
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

Integrative Acceleration of First-order Boolean Masking
for Embedded IoT Devices

Yuichi Komano1,a) Hideo Shimizu1 HideyukiMiyake1

Received: November 26, 2018, Accepted: June 11, 2019

Abstract: Physical attacks, especially side-channel attacks, are threats to IoT devices which are located everywhere
in the field; and therefore, protecting such devices against side-channel attacks is one of our emerging issues. Toward
that, Coron et al. gave an efficient arithmetic-to-Boolean mask conversion algorithm which enables us to protect cryp-
tographic algorithms including arithmetic operations, such as hash functions, from the attacks. Recently, Biryukov et
al. improved it by locally optimizing subroutines of the conversion algorithm. In this paper, we revisit the algorithm.
Unlike Biryukov et al., we improve the Coron et al.’s algorithm with integrative optimizations over the subroutines.
The gains against these algorithms are about 22.6% and 7.0% in the general setting. We also apply our algorithm to
HMAC-SHA-1 and have an experiment to show that the implementation on a test vehicle smartcard leaks no sensitive
information, i.e., secure against the first-order side-channel attack, with the ISO/IEC17825 test.

Keywords: side-channel attack, mask conversion, IoT, embedded device

1. Introduction

Internet of Things (IoT) has been widely spread to make our
lives smart and comfortable. In the IoT system, devices are lo-
cated in the field and communicate with each other to collect their
sensing data and to control actuators.

Securing the devices in the IoT system is one of the emerg-
ing issues. Especially, side-channel attacks including the power
analyses [4], [10], [11] are serious threats to the devices. This is
because, in the IoT system, attackers easily get hold of devices
from the field and physically analyze them. Moreover, most of
the cost-constrained devices lack a tamper protection mechanism
and they can be vulnerable to such attacks.

Among the security functionalities of IoT devices, the authen-
ticity is strongly required more than others, such as the confiden-
tiality and the anonymity, to keep the system correct. In this pa-
per, we therefore focus on countermeasures against side-channel
attacks which realizes a secure authentication.

1.1 First-order Boolean and Arithmetic Maskings
The hash-based message authentication code (HMAC [2], [19])

is widely used for the authentication. Unlike the block cipher,
like AES [18], each of the secure hash algorithms (SHA [20]) in-
cludes arithmetic additions besides Boolean operations. Against
the HMAC with SHA, side-channel vulnerabilities have been re-
ported [1], [13], [15].

In order to protect the HMAC against the side-channel attack,
both of the Boolean and arithmetic operations should be random-
ized with different types of masks. Hence, algorithms, converting
a Boolean mask to an arithmetic one and vice versa, are required.

1 Toshiba Corporation, Kawasaki, Kanagawa 212–8582, Japan
a) yuichi1.komano@toshiba.co.jp

Goubin [6] proposed promising conversion algorithms for both
directions. Since then, improvements and extensions, such as
ones for higher-order masking, have been reported. However, to
the best of our knowledge, his Boolean-to-arithmetic conversion
is the best algorithm with fewer operations, up to now.

Recently, Coron et al. [5] proposed an arithmetic-to-Boolean
conversion by changing the basis, an arithmetic addition, of the
algorithm. Unlike the previous conversion based on the ripple-
carry adder, they revisited the Kogge-Stone carry look-ahead
adder [12] to construct a new conversion. With this approach, the
amount of computation is dramatically decreased from O(k) to
O(log k) where k is the addition bit size. They also gave a masked
addition algorithm which computes, with inputs randomized with
Boolean masks, a sum with one of the Boolean masks.

In CARDIS 2017, Biryukov et al. [3] improved the Coron et
al.’s masked addition. They searched optimal subroutines called
in the Coron et al.’s masked addition in the formal manner and
applied them to construct an improved masked addition algo-
rithm. Although their algorithm operates less computations than
the Coron et al.’s does, its implementation requires the engineer-
ing skill more. In detail, the subroutines in the Biryukov et al.’s
output two operands which are unfit for popular programming
languages such as C. Of course, in the C language for exam-
ple, we can return two operands as an array; however, decoding
the memory address of the array makes the implementation in-
efficient. In fact, Biryukov et al. implemented their algorithm in
the assembly from scratch, which increases the implementation
complexity.

In addition to the above two, Schneider et al. [21] discussed an
efficient hardware implementation of the conversion. Won and
Han [22] modified the Kogge-Stone carry look-ahead adder with
a divide and conquer approach.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

1.2 Our Contributions
In this paper, we propose improved algorithms of the Coron

et al.’s conversion and masked addition algorithms. Unlike the
Birykov et al.’s one, our algorithms are easy to implement with
the popular programming language because their inner subrou-
tines return one operand as the Coron et al.’s one does.

