
face.

Fig. 3 Transition of the electric current around enabling the network inter-
face.

enlarged transitions around disabling and enabling, respectively.
The results in Fig. 1 indicate that the absolute value of the electric
current increased just after disabling and enabling. These results
support a previously mentioned assumption that transition of the
state temporally increases the power consumption.

2.2 Power Consumption and BET
The measurement in Section 4 will demonstrate that the power

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

consumption per minute can be reduced by repeating to enable
and disable its network interface. Figure 4 illustrates the model
of transition of the electric current including enabling and dis-
abling the network interface. The areas of A0 and A1 are the
power consumptions increased by disabling and enabling, respec-
tively. The area of B is the power consumption decreased by
disabling the interface. The length of b is the difference of the
electric currents with the interface enabled and disabled. The fol-
lowing inequality must be satisfied in order to decrease the power
consumption.

A0 + A1 < B (1)

In addition, we define BET as the length of disabled time such
that the following equation is satisfied.

A0 + A1 = B (2)

We have to make the interface disabled longer than BET in or-
der to reduce power consumption. However, BET is not provided
usually. Therefore, estimation of BET is essential.

2.3 Action for Saving Power Consumption
In this subsection, we describe an action that is required for a

user to save power consumption by intermittent disabling a net-
work interface. As described, an act of temporal disabling whose
length is longer than the BET reduces power consumption. In
order to extend its battery run time, a user has to repeat this act.
A battery run time can be extended by repeating the following
action.
(1) Disable its network interface for a period that is longer than

BET, e.g., 2 × BET.
(2) Enable the network interface for a period.

Fig. 4 Model of transition of the electric current (enabling and disabling the
network interface).

Fig. 5 A sample shell script.

This can be easily achieved by a simple program. A sample of
bash shell script program is described in Fig. 5.

3. BET Estimation

In this section, we propose two methods for estimating BET.
One is based on integration. This is a naive method on a basis
of existing studies. The other is based on the average electric
current.

3.1 Estimation based on Integration
First, we proposed an estimation method based on integration.

As described in Section 2, BET is the length of the time for dis-
abling the interface with which the Eq. (2) is satisfied. Obtaining
A0, A1, and b is necessary in order to calculate BET. This method
computes A0 and A1 by integrating the monitored electric cur-
rents. This method gets b from the difference of the measured
average electric currents with the network interface disabled and
enabled. We then can calculate BET by the following equation
using A0, A1, and b.

BET = (A0 + A1)/b (3)

This method must calculate A0 and A1 based on the monitored
electric currents in a very short time, so this method is expected to
be problematic in accuracy. That is, the value may contain a large
measurement noise. In addition, this method requires calculation
of integration for each disabling and enabling. Thus, long-term
measurement is not easily achieved with this method. This is a
naive method that is achieved by straightforwardly applying the
BET estimating method in Refs. [8], [9].

This method requires to integrate for the parts of A0 and A1. In
the cases of Fig. 2 and Fig. 3, integrations between 13 and 17 sec-
onds and between 114 and 120 seconds are required, respectively.

3.2 Estimation based on the Average Electric Current
In this section, we propose a method for estimating BET based

on the average electric current. Figure 6 shows a model of power
consumption of one iteration of loop of disabling and enabling a
network interface. This method measures the electric current for
discussing power consumption as described. ion and ioff are the
electric currents with the network interface always enabled and
disabled, respectively. tcom0 and tcom1 are the times required to
disable and enable the interface, respectively. tcom is the amount
of time required to enable and disable the interface. ton and toff are
the times in which the interface is enabled and disabled, respec-

Fig. 6 Power consumption model of a cycle of enabling and disabling the
network interface.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

tively. A0 and A1 are the consumed powers by state transitions of
the interface. A is the total power consumption increased by en-
abling and disabling. iloop is the average electric current when the
network interface is repeatedly enabled and disabled. The figure
presents the following equation.

iloop =
A + ion(tcom + ton) + ioff · toff

tcom + ton + toff
(4)

That is,

A = (tcom + ton)(iloop − ion) + toff (iloop − ioff) (5)

All the values in Eq. (4) except for A can be obtained by mea-
surement. Therefore, A can be obtained by Eq. (5). BET is toff
such that

iloop = ion (6)

That is,

BET =
A

ion − ioff
(7)

Unlike the estimation based on integration, this method esti-
mates based on the long-term measured value, so we can expect
that this method can estimate more accurately. This method re-
quires only to keep measuring the electric current long-term. Im-
proving accuracy is easily achieved with this method.

The electric current can be obtained from the Linux kernel via
/sys/class/power supply/battery/current now. We ob-
tained the value of electric current via this file in every 0.3 sec-
onds with a shell script.

4. Preliminary Experiment

In this section, we present evaluations of the battery decreasing
speeds with the network interface enabled and disabled.

