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Abstract: Recent improvement in genomic research is paving the way towards significant progress in diagnosis and
treatment of diseases. A disease risk query returns the probability of a patient to develop a particular disease based on
her genomic and clinical data. Despite various innovative prospects, frequent and ubiquitous usage of genomic data
in medical tests and personalized medicine may cause various privacy threats like genetic discrimination, exposure
of susceptibility to diseases, and revelation of genomic data of relatives. Another major concern is on ensuring the
reliability of the genome data and the correctness of the computed disease risk, which is known as authentication. We
develop a novel secret sharing approach to protect privacy of sensitive genomic and clinical data, disease markers, dis-
ease name, and the query answer while ensuring authenticated result of the disease risk query. In addition, we discuss
the applicability of our approach in the field of personalized medicine. We perform a comprehensive security analysis
for our system. Experiments with real datasets show that our approach for authenticated disease risk queries achieves
a high level of privacy with reduced processing and storage overhead.

Keywords: genomic privacy, secret sharing, authenticated disease risk queries, personalized medicine

1. Introduction

Rapid advancement of efficient and cost-effective genome se-
quencing has opened the door for various novel research direc-
tions in genomics. In recent years, researchers have focused on
revealing the correlation between genetic variants and an indi-
vidual’s predisposition to diseases or response to the treatment.
Thus, genomic data has become popular for early diagnosis and
proper treatment of diseases [56]. For example, people having
family history of HIV, cancer, leukemia, heart disease, or dia-
betes may want to measure the risk of inheriting these diseases
in advance so that proper diet and preventive treatment can be
adopted [6], [7]. Besides, accurate dosage of medicine can also
be suggested according to patients’ genetic makeup [38]. In this
way, standard medical tests are taking turns towards a more per-
sonalized route [27].

With this pervasive usage of genomic data in personalized
medicine, privacy of an individual is going through potential
risks, as genomic data may reveal sensitive information regard-
ing an individual’s ethnicity, ancestry, phenotypic traits, health
conditions and susceptibility to specific diseases [24]. Thus, the
leakage of genetic information may result in genetic discrimina-
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tion in the sector of health insurance, employment and overall
social dynamics [8]. In addition, a person’s genomic data can re-
veal sensitive information of the person’s close relatives (possibly
without their consents) due to hereditary nature of genome [37].
Therefore, to continue the growth of revolutionary applications
on genomes, privacy protection is essential. We focus on protect-
ing privacy of genome data while processing a disease risk query,
i.e., the probability of an individual to develop a specific disease.

Currently, a heavy layer of access control and legislation is ap-
plied for processing genomes in medical centers. However, rules
and legislation are based on trust and cannot control malicious
attacks on genomes as they may not anticipate the technological
advancement. Identity anonymization is also ineffective for stor-
ing genomic data, because genome sequence is the unique and
irrevocable identifier of its owner [41]. In addition, inaccuracy or
absence of valuable genomic data ensuing from obfuscation tech-
niques might cause misleading results for disease risk queries.

Besides protecting privacy of genome data, another challenge
is to authenticate a disease risk query. Processing a person’s dis-
ease risk query involves outside entities, and thus raises concerns
on the reliability of the genome data used for a disease risk query
and the correctness of the computed disease risk. Authentication
ensures that the disease risk is correctly computed using a per-
son’s actual genome data. We develop a novel secret sharing ap-
proach for privacy-preserving authenticated disease risk queries.

Gene sequencing is done by a certified Sequencing Institute
(SI) [11], [18], [19], [20], [34], which may be directed by the
government or any trusted party. In our approach, the SI dis-
tributes SNPs [1] (Single Nucleotide Polymorphism) of genome
data among several authorized Distributed Databases (DDBs),
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where one DDB is located at the patient’s device. The key idea
of our approach is that SNPs remain hidden in an aggregate form,
and the probability to develop a specific disease is computed by
combining partial genetic scores for the specific disease from all
the DDBs. If a dishonest DDB alters a patient’s SNP data and
provides a wrong partial genetic score, then our authentication
technique can detect the alteration using an authentication key
generated based on the stored SNP data at the DDB and thus ver-
ify the correctness of the computed disease risk. Additionally, we
show that not a single SNP of a patient can be identified without
involving the patient even if all the DDBs become compromised.
The portion of data that our approach stores on a patient’s device
does not cause any significant overhead in terms of the storage
size. On the other hand, our approach does not store the full
data on a patient’s device to ensure that it is also not possible to
identify a patient’s SNP from the patient’s DDB without compro-
mising the other DDBs.

Over the last years, though researchers have developed a
few cryptographic approaches for privacy-preserving disease risk
queries [11], [14], [18], [19], [20], [34], these approaches can-
not authenticate the query answer. Another major limitation of
these techniques is that they cannot answer a disease risk query
accurately when different alleles of the same SNP in genomes
are responsible for two or more different diseases. For exam-
ple, allele C of SNP rs6313 holds higher risk for rheumatoid
arthritis, whereas allele T of the same SNP contributes to de-
pression, panic and stress response [2]. Specifically, existing ap-
proaches [11], [18], [19], [20], [34] store the frequency of one al-
lele for an SNP (considering that this allele is always responsible
for diseases) in encrypted form in a single Data Center (DC). The
DC can only partially decrypt the frequency information when it
receives a disease risk query from a Medical Unit (MU). Though
all common SNPs have two possible allele variations, it is not
possible for the DC to infer the frequency of the other allele in
the SNP from the partially decrypted frequency of one allele. The
DC sends encrypted frequency information (not the partially de-
crypted ones) to the MU. The MU can also partially decrypt the
frequency information and thus, cannot infer the frequency of the
other allele. Only possible way to infer the frequencies of both
alleles is the collusion of the MU and the DC, which is not al-
lowed since the collusion will eventually reveal the genome data
to both parties and violate user privacy. These two limitations are
not possible to overcome by any trivial computation.

Our approach ensures privacy of genomes even if the dishonest
MU and the DDBs collude and can evaluate disease risk queries
when two alleles of the same SNP are responsible for two or more
different diseases. Though a recent cryptographic approach [22],
Turkmen et al. have authenticated computed disease risks, this
approach has not considered storing both alleles or a dishonest
medical unit. More importantly, the authors have not performed
any experiment to validate the performance of their approach.

Besides, existing approaches incur high storage overhead due
to encryption and the overhead would be doubled if the encrypted
frequencies of both alleles of an SNP are stored. Nowadays, the
provision of low cost genome sequencing is attracting an increas-
ing number of people to use disease risk queries. The number of

SNPs responsible for different diseases is also increasing. Thus,
reducing the storage overhead has become an important challenge
for any privacy preserving approach for disease risk queries. Our
approach offers a substantial improvement in reducing storage
cost with a large margin.

A disease risk query for a patient is processed using an MU’s
disease marker that consists of the SNPs associated with a partic-
ular disease, their risk alleles (i.e., which one of the two possible
alleles of each SNP is responsible for this particular disease), and
contribution factors of risk alleles. Though the SNPs associated
with a particular disease and risk alleles are publicly known, it
may happen that an MU wants to keep contribution factors of risk
alleles confidential from others. On the other hand, it is possible
to infer the name of a disease from the publicly available contents
of the disease marker, i.e., the SNPs associated with a particular
disease and risk alleles. However, a patient may not feel comfort-
able to disclose the disease name such as Alzheimer’s to any party
except the MU for treatment purposes. Thus, it is also essential
to hide the number and IDs of SNPs and their risk alleles used
in the disease risk query to protect privacy of the disease name.
Our approach ensures the privacy of a patient’s genomic and clin-
ical data, an MU’s disease marker, disease name, and the query
answer, i.e., the probability of a patient to develop a particular
disease.

To the best of our knowledge, we develop the first secret shar-
ing approach for privacy preserving authenticated disease risk
queries that eliminates the cryptographic overheads for process-
ing encrypted genomes. In summary, the contributions of our
paper are as follows:
• We propose a novel secret sharing approach to privately

compute the probability of a patient to develop a specific dis-
ease without revealing genomic data, clinical data, the dis-
ease name and the query answer to others.

• We ensure that our proposed technique can evaluate disease
risk queries when different alleles of the same SNP are re-
sponsible for different diseases.

• We authenticate the query results sent by dishonest DDBs to
ensure the correctness of the disease risk.

• We protect privacy of genome data against the dishonest MU
and its collusion with the DDBs.

• We provide a solution to hide the MU’s disease markers from
others.

• We present a comprehensive security analysis for our sys-
tem. We show the effectiveness of our proposed approach via
extensive experiments using real human genome datasets.
Our approach reduces the storage overhead significantly.

• We investigate the possibility of our approach for personal-
ized medicine.

This paper extends our previous work [36], where we proposed
a novel secret sharing approach for privacy preserving authenti-
cated disease risk queries. In this paper, we extend our work in the
following ways: (i) we extend the related work section and clas-
sify privacy preserving techniques for disease risk queries, per-
sonalized medicine and other genetic tests based on different fea-
tures, (ii) we theoretically show that our system is secured from
dishonest entities and malicious attacks and (iii) we discuss the

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 1 DNA fragments of three different persons showing SNP rs6313.

possible modifications for applying our approach in the field of
personalized medicine.

The rest of the paper is organized as follows: Section 2 de-
scribes basic concepts and Section 3 discuses existing work re-
lated to our approach. Section 4 gives a brief overview of our
system. We show the steps of storing genomic data, preserving
privacy and computing authenticated disease risk queries in Sec-
tion 5. We prove the correctness of the result computed by our
system in Section 6 and perform the security analysis in Section 7.
We present the results of our experiments using real datasets in
Section 8. Section 9 discuses the applicability of our approach
in the field of personalized medicine. Finally, in Section 10, we
conclude our work with the future research direction.

2. Preliminaries

2.1 Genomic Background
The genetic material of an organism is encoded in DNA (De-

oxyribonucleic Acid) or in RNA (Ribonucleic Acid), for many
viruses. DNA is a double stranded molecule consisting of two
long and complimentary polymer chains of four nucleotides, such
as Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). The
two separate polynucleotide chains are bound by hydrogen bonds
according to the base pairing rule (A with T and C with G) to
make the double stranded DNA. Within cell nucleus, DNA is
arranged in long structures called chromosomes. Some organ-
isms have single copy of chromosomes (haploid), while some
have multiple copies (diploid, triploid, tetraploid etc.). Human
diploid cells have 23 pairs of chromosomes, of which, one set of
23 chromosomes comes from each parent.