In order to improve the Coron’s et al.’s algorithm, Biryukov
et al. took a bottom-up approach to individually optimize sub-
routines; however, our approach is integrative. We decrease the
number of mask operations beyond the subroutines. Our tricks
are to unify the subroutines *1 and to break the symmetry of sub-
routine calls in iterations.

We succeeded to decrease the coefficient (for log2 k in Table 1)
in the computational complexity by seven and one against the
Coron et al.’s conversion and the Biryukov et al.’s one, respec-
tively. Against the Coron et al.’s algorithm, Biryukov et al.’s one
requires fewer numbers of AND and XOR operations whereas
it additionally executes the OR (orn) operations. On the other
hand, our algorithm focuses to decrease the number of XOR op-
erations; and eventually, ours requires fewer operations than both
algorithms in total (as shown in Table 2). The gains against the
previous conversions are 22.6% and 7.0% if the size of the addi-
tion unit is supposed to be k = 32.

We then applied our conversion algorithm to protect the au-
thentication with HMAC-SHA-1 *2 as Coron et al. did. The
gains, on the theoretical number of required operations, are still
17.1% and 4.9% against the HMAC-SHA-1 implementations
with previous conversion algorithms (as shown in Table 3). We
also developed a software implementation for an IC test vehicle
smartcard [7] from Information-technology Promotion Agency
(IPA), Japan. In this software, we use the xorshift [14] as a
mask generation function. From the power consumption traces
measured with the smartcard, the testing method of ISO/IEC
17825 [8] finds no vulnerability which confirms the security of
our conversion.

1.3 Organization
The remainder of this paper is organized as follows. Section 2

reviews the previous works. In Section 3, we explain our strategy
and propose our arithmetic-to-Boolean conversion and masked
addition algorithms. We then check the first-order security of our
algorithm with the IPA test vehicle smartcard in Section 4. Sec-
tion 5 gives discussions on the detail and the extension of our
algorithms. Finally, Section 6 concludes this paper.

2. Related Works

In this section, we review previous works related to the mask-
ings. In this paper, we use the following notations.
• {0, 1}k: the set of k-bit binary strings
• a ← {0, 1}k: a selection of a k-bit binary string a uniformly

*1 Recently, Jungk et al. [9] also proposed more efficient algorithms by
improving the Birykov et al.’s algorithm independently. Similar to the
Biryukov et al.’s one, their algorithm requires the engineering skill to
implement it as explaind in Section 1.1.

*2 The SHA-1 is acceptable for HMAC but not for the digital signa-
tures [17]. In order to compare the implementation results with Coron
et al. [5], we apply our algorithms to HMAC-SHA-1.

Algorithm 1 Goubin’s Boolean-to-arithmetic Conversion Algo-
rithm
Input: x′, r ∈ {0, 1}k such that x′ = x ⊕ r for secret x ∈ {0, 1}k
Output: A ∈ Z2k and r such that A = x − r

1: γ ← {0, 1}k
2: t = x′ ⊕ γ
3: t = t − γ
4: t = t ⊕ x′

5: γ = γ ⊕ r

6: a = x′ ⊕ γ
7: a = a − γ
8: a = a ⊕ t

9: return a, r

at random (to make side-channel attacks infeasible)
• a ⊕ b: a bitwise exclusive-or of a, b ∈ {0, 1}k
• a ∧ b: a bitwise AND of a, b ∈ {0, 1}k
• Z2k : the set of (k-bit) integers, modulo by 2k

• a + b, a − b: the addition and the subtraction in Z2k

• a << b: a non-circular b-bit shift of a as a binary string,
which equals 2ba mod 2k ∈ Z2k

2.1 Goubin’s Mask Conversion Algorithm [6]
We recall the Boolean-to-arithmetic conversion algorithm by

Ref. [6]. Let x and r denote variables for a sensitive data and a
random mask, respectively. From x′ = x ⊕ r (randomized data
with the Boolean mask) and r, this algorithm efficiently com-
putes A = x − r (randomized data with the Arithmetic mask)
as in Algorithm 1. We use this algorithm in our experiments
later. In Ref. [6], Goubin also proposed a reverse conversion, the
arithmetic-to-Boolean conversion, but we omit its detail in this
paper.