4.1 Power Consumption per Minute with Network Interface
Enabled and Disabled

We evaluated power consumption by installing a set of applica-
tions, leaving the Android device untouched, and measuring time
spent for the value of the remaining battery from 3,950.0 mAh to
2,962.5 mAh. This is the quarter of the fully charged battery. The
experimental setup is the same as that of Section 2.1.

Figure 7 depicts the transitions of the remaining battery ca-
pacity with the network interface enabled and disabled. The re-
sults depicts that average consumed battery capacity per minute

Fig. 7 Transition of the ratio of the remaining battery.

are 2.83 mAh/min and 2.36 mAh/min with the interface enabled
and disabled, respectively. These results indicate that the device
consumed more battery with its network interface enabled than
disabled.

4.2 Transition of Electric Current
Figure 8 and Fig. 9 show the transitions of the absolute elec-

tric currents during the measurements, i.e., from 3,950 mAh to
2,962.5 mAh, with the network interface enabled and disabled,
respectively. The average absolute electric currents in the enabled
and disabled states are 145.3 and 132.2 mA, respectively. The red
lines in the figures depict the averages.

5. Evaluation

5.1 Experimental Setup
In this section, we evaluate the proposed methods. We in-

stalled three sets of applications into our experimental device
and then estimated BETs with the two proposed methods. The
first and second sets are composed of the top 20 and 50 appli-
cations ranked in the Google Play Store on November 6, 2016,
and February 18, 2017, respectively. The third set is based on
a practical smartphone usage model [15]. This is composed of
popular 11 applications. We consider that the first and second
experimental setups are suitable for focusing on popular applica-
tions. The values of A and B in Fig. 4 depend on the numbers of
the installed applications. Comparing the results with the first and

Fig. 8 Transition of the electric current (Wi-Fi interface enabled).

Fig. 9 Transition of the electric current (Wi-Fi interface disabled).

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Table 2 The BET estimated by the method based on integration (20 appli-
cations).

second application sets, we can discuss the dependency the pro-
posed methods on these values, i.e., A and B. However, installing
only popular applications does not sound usual for many users.
The third application set is suitable for evaluating the method in a
usual situation. The used devices are Nexus 7 (2013) and Nexus
5X. The experimental setup is the same as that in Section 2. The
length of the time in which the Wi-Fi interface was enabled was
always 30 seconds. The length of being disabled ranged from
50 to 400 seconds. We measured the time required to consume
987.5 mAh battery, which is the quarter of the maximum battery
capacity, with various length of being disabled. We obtained the
value of the electric current and the remaining battery level from
the operating system kernel every 0.3 s and stored them to its flash
storage using a shell script file. The administrative authority, i.e.,
root authority, is necessary to obtain these values from the ker-
nel. In all the experiments, we left the Android device untouched
and measured these values. The applications used in Section 5.2,
Section 5.3, and Section 5.5 are described in the Appendix. With
the methods based on integration, the current of 10 cycles were
monitored for estimating the BET. With the method based on
the average electric current, that were monitored for the time to
consume the quarter of the battery.

5.2 20 Applications
First, we evaluate the estimations using the 20 applications and

Nexus 7. Table 2 describes the BETs estimated by the method
based on integration. The results imply that the estimated BETs
of the method are almost the same irrespective of the time of be-
ing disabled. In this paper, we assume the average time, which is
54.5 seconds, as the estimation result. Figure 10 shows the iloop

estimated by the method based on the average current and the
measured ion. The iloop is calculated with the formula (4). From
the result in the figure, we can find that the BET estimated by the
method based on the average electric current is 91.9 s. That is the
time length at which the values of iloop and ion are the same. The
figure shows also the measured battery decreasing speeds. The
results show that the actual BET is around 100 seconds. In this
paper, we define the actual BET as the value obtained by the lin-
ear approximation from a graph, which is 97.7 s. We can see that
the BET estimated by the method based on the electric current is
more accurate. These results indicate that the BET can be esti-
mated more accurately with longer-term measurement including
more cycles. We obtained the electric current from the kernel as
described. We did not measure the electric current with a hard-
ware ammeter. Please note that these values are lowly accurate

Fig. 10 The BET estimated by the method based on average electric current
and the measured actual BET (20 applications, Nexus 7).

Table 3 The BET estimated by the method based on integration (50 appli-
cations).

Fig. 11 The BET estimated by the method based on average electric current
and the measured actual BET (50 applications, Nexus 7).

and this BET is an approximate value.

5.3 50 Applications
Second, we discuss the results of the 50 applications and

Nexus 7. Table 3 describes the BET estimated by the method
based on integration. The average is 53.0 s. Figure 11 shows
the estimation of the method based on the average current. The
results show that the estimated BET is 99.5 s. The figure shows
also the measured battery decreasing speeds. These show that the
actual BET obtained by linear approximation is 100.2 s. There-
fore, we can say that the method based on the average current
estimated more accurately also with the 50 applications.