Between any two given individuals, around 99.9% of the entire
genome is same [30]. The remaining 0.1% part is responsible for
many of our distinguishable characteristics. Single Nucleotide
Polymorphism (SNP) is the most common form of human ge-
netic variations occurring within at least 1% of the individuals in
a population. If a single nucleotide in the DNA differs between
members of the same species or paired polymer chains of an in-

dividual, the variation is called an SNP [1]. For example, DNA
fragments CTGG and CCGG differ in a single nucleotide at the
underlined position.

Each individual carries two alleles (i.e., two nucleotides) at
each position in the chromosome; one inherited from the mother
and one from the father. Besides, almost all common SNPs have
only two variations (i.e., nucleotides) among A,C,G, and T . Fig-
ure 1 shows DNA fragments from three individuals highlight-
ing SNP rs6313 located at position 46895805 in chromosome 13.
SNP rs6313 has two variations C and T [2]. Other two variations
A and G are not seen in this SNP.

SNPs are often associated with various phenotypic traits (curly
hair, attached earlobes etc.), complex social behavior (reckless
driving, marital infidelity etc.) as well as proneness and receptiv-
ity to diseases and response to drugs. Each SNP has a different
impact on a particular disease risk; some of them are responsible
for the development of the disease whereas some are defensive.
Generally, for an SNP associated with a particular disease, one
of the alleles carries the risk and other does not. Furthermore, it
is possible that both the alleles of a particular SNP carries risk
for two different diseases. For example, allele C of SNP rs6313,
holds higher risk for Rheumatoid Arthritis, whereas allele T of
this SNP contributes to depression, panic and stress response [2].

Let fi denote the number of risk allele ri in the SNP rs6313,
where fi ∈ {0, 1, 2}. That means, if C is the risk allele for any
particular disease, fi of three patients P1, P2 and P3 having geno-
type CC, CT and TT respectively, are 2, 1 and 0. However, fi of
patients P1, P2 and P3 are 0, 1 and 2, respectively, if T is the risk
allele for another disease.

2.2 Contribution of Clinical Data in Disease Risk
Along with genomic data, clinical factors of an individual can

contribute significantly to her disease risks, especially for chronic
diseases like Coronary Artery Disease, Diabetes etc. The clinical
factors can include demographic information (e.g., age, sex etc.),
his family history of diseases, laboratory test results (e.g., choles-
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terol level, blood sugar level etc.). For this reason, clinical data
should also be considered along with genomic data in the compu-
tation of the disease risks of an individual [48].

2.3 Computation of Disease Risk
The probability to develop a disease for an individual is com-

puted based on her genomic and clinical data. In practice, multi-
ple SNPs are responsible for a disease and they contribute to the
disease to different extents. The contribution factor of an SNP S i

is defined as βi = ln(ORi), where odds ratio (ORi) represents the
extent to which an SNP S i is associated with a certain disease.
In a particular group of individuals, odds is the ratio of instance
of the disease to that of its non-instance. Hence, OR is the ratio
of odds in that group of individuals having a genetic variation to
that of those who do not possess it. If we consider a group of
10 people affected by a disease X, among whom 6 are carrying a
particular variation Y and the rest are not, then odds of disease X

for the individuals having variation Y is 6/4, i.e., 1.5. Similarly,
in a group of 10 people without disease X (2 with variation Y and
8 without variation Y), odds of disease X for the individuals not
having variation Y is 2/8 i.e., 0.25. Thus, OR of variation Y for
disease X is 1.5/.25 i.e., 6. Odds ratio of different SNPs corre-
sponding to a particular disease can be found from the results of
Genome-Wide-Association Studies (GWAS).

Following recent approaches [11], [20], [34], we use a multi-
variable logistic regression model to calculate the disease risk
by weighted averaging contribution factors of all the associated
SNPs and clinical data. Let λ be the number of SNPs associated
with disease X, βi be the contribution factor of S i, and fi be the
number of risk allele for S i. Let φ be the number of clinical fac-
tors associated with disease X, β̄i be the contribution factor of the
clinical data Ci and vi be the value of Ci. We let vi(X) ∈ {0, 1} for
simplicity of representation. For example, let vi denotes smoking
behavior. Thus, if a patient is a smoker, vi = 1 and vi = 0, if he
is not. Similarly, if the clinical factors are results of various tests
(glucose level) or demographic data (age etc.), those attributes
can also be easily converted to binary form (e.g., whether age >
50 or not). Let Pr be the probability of a patient P to develop
disease X and Z be the total disease score. We have,

Z = ln
( Pr
1 − Pr

)
=

λ∑
i=1

βi × fi +
φ∑

i=1

β̄i × vi

⇒ Pr =
eZ

1 + eZ
(1)

3. Related Work

In this section, we discuss various technological solutions for
preserving privacy of genomic data used in disease risk queries,
personalized medicine and other genetic tests. Section 3.1 dis-
cuses existing methods that compute the probability of having a
disease considering genetic variations. Before considering ge-
netic variation, string searching in small DNA fragments was re-
garded as a medium for calculating the probability of a disease.
These methods are briefly described in Section 3.2. DNA string
sequences are also used in other medical fields such as finding
common things between two individuals. Section 3.3 describes

the privacy preserving architectures that use string sequence com-
parison in genomic testing. Section 3.4 mentions cryptographic
approaches to ensure genomic data privacy in genomic compu-
tations. Section 3.5 discuses existing secret sharing methods for
genomic data privacy. Finally, Section 3.6 shows privacy preserv-
ing techniques for genomes based on other privacy models.

3.1 Privacy Preserving Techniques for Disease Risk Queries
with Multiple Genetic Variants

In recent years, researchers focused on protecting privacy of
genomic data while computing the probability of developing a
particular disease. In Ref. [19], Ayday et al. proposed privacy-
preserving disease risk queries using modified paillier cryptosys-
tem and proxy re-encryption. In Ref. [20], Ayday et al. considered
clinical data in addition to genomic data for evaluating a disease
risk query. In Ref. [11], Danezis et al. identified that it is possible
to infer disease name from the IDs and number of SNPs used in
a disease risk query and developed solutions to overcome this at-
tack. In Ref. [34], Barman et al. proposed countermeasures to ge-
nomic data retrieval attack by dishonest-but-covert medical unit
based on the architecture of Refs. [19], [20]. Using techniques
similar to Ref. [19], Turkmen et al. used message authentication
code and verifiable computing to check correctness of disease
susceptibility tests in Ref. [22]. All of these approaches store data
in encrypted form in a semi-honest data center and require high
computing power and storage facility [8]. On the contrary, we
develop a secret sharing approach that does not need to store en-
crypted genomic data. We also provide necessary authentication
measures considering dishonest databases and medical unit. Fur-
thermore, these approaches assume that storage and medical units
never collude and also fail to give the correct answer when two
alleles of the same SNP are responsible for two or more different
diseases. These limitations have been addressed in our approach.

These privacy-preserving techniques [11], [19] along with
ours, DA are summarized in Table 1 on five features: a) privacy
protection, b) addressing the scenario when different alleles of the
same SNP are responsible for two or more different diseases, c)
authentication d) storage overhead, and e) communication over-
head. In terms of privacy protection, five types of information
are considered as sensitive: i) patient’s genomic data (consider-
ing individual attacks by storage and medical centers as well as
collusion between them), ii) patient’s clinical data iii) the name of
the disease being tested, iv) disease risk query answer, and v) con-
tribution factors of risk alleles of the associated SNPs. Only our
proposed algorithm, DA shows satisfactory outcome for all these
features. We note that other cryptographic approaches [18], [34]
maintain the generic architecture of Ref. [19] and thus show sim-
ilar performance for these features.

3.2 Privacy Preserving String Searching Techniques
All of the approaches of Section 3.1 including ours consider

the impact of multiple genetic variants, i.e., SNPs to compute the
probability to develop a particular disease. However, earlier ap-
proaches used private string searching and comparison techniques
that used small DNA fragments for disease susceptibility testing.
In this approach, a medical unit (e.g., physician, hospital or phar-
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Table 1 Comparison of different techniques.

Features A1 [19] A2 [11] A3 [20] A4 [22] DA

Privacy

Genomic data ✗ ✗ ✗ ✗ ✓

Clinical data ✗ ✗ ✓ ✗ ✓

Disease name ✗ ✓ ✗ ✗ ✓

Query answer ✓ ✓ ✓ ✓ ✓

Contribution factors ✓ ✓ ✓ ✓ ✓

Different alleles’ association ✗ ✗ ✗ ✗ ✓

Authentication ✗ ✗ ✗ ✓ ✓

Storage cost high low high N/A low

Communication cost medium high medium N/A low

maceutical company) has DNA markers (i.e., substrings that de-
scribe mutation leading to a disease) and a patient has a digitized
genome (DNA snippet). The patient can verify whether the DNA
markers are present in her genome, while not revealing personal
genomic data to the medical unit and not learning anything about
the DNA markers as well.

Several privacy preserving string matching schemes have been
proposed based on Finite State Machine in an oblivious man-
ner [9], [25], [31]. These approaches ensure error resilient search-
ing by representing the DNA marker as a finite automaton and
evaluating it on genome sequence of the patient which is treated
as input. De Cristofaro et al. [14] proposed a pattern matching ap-
proach that not only preserves privacy of the DNA sequence and
DNA markers, but also hides the size and position of the markers
in the genome so that an adversary cannot infer test specifics.

3.3 Privacy Preserving Sequence Comparison Techniques
Researchers also studied sequence comparison techniques for

genomic testing, where two entities want to detect whether two
genomes are closely related or not, but does not want to reveal
the genomes to each other. Wang et al. [49] proposed a distributed
framework for privacy preserving sequence comparison in which
they issued sensitive data to the data provider and public data to
the data consumer. Genomic computation is partitioned through
program specialization that enables data consumer to compute
over the genomic sequences sanitized by the data provider, i.e.,
sensitive data replaced with symbols.