2.2 Coron et al.’s Algorithms [5]
Coron et al. [5] proposed an efficient arithmetic-to-Boolean

conversion applicable to the first-order masking. They took a new
approach to construct their conversion by securing the Kogge-
Stone carry look-ahead adder [12], although the Goubin’s con-
version was based on the ripple-carry adder. They also proposed
a Kogge-Stone masked addition which, with inputs with Boolean
masks, computes a sum with one of the Boolean masks for inputs.

In Ref. [5], they also reported the implementations of
HMAC-SHA-1 with first-order masking with the Kogge-Stone
arithmetic-to-Boolean conversion and the Kogge-Stone masked
addition. From their result, the implementation with their masked
addition is less effective, requiring about 2.28 times clock cycles,
compared to one with their conversion. Hence, this section only
reviews the Kogge-Stone arithmetic-to-Boolean mask conversion
as depicted in Algorithm 2.

Algorithm 2 calls subroutines [5] labeled as SecShift, SecAnd,
and SecXor which securely execute operations of Shift, AND, and
XOR, respectively, by using masks.

2.3 Biryukov et al.’s Masked Addition Algorithm [3]
Biryukov et al. [3] took a comprehensive approach to search

optimal algorithms of subroutines which securely execute oper-
ations of AND and OR. They then applied these subroutines to

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Algorithm 2 Kogge-Stone Arithmetic-to-Boolean Conversion [5]

Input: A, r ∈ {0, 1}k and n = max(�log2(k − 1)	, 1) such that A = x − r ∈ Z2k

Output: x′ such that x′ ⊕ r = A + r mod 2k

1: Let s← {0, 1}k , t ← {0, 1}k , u← {0, 1}k
2: P′ = A ⊕ s

3: P′ = sP′ ⊕ r

4: G′ = s ⊕ ((A ⊕ t) ∧ r)

5: G′ = G′ ⊕ (t ∧ r)

6: for i := 1 to n − 1 do

7: H = SecShift(G′, s, t, 2i−1)

8: U = SecAnd(P′,H, s, t, u)

9: G′ = SecXor(G′,U, u)

10: H = SecShift(P′, s, t, 2i−1)

11: P′ = SecAnd(P′,H, s, t, u)

12: P′ = P′ ⊕ s

13: P′ = P′ ⊕ u

14: end for

15: H = SecShift(G′, s, t, 2n−1)

16: U = SecAnd(P′,H, s, t, u)

17: G′ = SecXor(G′,U, u)

18: x′ = A ⊕ 2G′

19: x′ = x′ ⊕ 2s

20: return x′

Algorithm 3 Biryukov et al.’s Masked Addition Algorithm [3]

Input: x1, x2, y1, y2 ∈ {0, 1}k and n = max(�log2(k − 1)	, 1) such that

x = x1 ⊕ x2 and y = y1 ⊕ y2

Output: z1, z2 such that z = z1 ⊕ z2 = (x + y) mod 2k

1: p1, p2 = SecXor2(x1, x2, y1, y2)

2: g1, g2 = SecAnd2(x1, x2, y1, y2)

3: g1, g2 = ((g1 ⊕ x2) ⊕ g2, x2)

4: for i := 1 to n − 1 do

5: h1, h2 = SecShift2(g1, g2, 2i−1)

6: u1, u2 = SecAnd2(p1, p2, h1, h2)

7: g1, g2 = SecXor2(g1, g2, u1, u2)

8: h1, h2 = SecShift2(p1, p,2i−1)

9: h1, h2 = ((h1 ⊕ x2) ⊕ h2, x2)

10: p1, p2 = SecAnd2(p1, p2, h1, h2)

11: p1, p2 = ((p1 ⊕ y2) ⊕ p2, y2)

12: end for

13: h1, h2 = SecShift2(g1, g,2n−1)

14: u1, u2 = SecAnd2(p1, p2, h1, h2)

15: g1, g2 = SecXor2(g1, g2, u1, u2)

16: z1, z2 = SecXor2(y1, y2, x1, x2)

17: z1, z2 = (z1 ⊕ 2g1, z2 ⊕ 2g2)

18: return z1, z2

construct improved masked addition and subtraction algorithms.
Algorithm 3 shows the improved masked addition algorithm

from Ref. [3]. This algorithm calls the improved SecAnd labeled
as SecAnd2, and two other subroutines labeled as SecShift2 and
SecXor2.

3. New Algorithms

We first explain our strategy to improve the arithmetic-to-
Boolean conversion algorithm and the masked addition. We then
give our algorithms and compare their efficiencies with ones of
the previous algorithms.