5.4 Device Dependency
Third, we evaluate the proposed method with another device in

order to investigate its device dependency. We installed the set of
20 applications into Nexus 5X and estimated its BET. Table 4
describes the specification of the device. In the case of Nexus
5X, available electric current is updated every 30 s. Therefore,
we cannot apply the method based on integration and evaluated

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Table 4 The specification of the experimental device.

Fig. 12 The BET estimated by the method based on average electric current
and the measured actual BET (20 applications, Nexus 5X).

Fig. 13 The BET estimated by the method based on average electric current
and the measured actual BET (practical application set, Nexus 7).

only the method based on the average electric current.
Figure 12 shows the estimated and measured electric currents.

The iloop and ion in Fig. 12 show that the estimated BET is 52.1 s,
at which the estimated current equals to that with the Wi-Fi in-
terface always enabled. The battery decreasing speeds in the fig-
ure show that the actual BET obtained by linear approximation is
53.9 s. These results indicate that the method based on the aver-
age electric current can estimate BET accurately also with Nexus
5X. Please note that these results are based on the values obtained
from the kernel which are lowly accurate.

5.5 Practical Smartphone Usage Model
In this subsection, we evaluate the method based on the average

electric current with an application set that is based on a practical
smartphone usage model [15]. The application set is composed
of popular 11 applications. We installed these applications and
estimated BET. The used device is Nexus 7.

Figure 13 shows the estimated electric current and actual
battery consuming speed. The average current and consuming
speed with the device always enabled are 139.0 mA and 4.6%/h,
respectively. Namely, the estimated and actual BETs are 55.9 s

Fig. 14 Battery runtime with and without intermittent disabling.

and 48.0 s, respectively. From these results, which are based
on the values obtained from the kernel, we can expect that the
method based on the average electric current can estimate BET
with the application set based on the practical usage model.

5.6 Battery Runtime
In this subsection, we discuss battery runtime with the experi-

mental results in the previous subsections. The screen kept light-
ing very darkly in the experiments. Naturally, a battery runtime
can be directly obtained from a battery decreasing speed because
they are in inverse proportion. Thus, we discuss battery runtime
with the battery the decreasing speed.

The method based on the average electric current provides the
prediction on the relationship between the disabled time and the
electric current, such as Fig. 10, and Fig. 11. In the case of the ex-
periments with the top 20 applications, Fig. 10 indicates that the
electric current will decrease from that of always enabled with
200 s disabled time. The ratio between them is 1.040. The figure
indicates also that the electric current will decrease with 400 s
disabled time and the ratio is 1.063. These imply that the battery
runtimes also extend and their ratios are 1.040 and 1.063. Fig-
ure 10 shows that the battery decreasing speed actually decreased.
Their ratios are 1.034 and 1.065 with 200 and 400 s disabled time,
respectively. Comparing predicted and actual values, we can say
that the method based on the average electric current achieved an
accurate prediction of the battery decreasing speed according to
the relationship. Next, we calculate the size of decreased power
consumption by repeating to disable its network interface. As
shown in Section 5.2, the BETs estimated by the methods based
on integration and the average electric current are 54.5 (as de-
scribed in Table 2) and 91.9 s (as shown in Fig. 10), respectively.
In cases of disabling the network interface for twice the BET, a
user repeats to disable the interface for 109.0 and 183.8 s. We
calculated of the battery decreasing speeds at 109.0 and 183.8 s
using linear approximation from the results in Fig. 10, and calcu-
lated the battery runtimes from these speeds. Figure 14 shows the
calculated battery runtime with 25% battery. The results demon-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

strate that disabling the interface according to an inaccurately es-
timated BET, which is by the method based on integration, could
not suitably extend the battery runtime, i.e., only 0.79%. On the
contrary, the accurate BET effectively increased the battery run-
time, i.e., 2.9%. Please note that these results are based on the
values obtained from the kernel which are lowly accurate. These
results indicate that estimating BET more accurately results in
better power saving.

In this section, we evaluated the proposed methods with the
simple experiments using the several limited devices. Our re-
sults showed the possibility that the power consumption can be
decreased by our proposed methods.

6. Discussion

First, we discuss the negative effect of the intermittent dis-
abling network interface. We think disabling the network inter-
face sometimes results in a decline of the quality of the service of
applications and user experience. However, many smartphones
often go into situations wherein they cannot communicate via
network temporarily such as entering an elevator, underground,
or an airplane. Consequently, we expect that many of the appli-
cations are designed not to cause a severe problem even if they
cannot communicate temporarily.

We consider that the following case is an example where a rep-
etition of disabling and enabling the network interface causes a
serious problem. An application starts downloading large data,
but the application cannot finish the transmission within an en-
abled period in which the network interface is temporarily en-
abled. This application starts downloading the data again in the
next period. If the application is implemented to start transmis-
sion from the beginning of the data without resuming transfer, this
application will fail to download the data in every period that the
interface is enabled. We think that this problem can be avoided
by implementing applications to resume the previous download
at the next period.