In Refs. [15], [16], Eppstein et al. proposed the use of a
Privacy-enhanced Invertible Bloom Filter (PIBF) for comparing
two compressed DNA sequences under various querying scenar-
ios. In particular, they considered scenarios where a querier, Bob,
wants to test if her DNA string, Q, is close to a DNA string, Y ,
owned by a data owner, Alice. However, Bob does not want to
reveal Q to Alice and Alice is willing to reveal Y to Bob only if
it is close to Q. In another scenario, results of the query is pub-
lished only to a trusted third party, Charles. Solution of Eppstein
et al. achieved absolute privacy for Bob (in information theoretic
sense) and a quantifiable degree of privacy protection for Alice.

In Ref. [21], raw genomic data is stored, retrieved and pro-
cessed in a way that allows a medical entity to privately recover
a subset of the genome (short reads) while not revealing the test
to the genome data centre or biobank. In Ref. [57], Chen et al.
presented a secure and effective algorithm to align short DNA
sequences to a reference (human) DNA sequence (i.e., read map-

ping) utilizing a hybrid cloud which includes both the public com-
mercial cloud and the private cloud within an organization.

3.4 Cryptographic Techniques
In the context of genomic data privacy, researchers have ap-

plied several cryptographic solutions over the ages. In Ref. [53],
Jha et al. presented a privacy-preserving implementation of fun-
damental genomic computations such as calculating the edit dis-
tance and Smith-Waterman similarity scores between two strings
(DNA sequences) based on Yao’s ‘garbled circuits’ method. In
Ref. [44], Bohannon et al. suggested searchable genetic databases
for forensic purposes using a fuzzy encryption scheme that allows
searching an identity based on genome data but not the genome
data based on identity.

Baldi et al. [13], [46] constructed solutions for paternity tests,
personalized medicine and genetic compatibility tests based on
well-known cryptographic tools, such as Private Set Intersection,
Private Set Intersection Cardinality, and Authorized Private Set
Intersection. Although these techniques performed well on small
DNA fragments, it needed days of computation and gigabytes of
bandwidth to examine the whole genome. Bruekers et al. [23]
used homomorphic encryption for secure matching of Short Tan-
dem Repeat (STR) profiles between two parties without exposing
the actual genomic data in case of DNA-based identity, pater-
nity and ancestry tests. The authors of Refs. [29], [42], [43], [50]
also used homomorphic encryption to perform scientific investi-
gations.

One issue associated with private string matching, sequence
comparison and cryptographic techniques is that they do not take
into account multiple genetic variants, i.e., SNPs and thus, cannot
produce accurate answer for a disease risk query when multiple
SNPs and clinical data are responsible for the disease [48].

3.5 Secret-sharing Techniques
It is shown in Ref. [55] that secret sharing techniques are more

efficient than encryption-based techniques for privacy-preserving
data mining with respect to communication, computation and
storage cost. Secure multi-party computation-based secret shar-
ing techniques have been used to protect privacy in evaluating
count and ranked queries [39] and in GWAS (Genome-Wide As-
sociation Studies) [32], [51], [58]. In Ref. [32], Kamm et al. de-
ployed a secret sharing scheme where each data center divides its
collection into small shares, each of which reveals nothing about
the original values. The shares are then sent to the other centers,
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Fig. 2 System architecture of our secret sharing approach for privacy-preserving authenticated disease
risk query.

which store them in dedicated servers. The servers have an inter-
face that allows outsiders to initiate a GWAS study on genomic
data of interest. Upon request, the servers coordinate to perform
association without reconstructing the original genomic data. To
the best of our knowledge, no previous work adopts secret shar-
ing techniques or naı̈ve bit encoding [52] (the encoding that we
used) to protect genomic privacy for disease risk queries.

3.6 Other Privacy Preserving Techniques
In addition to cryptography and secret sharing, other privacy

concepts like access control, obfuscation and anonymization have
been studied for privacy preserved storage of genomic data. How-
ever, these methods have limitations. The main drawback of ac-
cess control is that it requires constant management of the re-
sources and creates administrative burden to both users and data
custodians. Obfuscation has also become obsolete as it reduces
the accuracy of genomic data [17].

Anonymization techniques remove explicit identifiers such as
name or social security number from the genomic data. How-
ever, they fail to protect privacy, as genomic data itself can be the
identifier of an individual [41]. In Ref. [54], Fienberg et al. used
differential privacy to release test statistics of GWAS results. In
contrast to k-anonymity, differential privacy guarantees privacy
against an adversary with arbitrary prior knowledge by adding
noise to the results before their release.

4. System Overview

Like existing systems [11], [18], [19], [20], [34], a trusted se-
quencing institute (SI) performs the sequencing of genomic data
of a patient (P). P provides her sample (e.g., hair, saliva etc.) to
the SI for genome sequencing. The SI distributes the SNPs of
P and relevant information for authentication of genomic data
among n independent databases (DDBs). We assume that the
DDBs are run by separate authorities such as private companies,

cloud storage services or non-profit organizations under the su-
pervision of the government. The nth DDB is stored in the pa-
tient’s personal computer or mobile device. The SI sends data to
all the DDBs except the nth DDB in plain format. On the other
hand, the SI encrypts genomic data and authentication key using
TDES [40] before sending them to the patient and the patient de-
crypts the data before storing them to the nth DDB. At this point,
it may be argued that the SNP contents could be stored as a whole
in the patient’s device instead of n separate DDBs. However, pa-
tient’s device can easily be hacked or stolen leaving the genomic
data in risk. In our system, we ensure that even if the patient’s de-
vice is hacked, genomic data is secure, unless other n − 2 DDBs
are also compromised (Section 5.2). The system architecture is
shown in Fig. 2.

A Medical Unit (MU) normally located at a health center, has
the IDs of SNPs and clinical data responsible for various diseases,
risk allele and contribution factor corresponding to each SNP or
clinical factor. A pseudonym is assigned to each patient at the
time of gene sequencing and used to store genomic data in the
DDBs to hide the identity of a patient from adversaries. When a
patient P wants to know her probability of developing a particular
disease X, P sends her encrypted pseudonym to the MU. The MU
decrypts the received data using TDES. We use TDES only for
securing communication of the SI and the MU with P. One may
argue that revealing the patient’s pseudonym to the MU may raise
a concern, because using the pseudonym the MU can send multi-
ple queries to know the probabilities to develop multiple diseases
for P. We explain in Section 7.1 that even if the MU generates
multiple queries to the DDBs without the consent of a patient, the
probabilities to develop multiple diseases are not revealed to the
MU if the patient’s DDB does not contribute to the queries. As
such, the shared part of SNP data from the patient’s DDB serves
as the validation of the query generated by the MU.

The MU sends P’s pseudonym, the IDs of relevant SNPs, their
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risk alleles, and scaled contribution factors responsible for devel-
oping disease X and other randomly selected l−1 dummy diseases
to all n − 1 DDBs except the patient’s device and makes X indis-
tinguishable from l diseases (details in Section 5.3.1). The MU
scales the contribution factors of the SNPs (β) by random con-
stants to ensure that original β values cannot be inferred by the
DDBs. Each DDB computes partial genetic and authenticating
scores using P’s genomic data stored in the database and scaled β
values received from the MU, and sends back the partial scores to
the MU. The MU separately sums up partial genetic and authenti-
cating scores sent from n−1 DDBs. Along with these aggregated
genetic and authenticating scores, SNPs of all the l diseases, their
risk alleles and scaled contribution factors, the MU sends clini-
cal data related to l diseases and their contribution factors scaled
by random constants to the nth DDB at the patient’s device. Pa-
tient P verifies the correctness of the aggregated genetic scores
using the authenticating scores sent by the MU and the authen-
tication key stored in its database. A patient can detect if other
n− 1 DDBs or the MU alter the genomic data (see Theorem 6.2).
After authenticating the aggregated genetic scores, P calculates
the total genetic and clinical scores, modifies these scores using
multiplication and addition operations, and sends to the MU. The
MU first scales back the genetic and clinical scores of the tar-
get disease X, and then sends the combined score to P. Finally,
P accurately computes the disease risk probability by reversing
the effect of previous multiplication and addition operations (see
Theorem 6.1).

We involve the patient to make sure that not a single SNP is
disclosed to anyone without the consent of the patient even if the
other DDBs along with the MU are compromised. One may argue
that a patient may not agree to take the burden of authentication
and storage. We note that our approach is also applicable if a
patient does not store the nth DDB, i.e., the nth DDB is run by a
separate authority like other n − 1 DDBs. However, in this case,
the patient’s privacy is slightly reduced; SNPs of a patient can
be identified and authentication process can fail if an adversary
compromises n − 1 DDBs (including the nth DDB).

5. Our Approach

The key idea of our approach is to distribute SNPs and disease
risk computations among multiple databases such that SNPs and
other sensitive information are not revealed to any involved party
or eavesdroppers. We discuss the steps of our approach in the
following subsections.

5.1 Gene Sequencing
A patient (P) provides her sample, e.g., saliva, hair etc. to the

SI. The SI sequences the sample and extracts SNPs from the raw
genomic data. A pseudonym and an authentication key μ for P are
generated and given to P, where μ is a constant. The pseudonym
is used instead of P’s actual name and identity to store her ge-
nomic data in the DDBs.

5.2 Storing Data in the Distributed Databases
SNPs are stored in n independent databases and all databases

(DDBs) collectively give the actual SNP contents. Each SNP

Table 2 Sample entries for SNP S 1, k = DDB No.

k a1,k w1,k α1,k a2,k w2,k α2,k

1 01 −12 −1 11 62 2
2 11 50 7 11 −2 2
3 01 0 −8 01 46 8
4 11 −2 −8 01 8 0

5
t = 1 11 −48 9 11 −59 6
t = 2 01 13 7 01 −54 1

has a unique position and a unique ID and almost all common
SNPs have only two probable nucleotides among A,C,G, and T

for each of the two alleles. For example, SNP rs6313 has two
variations C and T [2]. Other two variations A and G are not pos-
sible in SNP rs6313.