Algorithm 4 SecShiftAnd

Input: x′1, s1, j, x′2, s2, u such that x′i , si, u ∈ {0, 1}k and j ∈ Z where x′i =
xi ⊕ si

Output: z′ such that z′ = ((x1<< j) ∧ x2) ⊕ u

1: y = x′1<< j

2: s′ = s1<< j

3: z′ = u ⊕ (x′2 ∧ y)
4: z′ = z′ ⊕ (x′2 ∧ s′)
5: z′ = z′ ⊕ (s2 ∧ y)
6: z′ = z′ ⊕ (s2 ∧ s′)
7: return z′

3.1 Strategy
Our approach is to improve the Coron et al.’s algorithm. We

have two ideas to enhance this algorithm.
The first one is to decrease the number of required masks from

three to two, by replacing the third mask (t in Algorithm 2) with
an XOR of other two masks (as in the second line in Algo-
rithm 5). Generally speaking, a countermeasure using n random
masks is able to resist the (up to) n-th order side-channel attack.
This replacement degrades the level of higher-order security by
one. However, there are still two random masks in our proposal;
namely, our countermeasure can avoid the (up to) second-order
side-channel attack. Indeed, in our countermeasure, all of inter-
nal variables is masked with one of two independent masks or
their XOR value; and hence, ours ensures the first-order security.
This replacement decreases not only the number of masks itself
but also that of XOR operations (for Steps 12 and 13 in Algorithm
2, etc.).

The second one is to decrease the number of re-masking opera-
tions within subroutines. In their algorithm, SecShift is followed
by SecAnd. In each of SecShift and SecAnd, XOR operations
are executed in order for the output to be masked with a certain
mask. Our second idea is to remove the operations for re-masking
by integrating these two subroutines (named SecShiftAnd in Al-
gorithm 4).

In addition to the above two ideas, we also change the initial-
ization steps (Steps 3 to 5 in Algorithm 2) to decrease the number
of XOR operations (with input A).

Although our ideas seem to naturally lead improved algorithm;
unfortunately, it is incorrect. This is because, by reducing the
number of independent masks, we have to use the mask in the
different order from the original algorithm so that masks are un-
canceled. As seen in the next subsection, we prepare two se-
quences of operations (Steps 8 to 11 and 13 to 15, etc.) to keep
the internal variables being masked throughout the conversion.

3.2 Algorithms
As mentioned, we introduce a combined subroutine

SecShiftAnd to accelerate the conversion. Algorithm 4
gives its procedure, which is naturally derived by combining
SecShift and SecAnd of Ref. [5] which can remove the XOR
operations in SecShift. The inputs of this algorithm are two
Boolean masked data x′i , the corresponding masks si, an output
mask u, and the amount of shift j for i ∈ {1, 2}. Intuitively,
this algorithm securely computes the bitwise AND of first data

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Table 1 Number of operations in each algorithm.

Algorithm rand k = 8 k = 16 k = 32 k = 64 k
Coron et al.’s conversion 3 81 109 137 165 28 log2 k − 3
Biryukov et al.’s conversion 2 70 92 114 136 22 log2 k + 4
Our conversion 2 64 85 106 127 21 log2 k + 1
Coron et al.’s addition 2 88 116 144 172 28 log2 k + 4
Biryukov et al.’s addition 0 70 92 114 136 22 log2 k + 4
Our addition 1 69 90 111 132 21 log2 k + 6

Algorithm 5 Our Arithmetic-to-Boolean Conversion
Input: A, r ∈ {0, 1}k and n = max(�log2(k − 1)	, 1) such that A = x − r ∈ Z2k

Output: x′ such that x′ ⊕ r = A + r mod 2k

1: s, u← {0, 1}k
2: t = s ⊕ u

3: P′ = A ⊕ s

4: G′ = t ⊕ (P′ ∧ r)

5: G′ = G′ ⊕ (s ∧ r)

6: P′ = P′ ⊕ r

7: for i := 1 to n − 1 do

8: if i is odd then

9: U = SecShiftAnd(G′, t, 2i−1, P′, s, u)

10: G′ = G′ ⊕ U

11: P′ = SecShiftAnd(P′, s, 2i−1, P′, s, t)
12: else

13: U = SecShiftAnd(G′, s, 2i−1, P′, t, u)

14: G′ = G′ ⊕ U

15: P′ = SecShiftAnd(P′, t, 2i−1, P′, t, s)

16: end if

17: end for

18: if n is odd then

19: U = SecShiftAnd(G′, t, 2n−1, P′, s, u)

20: else

21: U = SecShiftAnd(G′, s, 2n−1, P′, t, u)

22: end if

23: G′ = G′ ⊕ U

24: x′ = A ⊕ 2G′

25: if n is odd then

26: x′ = x′ ⊕ 2s

27: else

28: x′ = x′ ⊕ 2t

29: end if

30: return x′

x1 with j-bit shift and second data x2, where xi = x′i ⊕ si is
unmasked sensitive data corresponding to x′i .