A case where a user leaves its smartphone without touching it
for several hours for reasons such as sleeping can be considered
as an example of a situation where a power saving method by in-
termittent disabling network interface can effectively be utilized.
In such situations, keeping the state of the device up to date is not
always required and repeating short-term communication at reg-
ular intervals is enough. On the other hand, a situation wherein
the state of the device is remarkably delayed may severely decline
user’s experience because updating the device state takes too long
time at the time of reuse such as at the time of getting up. Thus,
avoiding being largely delayed is important.

Second, we discuss cases of the knowledge of BET contributes
battery saving. As we will describe in the next section, some ex-
isting practical products support of function of disabling network
interface for saving power consumption. However, these func-
tions do not consider BET. Therefore, frequently disabling may
cause an increase in power consumption. The function can ad-
vise the user not to disable the interface so frequently with the
knowledge of the BET.

Third, we discuss the difference between a network disrup-
tion and disabling network interface on purpose like the proposed

method. These are the same as an aspect that the power con-
sumption of the device decreases as a result of a disabled net-
work. However, these are different in many aspects. In a case of
the network device is disabled on purpose, applications do not try
to communicate because they know that the network is not avail-
able. In a case of network disruption, applications try to connect
network and these behaviors consume its battery. In addition, a
user cannot control the length of a period in which the network
is disabled in the case of network disruption. Thus, the network
may re-start within BET. Naturally, this causes an increase of
power consumption. On the other hand, in the case of disabling
network interface on purpose, a user can control time length of
disabling.

Fourth, we discuss the main target devices of our proposed
methods. We think tablet PCs using Wi-Fi networks are most suit-
able for our proposed methods. As we described, disabling Wi-Fi
interface is effective for saving power consumption. In a case of
a smartphone using cellular networks, power consumption can be
decreased by intermittent disabling its cellular interface. How-
ever, a user cannot receive some warnings, such as Earthquake
Early Warning, in a condition wherein the cellular interface is
disabled.

7. Related Work

In this section, we review related work.
The Android operating system has Doze mode and Battery

Saver mode. The operating system goes to the Doze mode if
the device is powered by its battery, its screen is in the off state,
and the device is idle. The mode causes some restrictions, such
as disabling network accessing, disabling SyncAdapter and Job
Scheduler, ignoring WakeLock, ignoring AlarmManager, dis-
abling GPS and Wi-Fi scan. If a device goes to the Battery Saver
mode, the system restricts the vibration function, the location
function, data transmission of many background functions. For
example, emails and messages are not updated without manual
launching. These modes are also effective for saving power con-
sumption. However, these modes do not disable its network in-
terface. In addition, these do not consider BET. Thus, frequent
manual invocation of an email application may cause an increase
in power consumption.

The following work relates to power consumption in PCs.
Mahesri et al. performed an analysis of power consumption on
a laptop system [16]. They showed that the CPU and display
were the main consumers of energy for their class of system and
that other components contributed substantially only when they
were used intensively. Sagahyroon performed an analysis on a
handheld PC [17]. He showed significant consumption in the dis-
play subsystems, particularly in backlight brightness. He sug-
gested that the CPU and its operating frequency were important
to overall power consumption. He also showed significant power
consumption in the graphics subsystems. These works are novel
ones for analyzing power consumptions of mobile devices and the
current approaches for analyzing power consumption including
Android operating system and the proposed methods are mainly
based on these works. However, unlike our work, these works
did not provide any method for decreasing power consumption.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

In addition, these ones did not mention modern mobile devices
such as Android smartphones.

The following work is on power saving on smartphones.
Carroll et al. presented a detailed analysis of the power consump-
tion of a mobile phone [18]. They measured both the overall
system power consumption and the exact breakdown of power
consumption by the device’s main hardware components. They
developed a power model and analyzed the energy usage and
battery lifetime under a number of usage patterns. They dis-
cussed the significance of the power drawn by various compo-
nents, and identified the most promising areas to focus on for
further improvements of power management. They also analyzed
the energy impact of dynamic voltage and frequency scaling of
the device’s application processor. Pathak et al. presented the
fine-grained energy profiler, called eprof, for smartphone appli-
cations [19]. They reported their findings that 65%–75% of en-
ergy in free applications was spent in third-party advertisement
modules. Zhuang et al. focused on location-based applications
and pointed device battery drain out, which was owing to their
power-intensive location-sensing operations [20]. They presented
an adaptive location sensing framework whose design principles
involved substitution, suppression, piggybacking, and adaptation
of applications’ location-sensing requests to conserve energy. Be-
sides, they showed that their principles reduced the usage of the
power-intensive GPS and improved battery life. In the work of
Ref. [21], a method for adjusting CPU clock frequency was pro-
posed. The method defined the performance as the frame rate.
This then increased and decreased the CPU clock frequency until
its frame rate achieved less or greater than the minimum or max-
imum frequencies predefined by its user. These works on mod-
eling and analyzing the power consumptions of smartphones are
mainly based on existing works for PCs, such as Refs. [16], [17]
and extended them for smartphones. Unlike this paper, these
works provided their discussion on analyses of practical power
consumption. However, none of these works discussed on a
method for saving power consumption by intermittent disabling
its network interface. In our previous work [22], a method for
saving power consumption of a smartphone in the screen-off state
was proposed. Similar to this work, the previous work focused on
the screen-off state. However, the previous work addressed the
timing of process invocation. The target issues are completely
different.