Each DDB stores nucleotides of two alleles of an SNP sepa-
rately using naı̈ve bit encoding as a bit string of length 2 (00, 01,
10, and 11 representing A, C, G, and T , respectively). The actual
nucleotide of each allele of an SNP is stored on a randomly se-
lected m DDBs, where m ≤ n−2 and the other possible nucleotide
on the remaining (n − m − 1) DDBs. In the nth DDB located at
the patient’s device, we store both possible nucleotides (e.g., C

and T ). For each allele of an SNP, we also store a random weight
such that the summation of weights from all the DDBs for the true
nucleotide of the allele becomes 1 and the false one becomes 0.
We make the sum of weight of the false allele 0 to nullify its im-
pact on the disease risk computation. Neither of the total weights
(i.e., 1 or 0) can be inferred unless the patient’s DDB is stolen and
other n − 2 DDBs are compromised. On the other hand, though
all n − 1 DDBs store the same pseudonym for a single patient as
the primary key, it is not possible to predict the total weight of an
allele without knowing the weights stored in the nth DDB at the
patient’s device even if all n − 1 DDBs collude.

For authentication purpose, each DDB stores another value α
for each allele of an SNP such that the summation of weights of
that allele from all the n− 1 DDBs equals the summation of α for
that allele from all n DDBs including the patient’s device scaled
by the authentication key, μ.

Let a j,k, w j,k and α j,k denote the jth allele of an SNP in the kth

DDB, its weight, and corresponding α value assigned to it, re-
spectively. We note that j ∈ {1, 2} as each SNP has two alleles,
k ∈ {1, 2, . . . , n− 1}, a j,k ∈ {00, 01, 10, 11} and −100 < w j,k, α j,k <

100. The nth DDB does not have the pseudonym but stores two
possible nucleotides of each allele a j,n,t for t ∈ {1, 2}, correspond-
ing weights w j,k,t, and authenticating values α j,k,t for an SNP.

Consider SNP S 1 has two variations C and T and patient P has
CT in her genome for S 1. Table 2 shows a possible distribution
of weights in 5 DDBs. For the 1st allele, we have 01 in a1,1, a1,3

and a1,5,2, and 11 in a1,2, a1,4 and a1,5,1. The weight of 01 is

w1,1 + w1,3 + w1,5,2 = 1

On the other hand, the weight of 11 is

w1,2 + w1,4 + w1,5,1 = 0

Thus, 01 (i.e., C) is true content of the first allele. Similarly, we
can see that 11 (i.e., T ) is true content of the other allele. If C is
the risk allele of S 1 for any disease X, then in this example, the
total number of risk allele in S 1 is, f1 = 1.

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Let authentication key, μ = 6. We can see that for allele 11,

w1,2 + w1,4 = (α1,2 + α1,4 + α1,5,1) × 6 = 48

5.3 Computation of Disease Risk
We describe the detailed process of computing the disease risk

in six subsequent steps.
5.3.1 Query Processing at the MU

After receiving pseudonym from P, the MU generates a query
message with necessary information for calculating the genetic
score of P and sends this message to all DDBs except the nth

DDB. To hide the identity of the target disease, X from a curious
party at the DDBs or eavesdroppers, the MU chooses l−1 distinct
dummy diseases (Y1, Y2, . . . , Yl−1) from different types of disease
groups other than disease X, so that the protection provided to the
patient is not mitigated. For example, if breast cancer is the target
disease, the dummy diseases will be chosen such that they are not
different types of cancers. Otherwise, the DDBs might conclude
that the patient has some kind of cancer.

Next, IDs of SNPs associated with all the l diseases
are retrieved with their corresponding risk alleles. Let
P(X),P(Y1), P(Y2), . . . ,P(Yl−1) be the sets of SNPs related to tar-
get disease X and dummy diseases Y1,Y2, . . . ,Yl−1, respectively.
The MU also retrieves the contribution factors of the SNPs re-
lated to the target disease, X from its database. For the SNPs of
the dummy diseases, random values are generated as contribution
factor, β. To hide the contribution factors from the adversaries,
the MU scales the βi value of each SNP, S i belonging to the jth

disease set in the query message using a randomly generated con-
stant c j, where j ∈ {1, . . . , l}. The MU does not disclose the value
of c j to others. Let the scaled βi value of each SNP S i be εi, such
that εi = βi × c j. Note that the scaling constants c js are distinct
for different diseases.

Consider an example, where the number of DDBs, n = 5 and
l = 2. SNPs related to only one disease Y1 are used as dummies
along with SNPs of the target disease X. Let P(X) = {S 1, S 4} and
P(Y1) = {S 2, S 3, S 5}.

All SNP sets related to different diseases with their relevant risk
alleles (ri) and scaled βi values, i.e., εi are accumulated randomly

to generate the final query message, M. The random organiza-
tion restricts the DDBs to recognize which SNP set is related to
the target disease and which ones to dummies. To scale back the
query result derived from the DDBs, the MU saves index value,
j of the target disease and constant c j. Let this index value be γ
and the constant be δ. The final query message, M is generated
as follows:

S 2, 00, ε2 : S 3, 01, ε3 : S 5, 10, ε5 | S 1, 11, ε1 : S 4, 00, ε4 |

As the 2nd SNP set is associated with the target disease X, the
MU saves γ = 2 and δ = c2 to scale back the results sent by
the DDBs. Finally, the MU sends M to each DDB except the nth

DDB at the patient’s device.
5.3.2 Partial Genetic Score Calculation at the DDBs

Each DDB except the nth DDB at the patient’s device uses the
query message, M, and patient P’s pseudonym, N, to calculate
partial genetic and authenticating scores for disease X. Algo-

Table 3 Sample entries for SNP S 4, k = DDB No.

k a1,k w1,k α1,k a2,k w2,k α2,k

1 00 −5 −9 00 −5 −3
2 10 −56 −10 00 −25 −9
3 00 −13 1 10 18 −6
4 10 −10 −8 10 0 4

5
t = 1 00 19 5 00 30 7
t = 2 10 66 7 10 −17 5

rithm 1 shows the pseudocode used by the kth DDB to generate
the partial scores. It produces return message, Rk as output that
contains partial genetic and authenticating scores calculated by
the kth DDB.

After necessary parsing, Line 4 finds the ID of the SNP S i, its
risk allele ri and scaled contribution factor εi related to each of the
diseases in M. Using the pseudonym, N, Function RetrieveVal-

ues in Algorithm 1 retrieves the total weight (ωi,k) and the sum
of α values (αi,k) for the risk allele, ri of SNP S i from the kth

DDB (Line 5). The function matches ri with the stored alleles,
a1,k and a2,k of S i. If both the alleles match ri, RetrieveValues

returns the summation of corresponding weights w1,k and w2,k as
ωi,k and the summation of values α1,k and α2,k as αi,k. If one of
these alleles matches ri, RetrieveValues returns the correspond-
ing weight as ωi,k and the corresponding α as αi,k. If none of the
alleles matches ri, 0 is returned as ωi,k and αi,k.

Algorithm 1 CalculatePartialGeneticScore
Input: M, N

Output: Rk , where k is the number of the DDB

1: for each disease set T j ∈ M do

2: s j,k ← 0, mj,k ← 0

3: for each SNP S i ∈ T j do

4: S i, ri, εi ← Parse(T j)

5: ωi,k,αi,k ← RetrieveValues(S i, ri,N)

6: s j,k ← s j,k + ωi,k × εi

7: mj,k ← mj,k + αi,k × εi

8: end for

9: Rk .append(“s j,k,mj,k :”)

10: end for

11: return Rk

Consider the second SNP set 〈S 1, 11, ε1 : S 4, 00, ε4〉 of the ex-
ample in Section 5.3.1. Table 3 shows sample distributions of
weight values in 5 DDBs for SNP S 4. From Table 2 and Table 3,
we see that at the 1st DDB, the retrieved weight of risk allele of
S 1 (11) and S 4 (00) are respectively,

ω1 = 62 + 0 = 62, and

ω4 = (−5) + (−5) = −10

Therefore, the partial genetic score is,

s1,1 = 62 × ε1 − 10 × ε4

Similarly, partial authenticating score is,

m1,1 = 2 × ε1 − 12 × ε4

In this way, 1st DDB calculates partial genetic and authenticating
scores for l = 2 combinations and sends back reply message, R1

to the MU. A sample R1 looks like

R1 = s1,1,m1,1 : s2,1,m2,1
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5.3.3 Query Processing at the MU for the nth DDB
The MU extracts partial genetic and authenticating scores from

the return messages Rk sent by each of the n−1 DDBs. Let s j,k and
mj,k respectively be a partial genetic and an authenticating score
sent by the kth DDB for the jth SNP set related to any particular
disease, where j ∈ {1, . . . , l}. The partial scores in the return mes-
sages are maintained in sequence with the SNP sets in the query
message, M. The authentication process can detect if a dishonest
DDB changes the order or value of the partial scores (see Theo-
rem 6.2). The MU separately adds up all the partial genetic and
authenticating scores sent by n− 1 DDBs to generate the sum η j,s

and η j,m, respectively. The SNP set for each disease in the query
message, M sent to the n − 1 DDBs are concatenated with these
summation values to generate the new query message, M̄ that will
be sent to the nth DDB.

The MU retrieves the set of clinical data, N(D) and contribu-
tion factors of these clinical data, β̄, where D can be any of the
l diseases in the query - target and dummy ones. Each set of
clinical data related to a disease is randomly partitioned into two
separate subsets. To hide the contribution factors (secret of the
MU) from malicious parties, β̄i of each clinical data Ci associated
with the rth subset of jth disease is multiplied by a randomly gen-
erated constant c̄r, j to generate the scaled contribution factor, ε̄i,
such that ε̄i = β̄i × c̄r, j, where r ∈ {1, 2}, j ∈ {1, . . . , l}. Note that
c̄r, j values are distinct for different diseases. The MU saves the
scaling constants δ̄r = c̄r, j, where jth disease is the target disease.
Note that δ̄r � δ, where δ is the constant used to scale the contri-
bution factors of the SNPs related to the target disease. Clinical
data are partitioned into two subsets so that the nth DDB cannot
infer the contribution factors from the aggregated disease risk.