We then give our conversion in Algorithm 5. As mentioned in
the previous subsection, we use two sequences of operations to be
selectively used by the conditions of i (loop counter) and n. Note
that these conditions are public and the branches leak no sensitive
information of the internal variables.

3.3 Comparison with Previous Algorithms
Let us compare our algorithm with the previous ones. Table 1

summarizes the number of operations required in each algo-
rithm. In Ref. [3], Biryukov et al. gave, not an arithmetic-to-
Boolean algorithm, but the masked addition and subtraction al-
gorithms. From their masked addition algorithm, we can derive
an arithmetic-to-Boolean conversion algorithm, which we call the
Biryukov et al.’s conversion algorithm. We give its detail as Al-
gorithm 7 in Appendix A.1.

Algorithm 6 Our Masked Addition Algorithm

Input: x′, y′, r, s ∈ {0, 1}k and n = max(�log2(k − 1)	, 1) such that x′ = x ⊕ r

and y′ = y ⊕ s

Output: z′ such that z ⊕ r = x + y mod 2k

1: u← {0, 1}k
2: t = s ⊕ u

3: z′ = x′ ⊕ y′
4: P′ = z′ ⊕ r

5: z′ = z′ ⊕ s′

6: G′ = SecAnd(x′, y′, s, r, t)
7: for i := 1 to n − 1 do

8: if i is even then

9: U = SecShiftAnd(G′, t, 2i−1, P′, s, u)

10: G′ = G′ ⊕ U

11: P′ ← SecShiftAnd(P′, s, 2i−1, P′, s, u)

12: else

13: U = SecShiftAnd(G′, s, 2i−1, P′, t, u)

14: G′ = G′ ⊕ U

15: P′ = SecShiftAnd(P′, t, 2i−1, P′, t, s)

16: end if

17: end for

18: if n is even then

19: U = SecShiftAnd(G′, t, 2n−1, P′, s, u)

20: else

21: U = SecShiftAnd(G′, s, 2n−1, P′, t, u)

22: end if

23: G′ = G′ ⊕ U

24: z′ = z′ ⊕ 2G′

25: if n is even then

26: z′ = z′ ⊕ 2s

27: else

28: z′ = z′ ⊕ 2t

29: end if

30: return z′

Table 2 Number of operations in each algorithm for k = 32 (in detail).

Algorithm and orn sft eor total
Coron et al.’s conversion 38 0 20 79 137
Biryukov et al.’s conversion 20 20 20 54 114
Our conversion 38 0 20 48 106

This table shows that our conversion and addition algorithms
require fewer cycles compared to previous ones. For example,
the gains of our conversion algorithm against the Coron et al.’s
and Biryukov et at.’s ones, for k = 32, are 31 (≈ 22.6%) and 8
(≈ 7.0%), respectively.

Let us check the detail of the conversion algorithm. Table 2
summarizes the number of operations required in each algorithm
for k = 32. Compared to the Coron et al.’s conversion algorithm,
although the Biryukov et al.’s one additionally requires 20 orn

operations, it decreases the numbers for and and eor operations.
In total, the gain is 23.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Our conversion algorithm, on the other hand, decreases the
number of operations (only) for eor by 31 from the Coron et al.’s
one. The gain is large enough to compensate the overhead on and

operation against the Biryukov et al.’s one.

4. Experiments

We apply our conversion algorithm to give a first-order secure
implementation of HMAC-SHA-1. In considering the Coron et
al.’s result, we implement it, not with the masked addition, but
with Goubin’s Boolean-to-arithmetic conversion algorithm and
ours. Namely, internal values of (HMAC-)SHA-1 are basically
randomized with a first order Boolean mask. In each round op-
erations, we use the rapid Goubin’s algorithm to convert inputs
with arithmetic masks suitable for additions, and our algorithm
once to convert the summation back to the data with a Boolean
mask.