In our previous works, we proposed methods for estimating
power consumption of each application [23], [24], [25] and meth-
ods for accelerating the speeds of tests and monitoring applica-
tion behaviors [26], [27], [28], [29]. These works presented the
detailed discussion on power consumption and its estimation on
smartphones. However, all of these methods did not present any
discussion on decreasing power consumption by intermitted us-
age of its network interface.

The followings refer to a reduction of the power consump-
tion by intermitted device usage. Nakamura et al. proposed a
way of computing which aggressively powered off components
of computer systems when they needed not to operate [30]. They
called it normally-off computing. Juang et al. presented a discus-
sion on applying wireless peer-to-peer networking techniques in a

mobile sensor network designed to support wild life tracking [31].
These are pioneering works on intermittent disabling devices and
interface. This paper, which is for intermittent disabling a net-
work interface, is largely based on these existing works. Espe-
cially, the concept of BET is important for this paper. However,
these works did not discuss a method for accurately estimating
BET. In addition, these existing works did not focus on modern
smartphones. Work of Refs. [8], [9] proposed the methods for re-
ducing the power consumption of storage devices by frequently
bringing the device to power-off mode. This paper is based on
the idea of these previous work, which is intermitted usage of the
device, and some papers mentioned BET. However, these papers
did not present any solution to estimate BET. In our previous
studies [11], [14], we proposed methods for estimating BET and
this paper is based on these studies. However, these previous
works do not present comprehensive evaluations and discussion
but evaluations with limited situations such as using a single de-
vice. Noro et al. proposed a method for estimating the BET of
GPU in a smartphone. The method was based on the monitored
information. This is a pioneering work on estimating BET in
smartphones. Their target was a situation wherein an application,
including a home application, was running in the foreground, un-
like our work. In addition, their and our approaches are quite
different and these can be complementary to each other.

Some published documents [33], [34] introduce methods for
saving power consumption in practical devices. Some practical
products provide ways for saving power consumption. These
ways actively disable or decrease the performance of many func-
tions and devices, such as backlight, CPU, GPS, and e-mail fetch-
ing. These ways are widely used and recognized to be effective.
However, these ways do not support repeating intermittent dis-
abling network interface. Moreover, no discussion on estimation
of BET is presented. Therefore, we argue that our methods is also
important in addition to these actually used ways.

8. Conclusion

In this paper, we focus on a power saving method by intermit-
tent disabling its network interface and introduced its BET, which
is not typically provided. For utilizing this power saving method,
we proposed two methods for estimating its BET based on in-
tegration and the average electric current. We evaluated these
proposed methods with our devices and several application sets
including a set based on the practical smartphone usage model.
Namely, we installed sets of applications in our device, left the
device untouched with repeating to disable and enable the Wi-
Fi interface using the BETs estimated by the proposed methods,
and obtained the electric current from the kernel. Our evalua-
tion showed that the method based on the average electric current
could accurately estimate BET. In our experiments with disabling
the network interface for twice the estimated BET and enabling it
30 s, the difference between the practical and estimated BETs are
0.7% to 16.4% and the battery runtime was increased by 2.9%.

For future work, we plan to evaluate our methods with cellular
networks.

Acknowledgments This work was supported by JST CREST
Grant Number JPMJCR1503, Japan, and supported by JSPS

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

KAKENHI Grant Numbers 15H02696, 17K00109, 18K11277.

References

[1] Zahid, I., Ali, M.A. and Nassr, R.: Android Smartphone: Bat-
tery saving service, 2011 International Conference on Research
and Innovation in Information Systems, pp.1–4, DOI: 10.1109/
ICRIIS.2011.6125677 (2011).

[2] Doki, S., Ogishi, T. and Ano, S.: Mobile interface con-
trol scheme can extend battery life, 2015 International Con-
ference on Information Networking (ICOIN), pp.116–121, DOI:
10.1109/ICOIN.2015.7057867 (2015).