All the clinical data and their contribution factors are appended
at the end of the SNP set for the related disease in the query
message, M̄. Finally, MU sends M̄ to the nth DDB at the pa-
tient’s device. Continuing our previous example, we assume that
N(X) = {C1,C2,C4} and N(X) is partitioned into two subsets,
N1(X) = {C1,C2} and N2(X) = {C4}. For the dummy disease,
N1(Y1) = {C3}, and N2(Y1) = {C5}. Similar to the previous query
message, M, a sample for the new query message, M̄ can be as
follows:

η1,s , η1,m; S 2, 00, ε2 : S 3, 01, ε3 : S 5, 10, ε5 ; C3, ε̄3 :: C5, ε̄5|
η2,s , η2,m; S 1, 11, ε1 : S 4, 00, ε4 ; C1, ε̄1 : C2, ε̄2 :: C4, ε̄4|

5.3.4 Authentication at the nth DDB
After receiving the query message, M̄, the nth DDB at the pa-

tient’s device authenticates the aggregated genetic score sent from
the other n − 1 DDBs and calculates the total genetic and clini-
cal scores for all the l diseases. Algorithm 2 shows the pseu-
docode for this process. The input to this algorithm is the query
messages, M̄, the SNP set related to the target disease, P(X), the
authentication key μ stored at the patient’s device, and two ran-
domly generated constants ρ and τ used to change the total scores
by multiplication and addition. The output is the reply message
R̄ containing the total scores of l diseases. The SNPs associated
with a particular disease and their risk alleles are normally avail-
able in public. Since patient P naturally knows the name of the

Algorithm 2 CalculateAuthenticatedScore
Input: M̄,P(X), μ, ρ, τ

Output: R̄

1: γ ← GetIndex(M̄,P(X))

2: for each disease set T j ∈ M̄ do

3: η j,s, η j,m ← Parse(T j)

4: for each SNP S i ∈ T j do

5: S i, ri, εi ← Parse(T j)

6: ωi,n,αi,n ← RetrieveValues(S i, ri)

7: η j,m ← η j,m + αi,n × εi

8: end for

9: if η j,s = η j,m × μ then

10: if j = γ then

11: for each SNP S i ∈ T j do

12: η j,s ← η j,s + ωi,n × εi

13: end for

14: η j ← (η j,s × ρ) + τ
15: for r = 1 to 2 do

16: η̄r, j,c ← 0

17: for each clinical data Ci ∈ subset Nr, j do

18: Ci, ε̄i ← Parse(Nr, j)

19: vi ← ReceiveValue(Ci)

20: η̄r, j,c ← η̄r, j,c + vi × ε̄i

21: end for

22: η̄r, j ← (η̄r, j,c × ρ) + τ
23: end for

24: else

25: η j, η̄1, j, η̄2, j ← Random()

26: end if

27: R̄.append(“η j, η̄1, j, η̄2, j :”)

28: else

29: R̄.append(“authentication error :”)

30: end if

31: end for

32: return R̄

target disease, X, we assume that P(X) is also known to her.
Function GetIndex in Algorithm 2 matches P(X) with the SNP

sets in M̄ to find the index, γ, of the target disease, X in the query
message, M̄. After necessary parsing, the algorithm finds the ag-
gregated genetic score η j,s, aggregated authenticating score η j,m

and ID of the SNP S i, its risk allele ri and scaled contribution fac-
tor εi related to each of the diseases in M̄. Similar to Algorithm 1,
Function RetrieveValues in Algorithm 2 retrieves the total weight
(ωi,n) and the sum of α values (αi,n) for the risk allele, ri of SNP
S i from the nth DDB at the patient’s device (Line 6). The function
matches ri with the stored alleles, a1,n,1, a1,n,2, a2,n,1 and a2,n,2 of
S i. The weight ωi,n is calculated by summing those weight (wi,n,t)
values, whose corresponding allele encoding matches ri, where
t ∈ {1, 2}. Similarly, αi,n is calculated by summing the αi,n,t val-
ues of the matched alleles. We note that the total number of risk
allele ri in the SNP S i is,

fi =
∑

1≤k≤n

ωi,k

Line 7 multiplies αi,n values with the scaled contribution factor,
εi of each SNP S i and adds up with the aggregated authenticating
score η j,m. The parameter η j,m is multiplied by the authentica-
tion key μ and checked whether the multiplied value is equal to
the aggregated genetic score η j,s (Line 9). If the result does not
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match, then the nth DDB decides that the genetic scores are al-
tered or disease sequence is changed by dishonest n − 1 DDBs or
a dishonest MU. Otherwise, if the aggregated genetic score η j,s

is authenticated as correct, Line 10 checks if the jth disease is the
target disease, i.e., j = γ or not. If j = γ, Line 12 multiplies ωi,n

values with the scaled contribution factor, εi of each SNP S i and
adds up with η j,s to generate the total genetic score. Line 14 mul-
tiplies the total genetic score with the constant ρ and adds to the
constant τ to generate scaled genetic score, η j for the jth disease.
The nth DDB at the patient’s device saves ρ and τ for final com-
putation of the disease risk. This scaling is done so that the MU
cannot infer the genetic score even if the patient decides to share
the final disease risk with the MU for the purpose of treatment.

Similar to the SNP sets, each clinical data Ci and its scaled con-
tribution factor ε̄i are parsed from the query message. The value,
vi of Ci is received from patient, P. Recall that vi ∈ {0, 1}. In Line
20, each vi is multiplied with the scaled contribution factor, ε̄i and
summed up to generate the total clinical score for the rth subset of
the jth disease, η̄r, j,c. Similar to Line 14, Line 22 generates scaled
clinical score η̄r, j using the same constants ρ and τ. The nth DDB
saves the values of γth genetic score, ηγ,s and clinical scores η̄r,γ,c

to check whether a dishonest MU has forged contribution factors
to infer genomic or clinical data.

In Line 25, random values are generated as η j and η̄r, j for a
dummy disease. This is done so that a dishonest MU cannot
generate score for any disease except the target disease without
patient’s consent. Scaled genetic and clinical scores for all the l

diseases are sent in the return message, R̄ to the MU.
5.3.5 Aggregation at the MU

The MU finds the total genetic score η j, and the clinical scores
η̄r, j corresponding to the rth clinical data subset of the jth dis-
ease from the return message, R̄ sent by the nth DDB, where
j ∈ {1, . . . , l}, r ∈ {1, 2}. Recall that the index value, γ and the
scaling constants, δ for genetic score and δ̄r for clinical scores
related to the target disease, X are saved at the MU during query
processing. Thus, γth scores, ηγ, η̄r,γ correspond to the target dis-
ease. The MU scales back ηγ and η̄r,γ using the constants, δ and
δ̄r respectively and generates Z̄ by adding the results as follows,

Z̄ = ηγ × δ−1 +
∑
r=1,2

η̄r,γ × δ̄−1
r

Next, the MU adds inverse of the scaling constants to generate
a value Δ such that,

Δ = δ−1 +
∑
r=1,2

δ̄−1
r

For final computation of the total disease risk, the MU sends Z̄

and Δ to the nth DDB at the patient’s device.
5.3.6 Final Computation at the nth DDB

After receiving Z̄ and Δ from the MU, the nth DDB generates
the final score, Z using the previously saved constants ρ and τ
such that,

Z = (Z̄ − Δ × τ) × ρ−1

Final score, Z is used to compute the probability of the patient
to develop target disease, X using Eq. (1).

In the nth DDB, the value of Z is checked whether

Z =
ηγ,s

Δ
or

Z =
η̄r,γ,c

Δ
, r ∈ {1, 2},

where ηγ,s and η̄r,γ,c are the genetic and clinical scores respec-
tively, corresponding to the target disease, X and are saved in the
nth DDB (Section 5.3.4). If any of these values are equal to Z,
the patient concludes that a dishonest MU has altered contribu-
tion factors to infer her SNP contents or clinical data and will not
share the final score, Z with the MU.

6. Correctness Analysis

6.1 Proof of Correctness
Theorem 6.1. Let P(X) andN(X) be the sets of SNPs and clinical

data related to a disease X, where |P(X)| = λ and |N(X)| = φ. For

each SNP S i ∈ P(X), βi be the contribution factor of risk allele

ri and fi be the total number of ri in S i. For each clinical data

Ci ∈ N(X), β̄i be the contribution factor and vi be the value of Ci.

Then the total score of a patient P for developing disease X is

Z =
∑

1≤i≤λ
fi × βi +

∑
1≤i≤φ
vi × β̄i

Proof. Without loss of generality, we assume that each SNP set
related to l different diseases sent by the MU to n DDBs has
equal size λ. Recall that εi = βi × c j for the jth disease, where
j ∈ {1, . . . , l}. Parameter ωi,k represents the total weight of the
risk allele ri of SNP S i retrieved from the kth DDB. Thus, the
partial score, s j,k generated at the kth DDB, is expressed as

s j,k =
∑

1≤i≤λ
ωi,k × εi

If authentication is successful at the nth DDB, total genetic score
η j,s is calculated as follows:

η j,s =
∑

1≤k≤n−1

s j,k +
∑

1≤i≤λ
ωi,n × εi

= c j ×
∑

1≤k≤n
1≤i≤λ

ωi,k × βi

Without loss of generality, we assume that each set of clinical
data related to l different diseases has equal size φ and is parti-
tioned into two subsets of equal size θ, i.e, φ = 2θ. For each
clinical data Ci in the rth subset of the jth disease, ε̄i = β̄i × c̄r, j,
where r ∈ {1, 2}. The nth DDB computes clinical score, η̄r, j,c using
the following equation:

η̄r, j,c =
∑

1≤i≤θ
vi × ε̄i

= c̄r, j ×
∑

1≤i≤θ
vi × β̄i

The nth DDB changes the genetic and clinical scores of the tar-
get disease X ( j = γ) using constants ρ and τ such that

ηγ = (ηγ,s × ρ) + τ and

η̄r,γ = (η̄r,γ,c × ρ) + τ

We note that for cγ = δ, c̄r,γ = δ̄r, r ∈ {1, 2}, and Δ = δ−1 +
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∑
r=1,2 δ̄

−1
r .