4.1 Equipments
We developed software for HMAC-SHA-1 [2], [19], [20] with

MDK-lite for Windows, version 5.24.1. The C code was com-
piled with armcc v5.06 update 5 (build 528) using the O3 op-
timization to generate assembly code. We then checked the as-
sembly code not to remove the masking and reverted the code to
retrieve the masking back in the assemble level. Finally, the as-
sembly code was compiled with armasm v5.06 update 5 (build
528) to generate binary code.

We then downloaded the binary code into an IC test vehicle
smartcard [7] from Information-technology Promotion Agency
(IPA), Japan. This smartcard includes the ARM7 based SC100
with 28 MHz system clock, the 512 KB flash memory and the
18 KB RAM. The interface follows the ISO7816-3 with T=0.

We measured power consumption traces from the smartcard
with the SASEBO-W board [16] and the digital oscilloscope
LECROY WavePro715Zi. We controlled the SASEBO-W board,
with external 2.5 V power supply and 3.57 MHz frequency, from
a Windows based laptop PC to run the smartcard. We ac-
quired power consumption traces using the oscilloscope with 1 G
Samples/s.

4.2 Implementation of HMAC-SHA-1
4.2.1 Prototype with Python:

Before implementing with C, we first implemented HMAC-
SHA-1 with Python from scratch. Table 3 summarizes the num-
ber of randomnesses and operations required for HMAC-SHA-1
with each algorithm. For the latter, we count the operations of
add, sub, and, or, eor, orr (only for the Biryukov et al.’s con-
version), shift, and rot which are supposed to be executed in one
clock cycle with ARM processor.

From this table, the implementations of HMAC-SHA-1 with
a first-order masking require more than tenfold operations com-
pared to the one without any countermeasure. Among those with
a first-order masking, our conversion leads the fast implementa-
tion. The gains against those with the Coron et al.’s and Biryukov
et al.’s algorithms are 10,865 (≈ 17.1%) and 2,680 (≈ 4.9%),
respectively.

As for the randomness, implementations with Biryukov et al.’s

Table 3 Numbers of randomnesses and operations required for HMAC-
SHA-1 with Python.

Implementation �rand �ops ratio
Without countermeasure 0 4,004 1
With Coron et al.’s conversion 313 63,358 15.82
With Biryukov et al.’s conversion 72 55,173 13.78
With our conversion 72 52,493 13.11

Table 4 Number of cycles required for HMAC-SHA-1 in IPA test vehicle
smartcard.

Implementation �cycles ratio
Without countermeasure 12,391 1
With Coron et al.’s conversion (opt0) 68,711 5.55
With Biryukov et al.’s conversion (opt0) 66,344 5.35
With our conversion (opt0) 63,546 5.13
With Coron et al.’s conversion (opt1) 41,914 3.38
With Biryukov et al.’s conversion (opt1) 40,913 3.30
With our conversion (opt1) 39,471 3.19
With Coron et al.’s conversion (opt2) 29,150 2.35
With Biryukov et al.’s conversion (opt2) 28,629 2.31
With our conversion (opt2) 27,862 2.25

conversion and ours require 72 masks: 5 masks for the initial
five words in two hashes each (subtotal 10), 16 ones for the six-
teen words to three blocks each (subtotal 48), 11 ones for the
remaining block (the first five words out of sixteen ones, which
is an output of the inner hash, are already masked), one for the
Boolean-to-arithmetic conversion, and two for the arithmetic-to-
Boolean conversion.
4.2.2 C implementation for IPA Test Vehicle Smartcard:

We then implemented HMAC-SHA-1, in C with assembly
modification, with/without a countermeasure. We implemented
HMAC-SHA-1 in C with/without a countermeasure (except the
Biryukov et al.’s one), complied it with armcc v5.06 update 5
(build 528) as explained in Section 4.1. As for the Birykov et
al.’s algorithm, we implemented the subroutines in assembly from
scratch.

In the implementations with countermeasures, the masks are
generated by xorshift [14] with a random seed. Table 4 summa-
rizes the numbers of cycles required for HMAC-SHA-1 in the test
vehicle smartcard.

In this table, “opt0” means implementations where they are
masked throughout the 80 rounds, but two results of SHA-1 com-
pressions for the fixed keys are pre-computed. “opt1” and “opt2”
mean optimized implementations where internal values in 40 and
60 middle rounds of SHA-1 are unmasked, respectively. The im-
plementations with the “opt0” countermeasure require more than
five times cycles compared to one without a countermeasure. If
two hashes for the fixed keys are not precomputed, they should
be tenfold as in Table 3. Compared to those with Coron et al.’s
conversion, our gains are 5,165 (≈ 7.5%, “opt0”), 2,443 (≈ 5.8%,
“opt1”), and 1,288 (≈ 4.4%, “opt2”), respectively. Compared
to those with Biryukov et al.’s conversion, our gains are 2,798
(≈ 4.2%, “opt0”), 1,442 (≈ 3.5%, “opt1”), and 767 (≈ 2.7%,
“opt2”), respectively.