[3] The large causes of battery consumption: Four settings can improves
your battery life (1), Nikkei News Paper Apr. 1st 2013, available from
〈http://www.nikkei.com/article/DGXNASFK2600W
W3A320C1000000〉 (in Japanese)

[4] Kurihara, S., Fukuda, S., Koyanagi, A., Kubota, A., Nakarai, A.,
Oguchi, M. and Yamaguchi, S.: A study on identifying battery-
draining Android applications in screen-off state, 2015 IEEE 4th
Global Conference on Consumer Electronics (GCCE), pp.603–604,
DOI: 10.1109/GCCE.2015.7398682 (2015).

[5] Kurihara, S., Fukuda, S., Hamanaka, S., Oguchi, M. and Yamaguchi,
S.: Identifying battery-draining applications by monitoring behav-
ior in screen-off state in Android, 2016 IEEE International Con-
ference on Consumer Electronics-Taiwan (ICCE-TW), pp.1–2, DOI:
10.1109/ICCE-TW.2016.7520971 (2016).

[6] Nakada, T. and Nakamura, H.: Normally-Off Computing, Springer,
Tokyo, DOI: 10.1007/978-4-431-56505-5 (2017).

[7] Yamaguchi, S. and Yagai, S.: Power Effective File Layout with Ap-
plication Support in Virtualized Environment, 2015 IEEE Interna-
tional Conference on Control System, Computing and Engineering
(ICCSCE2015) (2015).

[8] Yagai, S., Oguchi, M., Nakano, M. and Yamaguchi, S.: Power-
effective File Layout based on Large Scale Data-intensive Application
in Virtualized Environment, IEICE Trans. Information and Systems,
Vol.E100-D, No.12, DOI: 10.1587/transinf.2017PAP0003 (2017).

[9] Nishikawa, N., Nakano, M. and Kitsuregawa, M.: Application Sen-
sitive Energy Management Framework for Storage Systems, IEEE
Trans. Knowledge and Data Engineering, pp.1–12, DOI: 10.1109/
TKDE.2015.2416737 (2015).

[10] Smartphone OS Market Share: 2016Q3, available from 〈http://www.
idc.com/prodserv/smartphone-os-market-share.jsp〉

[11] Murakami, T., Fukuda, S., Kurihara, S., Oguchi, M. and Yamaguchi,
S.: Saving Power Consumption of Smartphones in the Screen-off State
with Disabling the Wi-Fi, 2018 International Conference on Con-
sumer Electronics (ICCE 2018) (2018).

[12] Murakami, T., Kurihara, S., Fukuda, S., Oguchi, M. and Yamaguchi,
S.: Saving Power Consumption of Smartphones in the Screen-off
State with Disabling the Wi-Fi Device, IPSJ, SIG Technical Reports,
Vol.2017-CDS-20, No.13, pp.1–6 (2017) (in Japanese).

[13] Murakami, T., Kamiyama, T., Fukuda, A., Oguchi, M. and
Yamaguchi, S.: BET Estimation on Saving Power Consumption by
Intermittent Disabling the Network Device and its Evaluation, IPSJ,
SIG Technical Reports, Vol.2018-CDS-21, No.8, pp.1–6 (2018) (in
Japanese).

[14] Murakami, T., Kamiyama, T., Fukuda, A., Oguchi, M. and
Yamaguchi, S.: BET Estimation Accuracy on Intermittent Disabling
Network Device for Saving Smartphones Power Consumption, IEEE
International Conference on Consumer Electronics - Taiwan (IEEE
2018 ICCE-TW) (2018).

[15] Kamiyama, T., Hisazumi, K., Inamura, H., Konishi, T., Ohta, K.
and Fukida, A.: Smartphone Usage Analysis Based on Actual-Use
Survey, Proc. 8th EAI International Conference on Mobile Comput-
ing, Applications and Services, MobiCASE2016, pp.108–116, DOI:
10.4108/eai.30-11-2016.2267052 (2016).

[16] Mahesri, A. and Vardhan, V.: Power consumption breakdown on
a modern laptop, Proc. 4th International Conference on Power-
Aware Computer Systems (PACS’04), Falsafi, B. and VijayKumar,
T.N. (Eds.), Springer-Verlag, Berlin, Heidelberg, pp.165–180 DOI:
http://dx.doi.org/10.1007/11574859 12 (2004).

[17] Sagahyroon, A.: Power Consumption in Handheld Computers,
APCCAS 2006 - 2006 IEEE Asia Pacific Conference on Circuits
and Systems, pp.1721–1724, DOI: 10.1109/APCCAS.2006.342129
(2006).

[18] Carroll, A. and Heiser, G.: An analysis of power consumption in
a smartphone, USENIXATC’10 Proc. 2010 USENIX Conference on
USENIX Annual Technical Conference, p.21 (2010).

[19] Pathak, A., Hu, Y.C. and Zhang, M.: Where is the energy
spent inside my app?: Fine grained energy accounting on smart-
phones with Eprof, Proc. 7th ACM European Conference on Com-
puter Systems (EuroSys ’12) pp.29–42, ACM, DOI: http://dx.doi.org/

10.1145/2168836.2168841 (2012).
[20] Zhuang, Z., Kim, K.-H. and Singh, J.P.: Improving energy efficiency

of location sensing on smartphones, MobiSys ’10 Proc. 8th Inter-
national Conference on Mobile Systems, Applications, and Services,
pp.315–330 (2010).