The MU calculates Z̄ such that

Z̄ = ηγ × δ−1 +
∑
r=1,2

η̄r,γ × δ̄−1
r

=
ηγ,s × ρ
δ

+
τ

δ
+
∑
r=1,2

η̄r,γ,c × ρ
δ̄r

+
τ

δ̄r

= ρ

⎛⎜⎜⎜⎜⎜⎜⎝
ηγ,s

δ
+
∑
r=1,2

η̄r,γ,c

δ̄r

⎞⎟⎟⎟⎟⎟⎟⎠ + τ ×
⎛⎜⎜⎜⎜⎜⎜⎝

1
δ
+
∑
r=1,2

1

δ̄r

⎞⎟⎟⎟⎟⎟⎟⎠

= ρ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

1≤k≤n
1≤i≤λ

ωi,k × βiδ × 1
δ
+
∑
r=1,2
1≤i≤θ

vi × β̄iδ̄r × 1

δ̄r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + τΔ

= ρ

⎛⎜⎜⎜⎜⎜⎜⎝
∑

1≤i≤λ
fi × βi +

∑
1≤i≤φ
vi × β̄i

⎞⎟⎟⎟⎟⎟⎟⎠ + τΔ,

since we have fi =
∑

1≤k≤n ωi,k from Section 5.3.4. Finally, the nth

DDB calculates the total score, Z as follows:

Z = (Z̄ − τΔ) × ρ−1

=
∑

1≤i≤λ
fi × βi +

∑
1≤i≤φ
vi × β̄i �

6.2 Proof of Authentication
Theorem 6.2. Let the number of DDBs be n. The nth DDB can

detect if the other n − 1 DDBs or the MU alter SNP data used in

a disease risk query.

Proof. Each DDB stores weight w and a value α for each allele
of an SNP. Let ωi,k and αi,k respectively be the total weight and
the total value of α for risk allele ri of SNP S i in the kth DDB.
According to Section 5.2, we have
∑

1≤k≤n−1

ωi,k = μ ×
∑

1≤k≤n

αi,k

If the DDBs change weight or α value for an SNP or the MU
changes the sum of partial genetic and authenticating scores gen-
erated by n−1 DDBs arbitrarily, patient P can detect the changes,
since authentication key μ is only known to P. �

Note that it is not possible to ensure the accuracy of disease
risk queries if the MU uses inaccurate values of contribution fac-
tors for SNPs and clinical data. Hence, we focus on the integrity
of SNP data for authentication purpose.

7. Security Analysis

In our architecture, the SI is an honest entity. This assump-
tion, also considered in Refs. [11], [18], [19], [20], [34] is in-
evitable in the sense that if sequencing institution is not trusted
then the security of genomic data cannot be guaranteed. We
assume that all involved entities except the SI and the patient
are dishonest. Dishonest entities can arbitrarily tamper with the
stored data or the messages to infer sensitive information and to
change the query result. We also take into account the collusion
of the DDBs and the MU, which is not considered in the previous
works [11], [18], [19], [20], [34]. Additionally, we consider the
attack from eavesdroppers at the time of transferring data among
the SI, the MU, the DDBs, and the patient (i.e., the nth DDB).

A patient has four types of sensitive information: genomic and

clinical data, the name of the target disease, and the query an-
swer. Additionally, the contribution factors of SNPs and clinical
data can be trade secrets of the MU. The DDBs, and the eaves-
droppers are considered adversaries for all of these five types of
sensitive information. A patient (i.e., the nth DDB) is considered
adversary for an MU’s contribution factors. Similarly, an MU is
considered adversary for a patient’s genomic and clinical data.
However, the MU needs to know the name of the target disease
for query processing and the patient can share the query answer
with the MU for treatment purposes. Thus, an MU is not consid-
ered adversary for these two types of sensitive information of the
patient.

In the following subsections, we prove that our approach does
not allow an adversary to infer sensitive data, and guarantees the
required privacy levels.

7.1 Security of the Genomic and Clinical Data
We will first show how our approach protects the privacy of ge-

nomic and clinical data of a patient when the DDBs and the MU
individually try to infer these information, and then consider the
collusion among the DDBs and the MU.
Theorem 7.1. Let the number of DDBs be n, where the nth DDB

is the patient’s device. Every SNP value of the patient stored in

n DDBs is secure, unless n − 1 DDBs including the nth DDB are

compromised.

Proof. We know that each SNP has two alleles and there are
only two probable nucleotides from {A,C,G, T } for each of the
two alleles of an SNP. For each allele, one of these nucleotides
and its weight are stored in a randomly selected m DDBs, where
m ≤ n − 2. On the remaining n − m − 1 DDBs, other nucleotide
with corresponding weight are stored. Let a j,k and w j,k denote the
nucleotide and the corresponding weight of the jth allele of an
SNP stored in the kth DDB, where j ∈ {1, 2}, k ∈ {1, . . . , n − 1},
and −100 ≤ w j,k ≤ 100.

In the nth DDB at the patient’s device, both probable nu-
cleotides are stored for each allele. Let a j,n,t and w j,n,t be the nu-
cleotide and the corresponding weight stored for the jth allele of
an SNP in the nth DDB, where t ∈ {1, 2}.

According to the technique to store SNP information in DDBs
(Section 5.2), the weights of two probable nucleotides are dis-
tributed in a way such that the summation of weights is 1 for the
actual nucleotide which the patient contains in the jth allele of
a particular SNP, and for the false nucleotide, the summation of
weights is 0. Assume that for j = 1, a1,n,1 is the actual nucleotide
and a1,n,2 is the false one. Formally, for j = 1, we have
∑

1≤k≤m

w1,k + w1,n,1 = 1, and

∑
1≤k≤n−m−1

w1,k + w1,n,2 = 0

Thus, if an adversary compromises n − 1 DDBs except the nth

DDB, it can only have partial total weights (
∑
w j,k), which do

not reveal any information as both weights can get modified after
adding the weights stored in the nth DDB (w j,n,t). On the other
hand, hacking only the patient’s device without compromising
other n − 2 DDBs also does not reveal anything about the total
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weights of a nucleotide for an allele of an SNP, i.e., the true con-
tent of an SNP. �

To ensure that an eavesdropper cannot infer actual SNP con-
tents, the SI encrypts data before sending them to the nth DDB at
the patient’s device and the patient decrypts them before storing.
The clinical data of the patient is never shared with the other n−1
DDBs. Moreover, the patient sends aggregated clinical score to
the MU at the time of computation. Thus, a DDB and an eaves-
dropper cannot infer the values of the patient’s clinical data.
Theorem 7.2. An MU cannot infer the SNP contents and value

of clinical data of a patient P, if P does not share the final disease

risk, Pr with the MU. If P shares Pr with the MU, the probability

to infer SNP contents and value of clinical data of P related to the

target disease, X by the MU is 1
3λ×2φ , where λ and φ respectively

be the number of SNPs and clinical data related to X.

Proof. In our approach, the MU receives ηγ and η̄r,γ from the nth

DDB at the patient’s device such that

ηγ = ηγ,s × ρ + τ and

η̄r,γ = η̄r,γ,c × ρ + τ, r ∈ {1, 2}

where ηγ,s and η̄r,γ,c are the total genetic score and total clinical
scores for the rth clinical data subset of the target disease X. As
constants ρ and τ are only known to the nth DDB, the MU can-
not learn the values of ηγ,s and η̄r,γ,c and thus, cannot infer SNP
contents and clinical data from the information at hand.

If the patient P shares final disease risk Pr with the MU for
treatment purpose, the MU can find total disease score, Z using
Eq. (1). Recall that

Z =
∑

1≤i≤λ
fi × βi +

∑
1≤i≤φ
vi × β̄i

where fi is the number of risk alleles in SNP S i and vi is the
value of clinical data Ci related to X, fi ∈ {0, 1, 2} and vi ∈ {0, 1}.
Since contribution factors βi and β̄i are known to the MU, there
are 3λ ×2φ possible values for Z. Thus, the probability of the MU
to infer SNP contents and value of clinical data is 1

3λ×2φ . �
To directly infer SNP contents from the disease risk, a dishon-

est MU can tamper values of Δ and Z̄ before sending those to the
nth DDB. Assume that the MU uses δ̄−1

r = 0 for r ∈ {1, 2} in the
equations

Δ = δ−1 +
∑
r=1,2

δ̄−1
r and

Z̄ = ηγ × δ−1 +
∑
r=1,2

η̄r,γ × δ̄−1
r ,

where γ is the index of the target disease, X in the query message.
Thus, total disease score calculated in the patient’s device at the
nth DDB will be,

Z = (Z̄ − τΔ) × ρ−1 =
∑

1≤i≤λ
fi × βi

The MU can directly infer SNP contents (i.e., fi) from the pre-
vious equation, if it alters βi values to be consecutive powers of a
value greater than the highest value of SNP (i.e., 2) as described
in Ref. [34].

To handle this attack, the nth DDB checks whether

Z =
ηγ,s

Δ
or

Z =
η̄r,γ,c

Δ
, r ∈ {1, 2},

where ηγ,s and η̄r,γ,c are the genetic and clinical scores of the tar-
get disease X calculated at the nth DDB (Section 5.3.4). If any of
these values are equal to Z, the patient (i.e., the nth DDB) can de-
tect that the MU has altered contribution factors to infer the SNP
contents or clinical data. One may argue that for this checking, a
patient needs to know the value of Δ and the MU can change Δ
arbitrarily. However, in that case, Z will not be accurate and the
MU will not be able to infer real values of SNP.

We note that patient P reveals her pseudonym to the MU for
generating a single disease risk query. However, even if a dishon-
est MU generates multiple queries using the pseudonym without
the consent of P and the queries are different only in terms of SNP
IDs or contribution factors, SNP contents of P are not revealed to
the MU, because P does not share part of SNP data stored on
her device. In such a crucial case, the reply from the patient’s
device is considered as the patient’s authentication for the valid-
ity of the queries. Moreover, the MU cannot generate risk score
for a dummy disease instead of the target one, because P only re-
trieves weights of those SNPs that relate to the target disease from
her database. For dummy diseases, random numbers are used as
SNP weights in the patient’s device.