Table 5 summarizes the code sizes of C implementations.
From the table, our algorithm leads the smallest code.

4.3 Test for the First-Order Side-Channel Leakage
We used a test framework, defined in ISO/IEC 17825 [8], for

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Table 5 Code sizes for HMAC-SHA-1 in IPA test vehicle smartcard.

Implementation size (byte)
With Coron et al.’s conversion (opt2) 2,780
With Biryukov et al.’s conversion (opt2) 2,700
With our conversion (opt2) 2,640

Fig. 1 Average traces for sha1(msg) with IV= sha1(key ⊕ ipad).

Fig. 2 ISO/IEC 17825 tests for our target.

the evaluation of the security against the first-order side-channel
attack. We can check the security against the first-order side-
channel attack, whether T-value calculated in this test exceeds
the threshold 4.5 (insecure) or not (secure). We implemented
the software of HMAC-SHA-1 with our conversion (opt2) on the
test vehicle smartcard and acquired 100,000 power consumption
traces, as specified for the security level 4 in ISO/IEC 17825 [8],
with a fixed key and random inputs.

HMAC-SHA-1, with a key key and a message msg, computes
sha1((key⊕opad)||sha1((key⊕ipad)||msg)), where ipad and opad

are the constants 0x3636 · · · 36 and 0x5c5c · · · 5c, respectively.
As explained, in each sha1 computations, the compression of
first block with the fixed key is precomputed. Our software com-
putes the compression of the second block with msg in the inner
hash, using the compression of the first block as an initial vector.
We regard the output of the first round in the second compression
with msg as an attack target.

Figure 1 depicts the average traces of 1,000 first power con-
sumption traces, where its horizontal and vertical axes represent
time and power consumption (in voltage), respectively. The it-
erations of rounds are observed as specified in this figure. From
each trace, we extract a subtrace for the first round by removing
a random delay in the processing time for synchronization.

We divided the 100,000 traces into two groups by the first byte
of the target, whether its Hamming weight is more than 16 or less
than 16. We then applied the test from ISO/IEC 17825 [8]. The
graph in Fig. 2 shows the result, where its horizontal and verti-
cal axes represent time and T-value, respectively. In this figure,
the absolute value of the T-value is less than 0.6; namely, there
is no point which exceeds the threshold 4.5. Hence, we conclude
that our conversion protects HMAC-SHA-1 from the first-order
attack.

*3 Note that the implementation of SHA-1 is in the rolled architecture.

5. Discussions

As we explained in Section 3.3, our algorithm requires fewer
operations than the previous algorithms to convert the arithmetic
mask to the Boolean one. Moreover, as shown in Section 4.3
with the experiments, our algorithm gives a secure implementa-
tion against the first-order side-channel attack.

5.1 Branches
Unlike the previous algorithms, ours has branches of opera-

tions based on i and n as in Algorithm 5. Note that, since i

and n do not depend on the sensitive data, these branches leak
no information about secret inputs. However, it increases the
execution time as it is. As for the branches conditioned by
n = max(�log2(k−1)	, 1), if an architecture, especially, the size of
addition k, is determined in advance, it is sufficient to implement
a corresponding one of the operation sequences without a branch
on n. As for the branch conditioned by i, on the other hand, we
can remove it if the implementation of for loop is unrolled. This
leads the trade-off between the time and the code size. In our pre-
vious experiment, we implemented the unrolled *3 architecture in
Algorithm 5.

5.2 Conversion of Higher-Order Masking
In this paper, we gave an arithmetic-to-Boolean conversion al-

gorithm for a first-order masking. Our algorithm reuses two in-
dependent masks to randomize the internal variables; and there-
fore, it is insecure against the multivariate higher-order (in fact,
second-order) side-channel attacks. Following the discussion of
[5], Section 6, our algorithm is extensible to a conversion of
higher-order masking by increasing the number of Boolean shares
(random masks), as well as the Coron et al.’s algorithm.