[21] Nagata, K., Yamaguchi, S. and Ogawa, H.: A Power Saving Method
with Consideration of Performance in Android Terminals, 2012 9th
International Conference on Ubiquitous Intelligence and Computing
and 9th International Conference on Autonomic and Trusted Comput-
ing, pp.578–585, DOI: 10.1109/UIC-ATC.2012.133 (2012).

[22] Konishi, T., Kamiyama, T., Kawasaki, S. and Inamura, H.: Reducing
the use of Energy and Wireless Resources on Android Devices during
Screen Inactive Periods, DPSWS, Vol.2012, No.4, pp.249–256 (2012)
(in Japanese).

[23] Kurihara, S., Fukuda, S., Yamaguchi, S. and Oguchi, M.: Estimation
of power consumption of each application based on software depen-
dency in android, 2017 IEEE 6th Global Conference on Consumer
Electronics (GCCE), pp.1–2, DOI: 10.1109/GCCE.2017.8229436
(2017).

[24] Kurihara, S., Fukuda, S., Oguchi, M. and Yamaguch, S.: Estimation
of Power Consumption of Each Application Caused by Device Lock
Considering Software Dependency in Smartphones, 2017 5th Interna-
tional Symposium on Computing and Networking (CANDAR), pp.560–
564, DOI: 10.1109/CANDAR.2017.56 (2017).

[25] Kurihara, S., Fukuda, S., Hamanaka, S., Oguchi, M. and Yamaguchi,
S.: Application power consumption estimation considering soft-
ware dependency in Android, Proc. 11th International Conference
on Ubiquitous Information Management and Communication (IM-
COM ’17), Article 86, 6 pages, ACM, DOI: https://doi.org/10.1145/
3022227.3022312 (2017).

[26] Fukuda, S., Kurihara, S., Hamanaka, S., Oguchi, M. and Yamaguchi,
S.: Accelerated Application Monitoring Environment of Android,
2016 IEEE International Conference on Consumer Electronics-
Taiwan (ICCE-TW), pp.1–2, DOI: 10.1109/ICCE-TW.2016.7520972
(2016).

[27] Fukuda, S., Kurihara, S., Hamanaka, S., Yamaguchi, S. and Oguchi,
M.: An accelerated application monitoring environment with acceler-
ated servers, 2016 IEEE 5th Global Conference on Consumer Elec-
tronics, pp.1–2, DOI: 10.1109/GCCE.2016.7800527 (2016).

[28] Fukuda, S., Kurihara, S., Hamanaka, S., Oguchi, M. and Yamaguchi,
S.: Accelerated test for applications with client application and server
software, Proc. 11th International Conference on Ubiquitous Informa-
tion Management and Communication (IMCOM ’17). Article 100, 6
pages, DOI: https://doi.org/10.1145/3022227.3022326 (2017).

[29] Fukuda, S., Kurihara, S., Oguchi, M. and Yamaguchi, S.: Stability im-
provement of an accelerated android operating system for application
observation, 2018 IEEE International Conference on Consumer Elec-
tronics (ICCE), pp.1–6, DOI: 10.1109/ICCE.2018.8326200 (2018).

[30] Nakamura, H., Nakada, T. and Miwa, S.: Normally-off computing
project: Challenges and opportunities, 2014 19th Asia and South
Pacific Design Automation Conference (ASP-DAC), pp.1–5, DOI:
10.1109/ASPDAC.2014.6742850 (2014).

[31] Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L.S. and Ruben-
stein, D.: Energy-efficient computing for wildlife tracking: De-
sign tradeoffs and early experiences with ZebraNet, SIGARCH Com-
put. Archit. News, Vol.30, No.5, pp.96–107, DOI: http://dx.doi.org/
10.1145/635506.605408 (2002).

[32] Noro, M., Murakami, T., Kamiwada, T. and Ishihara, T.: GPU State
Control Method with Estimating Termination of Drawing, IPSJ Jour-
nal, Vol.57, No.2, pp.394–405 (2016) (in Japanese).

[33] Settings for ecology | AQUOS : SHARP available from 〈https://faq.
support.biglobe.ne.jp/faq detail.html?id=11262〉 (in Japanese).

[34] Long runtime switch extends your battery life – effective method for
AQUOS - | Application and services | AQUOS : SHARP, available
from 〈https://k-tai.sharp.co.jp/appli/useful/009/〉 (in Japanese).