Moreover, the collusion of the MU and one or all of the n − 1
DDBs does not cause any leakage of the SNP contents from our
system, unless the nth DDB stored at the patient’s database is also
stolen. This stealing issue can be handled similarly as a stolen
smart card. The patient needs to immediately inform the SI at
once so that the SI can freeze the patient’s records in the other
DDBs.

7.2 Security of the Name of the Target Disease
The DDBs or the eavesdroppers can predict the disease name

if they can know which and how many SNPs along with their
risk alleles are being used in a disease risk query. For example,
if the MU’s request includes SNPs relevant to the heart disease,
the DDBs might conclude that the patient has chances to develop
heart disease. Though the actual identity of the patient is hidden
from the DDBs using pseudonym, extensive research has proved
that re-identification of individuals is plausible if background de-
mographic data (location, time, age etc.) or additional genomic
information about the person or his/her relatives are available to
the adversaries [37]. The following theorem shows that our sys-
tem hides the name of the target disease from the DDBs and
eavesdroppers.
Theorem 7.3. Let an MU send a disease risk query message M to

the DDBs for calculating the probability of a patient P to develop

a disease X, where M contains SNPs related to other l−1 dummy

diseases along with the SNPs related to X. An eavesdropper can

know the content of M during the communication of M between

MU and DDBs. The probability for the DDBs or an eavesdrop-

per to infer the SNPs related to the target disease, X, and thus the

name of the target disease is 1
l .

Note that l − 1 dummy diseases are chosen carefully from di-
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verse areas (not closely related to the target disease). As such,
the DDBs will not be able to make any guess about the disease
type, not even by keeping track of multiple queries generated for
the same patient. For example, if breast cancer is the target dis-
ease, the dummy diseases will be chosen such that they are not
different types of cancers.

We note that if a patient wants to check her susceptibility to a
disease through multiple MUs, the name of the target disease can
be inferred from the intersection of the different queries generated
by the MUs. To deal with this issue, different MUs need to use
the same set of dummy diseases for a specific disease risk query
of a patient. Recall from Section 5.3.4 that the patient’s device
receives a query message from the MU for the purpose of authen-
tication and calculation of genetic and clinical scores. Since the
query message includes the SNP set for every dummy disease, the
patient’s device can store the set of SNPs for every dummy dis-
ease. In case the patient wants to conduct a further query about
the risk of the same target disease from a different MU, she can
provide these dummy SNP sets to the new MU along with her
pseudonym. Consequently, the MU needs to generate query mes-
sage using the dummy SNP sets it received from the patient. In
case a disease risk query is initiated for the first time, an MU will
not receive any dummy SNP sets from the patient, and thus, it is
allowed to choose dummy diseases for the query. One may ar-
gue that a malicious MU may not follow this protocol and use
different dummy SNP sets in the query sent to the DDBs. How-
ever, since the patient’s device stores the dummy SNP sets, it is
possible to check whether or not the MU follows the protocol
by running an authentication procedure for each dummy disease.
We acknowledge that this process will introduce a small storage
cost to the patient’s device depending on the number of SNPs
associated with the dummy diseases. Also, it will add to time
complexity, since an authentication procedure is performed for
every disease in the query instead of only for the target disease,
as done originally. However, the storage and time cost is negligi-
ble compared to the overall storage cost and time complexity of
the disease risk query.

7.3 Security of the Contribution Factors
The β and β̄ values represent contribution factors of SNPs and

clinical values respectively associated with the particular disease.
Hence, β and β̄ values are sensitive data from the MU’s point of
view and should not be exposed to a patient, a DDB or an eaves-
dropper. Considering this fact, we develop a solution in which
the MU scales β and β̄ values before sending those to the DDBs
and the patient’s device (the nth DDB).
Theorem 7.4. An adversary cannot infer the β and β̄ values from

the messages sent by an MU to the DDBs and the patient’s device

for a disease risk query.

Proof. The set of clinical data related to each of the l diseases
are partitioned into two subsets. Before sending the query mes-
sage to the DDBs, the MU scales contribution factors βi of each
SNP S i and β̄i of each clinical data Ci for the rth subset of the jth

disease with randomly generated constants, c j, and c̄r, j such that

εi = βi × c jand ε̄i = β̄i × c̄r, j, r ∈ {1, 2}, j ∈ {1, . . . , l}

As the scaling constants, c j and c̄r, j are known to only the MU,
a DDB, or an eavesdropper can only learn the εi and ε̄i values.

For the target disease X, c j = δ, c̄r, j = δ̄r, and j = γ. Let
ηγ,s and η̄r,γ,c respectively be the total genetic and clinical scores
related to the target disease X calculated at the nth DDB, where
r ∈ {1, 2}. During final computation, the nth DDB receives the
values of Δ and Z̄ from the MU such that

Δ = δ−1 +
∑
r=1,2

δ̄−1
r

and

Z̄ = ηγ × δ−1 +
∑
r=1,2

η̄r,γ × δ̄−1
r

=
ηγ,s × ρ
δ

+
τ

δ
+
∑
r=1,2

η̄r,γ,c × ρ
δ̄r

+
τ

δ̄r

= ρ

⎛⎜⎜⎜⎜⎜⎜⎝
ηγ,s

δ
+
∑
r=1,2

η̄r,γ,c

δ̄r

⎞⎟⎟⎟⎟⎟⎟⎠ + τ ×
⎛⎜⎜⎜⎜⎜⎜⎝

1
δ
+
∑
r=1,2

1

δ̄r

⎞⎟⎟⎟⎟⎟⎟⎠

= ρ

⎛⎜⎜⎜⎜⎜⎜⎝
ηγ,s

δ
+
∑
r=1,2

η̄r,γ,c

δ̄r

⎞⎟⎟⎟⎟⎟⎟⎠ + τ × Δ

The values of ρ, τ, Δ, ηγ,s and η̄r,γ,c are known to the nth DDB.
However, it cannot infer the values of three separate scaling con-
stants δ, δ̄1, and δ̄2 from the two equations at hand. Thus, con-
tribution factors βi of SNP S i and β̄i of clinical data Ci remain
hidden from the adversaries. We note that knowing an important
part of own genome does not add any advantage for the nth DDB
in reverse engineering β and β̄ values. �

7.4 Security of the Query Answer
The DDBs and the eavesdroppers are not allowed to infer the

query answer, i.e., the total score to develop any particular disease
by a patient P. The following theorem shows that our system en-
sures the security of the query answer from the adversaries.
Theorem 7.5. An adversary cannot infer the total score, Z of a

patient P for a disease risk query.

Proof. Let n be the number of DDBs and Z̄ be the score sent
from the MU to the nth DDB in the patient’s device at the final
step. The nth DDB calculates the total score,

Z =
Z̄ − τΔ
ρ

Since, ρ and τ are known only to the patient, the DDBs and
the eavesdroppers cannot infer the Z, even if all the n − 1 DDBs
collude. �

8. Results

In this section, we evaluate the effect of varying the privacy
level for disease risk queries on the performance of our proposed
system. The privacy level is expressed using the number of the
DDBs (n), the number of diseases used in a query (l), and the
total number of SNPs related to l diseases in the query. We use
0.3 million SNPs from a real SNP profile [3] released by the 1000
genome project [4]. The relevant information, i.e., SNPs, their
risk alleles, clinical data have been collected from Ref. [5]. The
contribution factors corresponding to the SNPs related to the
Coronary Artery Disease (CAD) are collected from Ref. [48]. For
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Fig. 3 Effect of n on (a) storage, (b) time and (c) communication overhead.

Table 4 Values of different parameters.

Parameter Values Default
n 3–5 4
l 5–25 18

Total SNP count 50–75 –

the rest of the diseases, contribution factors are randomly gener-
ated.

Table 4 summarizes the parameter values used in our experi-
ments. We repeat every experiment for 100 disease risk queries
and present the average result in terms of storage, computational
and communication overhead. To represent the communication
overhead independent of the used communication link, we mea-
sure the communication cost in terms of transferred data size
among involved parties. We can approximate the communication
delay from the known latency of the used communication link.

We have performed experiment on our proposed system on
Intel Core i5 CPUs with 2.7 GHz processor under macOS us-
ing Eclipse 4.6 and MySQL database. In Sections 8.1–8.2, we
present our result for varying n, l, and the total number of SNPs
in a query. In Section 8.3, we compare our approach with the
existing literature.

8.1 Effect of n
For evaluating authenticated disease risk query, each tuple of

a DDB entry needs 8 × 8 (8 character pseudonym) + 8 × 10 (10
character SNP ID) + 2 × 2 (two 2 bit naı̈vely encoded alleles) +
2×8 (two 8 bit tiny integer weight of the two alleles) + 2×8 (two
8 bit tiny integer for authenticating value α of the two alleles) =

180 bits. Only exception is the patient’s DDB for which each tu-
ple needs 8 × 10 + 4 × (2 + 8 + 8) i.e., 152 bits, as it does not
have the pseudonym attribute but has both possible nucleotides
and corresponding weights and α values for each of the two alle-
les. The patient’s DDB also saves authentication key μ as an 8 bit
tiny integer.

In an unauthenticated system, there will be no authenticating
value α in the DDBs. As such, each tuple of a DDB entry will
need only 164 bits and each tuple in the patient’s DDB will need
only 120 bits. Thus to store 50 million SNPs, total storage is
(180(n − 1) + 152) × 50 × 106 + 8 bits for an authenticated sys-
tem, and (164(n− 1)+ 120)× 50× 106 bits for an unauthenticated
system.

Again, in a system with no privacy measure, there are only two
message transfers between the MU and a central data center for
the computation of the genetic score. However, in a system with n

number of DDBs, number of message transfers between the MU
and the DDBs is (2n + 1) if the system is authenticated and 2n

otherwise. As such the storage size and communication overhead
increases linearly with the increase of n (Fig. 3 (a) and Fig. 3 (c)).
We emphasize that the DDBs are linked to the MU with a parallel
interface connections and all the DDBs compute partial genetic
scores simultaneously. Hence, with the increase of n, the com-
putational time is not affected significantly apart from the time
needed for the connection setup and packet transfer. Figure 3 (b)
shows that the computational time varies in ms range between
authenticated and unauthenticated system.
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Fig. 4 Effect of l on (a) time and (b) communication overhead.