Appendix

A.1 Applications of Experiments

The top 20 and 50 applications in Section 5.2 and Section 5.3
are as follows. The top 20 applications are those from the first one
(messaging application A) to the 20th one (weather application).
1* messaging application A
2 tool A
3 game A
4 portal site application

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

5 shop application A
6 music application A
7 shop application B
8 movie application
9 game B
10 SNS application A
11* news application A
12* news application B
13* SNS application B
14 shop application C
15 game C
16 SNS application C
17 transit guide application
18 game D
19* SNS application D
20 weather application
21* news application C
22 game E
23 security application A
24 security application B
25 game F
26 shop application D
27 tool B
28 cooking application A
29 SNS application E
30 game G
31 shop application E
32 game H
33 game I
34 cooking application B
35 music application B
36 comic application
37 music application C
38* SNS application F
39 shop application F
40 tool C
41 map application
42 game J
43 photo application
44 messaging application B
45 tool D
46 music application D
47 tool E
48 game K
49 cooking application C
50* finance application
The 11 applications of the practical usage model in Section 5.5 as
follows.
1 browser application
2 home application
3* mail application
4 lifestype application
5 calculator application
6 phone aplication
7 camera application
8* messaging application

9 application store
10 system UI
11 phone book application

We subjectively classified these applications into two groups.
One is the group of the applications that can be used without prob-
lem or with a very small problem in a situation wherein its net-
work interface is disabled. The other is the group of the applica-
tions whose usability declines a little but not fatally. We added the
letter * to the rank number of the applications in the latter group.
For example, a shop application is a former application. User’s
operations are not executed in the screen-off state. Thus, the main
purpose of this application, which is shopping, is achieved with-
out a large problem. We think the decline of usability in the case
of this application is very small. A messaging application is a
latter application. A user cannot receive messages while the net-
work interface is disabled and the reception is delayed until the
next enabling. We think the decline is not fatal because the main
purpose of this application, sending and receiving messages, is
achieved. However, the service level of this main function is de-
clined a little. Thus, we think the usability of this application
declines a little.

All these applications do not only open their web sites by in-
voking a web browser but have their own programs such as those
written in Java.

Tsubasa Murakami received his B.E.
and M.E. degrees in Kogakuin University
in 2017 and 2019, respectively.

Takeshi Kamiyama joined NTT
DOCOMO, Inc. in 2006. His research
interests include system research, espe-
cially energy-efficient design, on mobile
device and distributed system. Before
NTT DOCOMO, he received M.S. degree
in University of Tokyo, Japan in 2006.
Also, he was co-founder and CEO in e-jis,

Inc. from 2003 to 2006. Currently, He is also a doctoral student
in Kyushu University. He is a member of IPSJ.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Akira Fukuda received his B.Eng.,
M.Eng., and Ph.D. degrees in computer
science and communication engineering
from Kyushu University, Japan, in 1977,
1979, and 1985, respectively. From 1977
to 1981, he worked for the Nippon Tele-
graph and Telephone Corporation, where
he engaged in research on performance

evaluation of computer systems and the queueing theory. From
1981 to 1991 and from 1991 to 1993, he worked for the Depart-
ment of Information Systems and the Department of Computer
Science and Communication Engineering, Kyushu University,
Japan, respectively. In 1994, he joined Nara Institute of Science
and Technology, Japan, as a professor. Since 2001, 2008, and
2016, he has been a professor of Graduate School of Information
Science and Electrical Engineering, and director of System LSI
Research Center, and director of R&D Center for Smart Mobility,
Kyushu University, Japan, respectively. Since 2015, he has been
a distinguished professor of Kyushu University. His research
interests include embedded systems, ubiquitous computing,
system software (operating systems, compiler, and run-time
systems), parallel and distributed systems, and performance
evaluation. He is IPSJ fellow. He is a member of the ACM, the
IEEE Computer Society, the IEICE, the IPSJ, and the Operations
Research Society of Japan.

Masato Oguchi received B.E. from Keio
University, M.E. and Ph.D. from the Uni-
versity of Tokyo in 1990, 1992, and 1995
respectively. In 1995, he was a researcher
in the National Center for science In-
formation System (NACSIS) - currently
known as National Institute of Informat-
ics (NII). From 1996 to 2000, he was re-

search fellow at the Institute Science, University of Technology
in Germany as a visiting researcher in 1998–2000, he became an
associate professor at the Research and Development initiative in
Chuo University. He joined Ochanomizu University in 2003 as
an associate professor. Sciences, Ochanomizu University. His re-
search field is in network computing middleware, including high
performance computing as well as mobile networking. He is a
member of IEEE, ACM, IEICE, and IPSJ.

Saneyasu Yamaguchi received Engi-
neering Doctor’s degree (Ph.D.) at Tokyo
University in 2002. During 2002–2006,
he stayed in Institute of Industrial Sci-
ence, the University of Tokyo to study
I/O processing. He now with Kogakuin
University. Currently his researches focus
on operating systems, virtualized systems,

and storage system.

c© 2019 Information Processing Society of Japan