Fig. 5 Effect of number of SNPs on (a) time and (b) communication overhead.

8.2 Effect of l and Number of SNPs in a Query
The time and number of bits needed to generate the query

message at the MU and the return messages with partial genetic
scores at the DDBs depend on the total number of SNPs that are
subject to randomly chosen (l-1) diseases. Thus, with the increase
of total number of SNPs, time and communication overhead in-
creases linearly (Fig. 5 (a) and Fig. 5 (b)). However, Fig. 4 (a) and
Fig. 4 (b) show almost linear patterns with several peaks and val-
leys. The reason behind this behavior is that the number of SNPs
related to a disease can vary in a large range. As such, smaller
value of l may result in larger number of SNPs used in a query.

Figure 4 and Fig. 5 show that communication overhead in-
creases slightly in an authenticated system compared to an unau-
thenticated one and computational time remains almost same in
both systems. Furthermore, we note that increasing l or total num-
ber of SNPs does not affect the storage size.

8.3 Comparative Analysis
We have compared the performance of our system (authenti-

cated and unauthenticated systems denoted as DA1 and DA2, re-
spectively in graphs) with recent cryptographic approaches [11],
[19], [34] (denoted as A2, A1 and A3, respectively in graphs).
These approaches consider the effect of multiple SNPs on disease
risk queries. However, none of these approaches authenticates the
disease risk query.
8.3.1 Storage Overhead

In Ref. [19], two BCP ciphertexts (one for the SNP, other for

its square) for approximately 50 million known SNPs are stored
in encrypted form. Each BCP ciphertext is a pair of 4096-bit
group elements. Thus, the total storage for 50 million SNPs is
2× (50× 106)× (2× 4096) bits, i.e., almost 100 GB. In Ref. [11],
all the 50 million SNPs are sent at once and the storage needed
to encrypt all the SNPs takes 2 × (50 × 106) × (2 × 193) bits, i.e.,
about 4.5 GB. Both of these approaches store only the frequency
of one allele in each SNP. If these approaches consider storing
both alleles, the storage becomes double (Fig. 6 (a)). The storage
of Ref. [34] is similar to Ref. [19], as it follows the encryption
method of Ref. [19]. On the contrary, the storage of our system
depends on the number of DDBs, n. For n = 5, which ensures
a good privacy level, our authenticated and unauthenticated ap-
proaches require about 5.08 GB and 4.516 GB, respectively and
the cost lies below [11] till n ≤ 8 and n ≤ 9, respectively to store
50 million SNPs.
8.3.2 Communication Overhead

For n = 5, l = 18 and the number of total SNPs related to
l diseases = 68, communication overhead of our authenticated
and unauthenticated systems are 8.34 KB and 7.34 KB, respec-
tively. On the contrary, in Ref. [19], the data center needs to send
two BCP ciphertexts for each SNP (one for the SNP, other for
its square). If we consider these 68 SNPs, the communication
overhead entails 2 × 68 × (2 × 4,096) bits, i.e., 136 KB which
is significantly higher than the overhead incurred by our system
(Fig. 6 (b)). The approach proposed in Ref. [34] also incurs simi-
lar communication traffic as Ref. [19], since these two approaches
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Fig. 6 Comparative analysis in terms of (a) storage and (b) communication overhead.

use the same encryption method. Again, the approach in Ref. [11]
always uses 1 million SNPs to hide the disease name for which its
communication cost amounts to 92 MB, which is extremely high.

9. Applicability of Our Approach in Personal-
ized Medicine

With the emergence of recent technologies, researchers have
come up with novel techniques for prescribing patients with ac-
curate dosage of medicines. One way to prescribe medicine for
a patient is to use the patient’s genomic information in addition
to her clinical diagnosis [35], which leads to the field of person-
alized medicine. According to Ref. [26], the base of personalized
medicine comes from the unique characteristics of individuals at
the physiological, molecular and environmental exposure. Vari-
ation in genomic data is responsible for those unique character-
istics. Hence the genomic configuration of a patient plays a key
role in personalized medicine. It can be considered as an exten-
sion of traditional approaches where patients are treated only on
the basis of clinical data.

Over the past few years, researchers have discovered that
genomes have a close connection with the effects of medicines on
certain diseases [28], [33], [47]. For example, CYP2D6 is one of
those SNPs that are responsible for clinical depression and Tri-
cyclic Antidepressants (TCAs) are one of the oldest prescribed
medications used for the treatment of clinical depression. Differ-
ent mutations of CYP2D6 have different impact on the effect of
TCAs [47]. Hence different types of TCAs are used according to
patient’s genomic profile in personalized medicine. Like TCAs,
many other medications are also dependent on the mutations of
genomes that a patient has in her genomic profile. Traditional
methods do not consider this relationship between our genomic
profile and our medication which reduces their success rate of
treatment. On the other hand, personalized medicine always de-
pends on the genomic profile of a patient along with her clinical
diagnosis in order to find the genetic mutations that are responsi-
ble for a disease and selects medication according to the findings.
Thus the success rate of personalized medicine is always greater
than that of traditional medicine. However, although the cost of
clinical diagnosis is same for both treatments, the cost of person-
alized medicine rises because of considering a patient’s genomic
profile [45]. Recently a number of approaches [10], [12] have

been introduced for personalized medicine that can handle a large
number of diseases like breast cancer and clinical depression.
In Ref. [10], Chan et al. described a novel approach for treating
breast cancer using the identification of genetic changes that are
associated with the occurrence of cancer symptoms. They used
optimized drug doses that differ from patient to patient depending
on which mutation a patient has in her genomic profile. However,
the authors did not describe techniques to preprocess or store ge-
nomic data, since the genomic profile was assumed to be readily
available. In contrast, Rodel et al. considered preprocessing of
genomic data and developed a biobank to store mapping between
genotype and phenotype of a patient using DNA extracted from
discarded blood sample [12]. However, this genotype-phenotype
relationship is difficult to apply in routine healthcare. Addition-
ally, none of these methods ensure privacy of genomic data from
dishonest entities.

Section 5 presents our novel secret sharing approach to gener-
ate authenticated result for a disease risk query while preserving
privacy of the genomic data. Our approach ensures the usage of
genomic data of a patient without violating the privacy of the ge-
nomic data from any dishonest entities. Specifically, a patient
does not need to disclose genomic data to potentially malicious
Medical Units (MU) while processing disease risk queries in our
approach. However, for personalized medicine a patient cannot
hide her genomic data from the MU, as the MU is responsible
for prescribing medicine to the patient. Now we will discuss the
modifications required in our approach to apply it in the field of
personalized medicine while preserving privacy from all other en-
tities except the MU.

Approval of Patient for Sharing Genomic Data with the MU:
Section 7 shows that our system does not allow any malicious
entity to learn the SNP values stored in a patient’s database with-
out her approval. However, unlike the disease risk query, there is
no fixed formula that the MU can use to prescribe personalized
medicine without knowing the patient’s genomic mutations re-
sponsible for the particular disease. As such, our system needs to
collect approval from the patient to disclose genetic information
to the MU.

Choice of Contribution Factor for SNPs: According to our
structure, the sum of all weights stored in all DDBs for an al-
lele of a particular position of an SNP is either 1 (if the SNP
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contains that allele in that position) or 0 (otherwise). We also
consider both positions of an SNP for an allele. Hence if we
send a contribution factor for that allele to all DDBs, after ag-
gregating all values received from all DDBs we can receive ei-
ther that contribution factor (if the allele is in a single position
in the SNP), or double of that contribution factor (if the allele
is in both position) or zero (if the allele is absent in that SNP).
Moreover, the patient’s device generates the aggregated value of
all the contribution factors for all SNPs. Thus to find out the ge-
netic information, we need to find out a way where the MU can
take decision about all SNPs by looking at the aggregated value
only. One possible solution can be a careful choice of the contri-
bution factors so that they produce different values for different
combinations. For example, let us assume that the MU needs to
know about alleles of three SNPs; S 1, S 2 and S 3. For simpli-
fication, we are considering that the MU is searching same al-
lele, C, in all SNPs. Thus P = {S 1, S 2, S 3} has total eight sub-
sets ({S 1}; {S 2}; {S 3}; {S 1, S 2}; {S 2, S 3}; {S 1, S 3}; {S 1, S 2, S 3}; ∅).
If the MU considers {2, 3, 9} as the set of their contribution fac-
tors, then it produces different aggregated values for each subset
regardless of whether an SNP has one or two C. On the other
hand, if the MU considers {2, 3, 5} as the set of contribution fac-
tors, both {S 1, S 2} and {S 3} have 10 as aggregated value when
each SNP has C in both position. In this case, it is not possible
to learn individual SNP values from the aggregated value. Thus
the second combination cannot be used for learning SNP infor-
mation.

Disclosure of Actual Genetic Score: As we are disclosing ge-
netic information to the MU, we do not need to scale the total
genetic score in order to hide from the MU described in Sec-
tion 5.3.4. After authenticating the partial aggregating value and
generating total genetic score from the value, the patient directly
sends it to the MU for further procedure.

Disclosure of Clinical Data: Like genetic information, the
MU needs to know about the clinical factors of a patient. Thus
the patient needs to share her clinical data with the MU.

10. Conclusion

We introduced a novel secret sharing approach to evaluate pri-
vacy preserving authenticated disease risk queries that overcomes
the limitations of existing approaches. Our approach can compute
the probability of an individual to develop a disease when both
the alleles of an SNP are responsible for two or more different
diseases, and protect privacy of genome and clinical data even if
the MU alters important parameters and colludes with the DDBs.
Moreover, we ensure the correctness of the disease risk query by
authenticating genomic data shared by the DDBs. Our security
analysis shows that our approach protects the privacy of contri-
bution factors, disease name, and the query answer from dishon-
est entities. An important advantage of our approach is that the
storage cost for SNPs is reduced significantly. Experiments show
that our approach outperforms the existing approaches in terms of
storage with a large margin. Furthermore, our approach provides
a high level of privacy for a smaller value of n (i.e., 3) and incurs
less computational and communication overheads.

We showed that our approach is applicable for personalized

medicine with modifications. In the future, we aim to address the
required modifications and perform experiments on the applica-
tion of our modified approach for personalized medicine.
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