6. Conclusion

In this paper, we proposed another improved conversion algo-
rithm from the Coron et al.’s one, by reducing operations over
subroutines. Our experiments, with the IPA test vehicle smart-
card, showed that our conversion correctly worked as a counter-
measure against the first-order attack. Discussions on sophisti-
cated attacks such as (non-)profiled attacks and their countermea-
sures are our future works.

Acknowledgments In this paper, we use the test vehicle
smartcard from IPA. We would like to thank anonymous review-
ers for their fruitful comments on the previous version of this
manuscript. A part of this work is supported by JSPS KAKENHI
Grant Number 18H05289.

References

[1] Belaı̈d, S., Bettale, L., Dottax, E., Genelle, L. and Rondepierre, F.:
Differential power analysis of HMAC SHA-2 in the hamming weight
model, Samarati, P. (Ed.), SECRYPT 2013 - Proc. 10th International
Conference on Security and Cryptography, pp.230–241, SciTePress
(2013).

[2] Bellare, M., Canetti, R. and Krawczyk, H.: Keying hash functions for
message authentication, Koblitz, N. (Ed.), Proc. 16th Annual Inter-
national Cryptology Conference Advances in Cryptology - CRYPTO
’96, Lecture Notes in Computer Science, Vol.1109, pp.1–15, Springer
(1996).

[3] Biryukov, A., Dinu, D., Le Corre, Y. and Udovenko, A.: Optimal first-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

order Boolean masking for embedded IoT devices, Eisenbarth, T. and
Teglia, Y. (Eds.), Smart Card Research and Advanced Applications -
16th International Conference, CARDIS 2017, Lecture Notes in Com-
puter Science, Vol.10728, pp.22–41, Springer (2018).

[4] Chari, S., Jutla, C.S., Rao, J.R. and Rohatgi, P.: Towards sound ap-
proaches to counteract power-analysis attacks, Wiener, M.J. (Ed.),
Proc. 19th Annual International Cryptology Conference Advances
in Cryptology - CRYPTO ’99, Lecture Notes in Computer Science,
Vol.1666, pp.398–412, Springer (1999).

[5] Coron, J.-S., Großschädl, J., Tibouchi, M. and Vadnala, P.K.: Conver-
sion from arithmetic to Boolean masking with logarithmic complex-
ity, Leander, G. (Ed.), Fast Software Encryption - 22nd International
Workshop, FSE 2015, Lecture Notes in Computer Science, Vol.9054,
pp.130–149, Springer (2015).

[6] Goubin, L.: A sound method for switching between Boolean and arith-
metic masking, Koç, Ç.K., Naccache, D. and Paar, C. (Eds.), Cryp-
tographic Hardware and Embedded Systems - CHES 2001, Lecture
Notes in Computer Science, Vol.2162, pp.3–15, Springer (2001).

[7] Hashimoto, T. and Chetali, B.: High level CC certification in
Japan, The 2013 International Common Criteria Conference, ICCC
2013 (2013), available from 〈https://www.commoncriteriaportal.org/
iccc/ICCC arc/presentations/T2 D1 4 30pm Hashimoto High Level
CC Certs.pdf〉.

[8] ISO/IEC: ISO/IEC 17825. Information technology – Security tech-
niques – Testing methods for the mitigation of non-invasive attack
classes against cryptographic modules, ISO/IEC (2016).

[9] Jungk, B., Petri, R. and Stöttinger, M.: Efficient side-channel pro-
tections of ARX ciphers, IACR Trans. Cryptographic Hardware and
Embedded Systems, Vol.1, No.3, pp.627–653 (2018).

[10] Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems, Koblitz, N. (Ed.), Proc. 16th An-
nual International Cryptology Conference Advances in Cryptology
- CRYPTO ’96, Lecture Notes in Computer Science, Vol.1109,
pp.104–113, Springer (1996).

[11] Kocher, P.C., Jaffe, J. and Jun, B.: Differential power analysis, Wiener,
M.J. (Ed.), 19th Annual International Cryptology Conference Ad-
vances in Cryptology - CRYPTO ’99, Lecture Notes in Computer Sci-
ence, Vol.1666, pp.388–397, Springer (1999).

[12] Kogge, P.M. and Stone, H.S.: A parallel algorithm for the efficient
solution of a general class of recurrence equations, IEEE Trans. Com-
puters, Vol.22, No.8, pp.786–793 (1973).

[13] Lemke, K., Schramm, K. and Paar, C.: DPA on n-bit sized Boolean
and arithmetic operations and its application to IDEA, RC6, and the
HMAC-construction, Joye, M. and Quisquater, J.-J. (Eds.), Crypto-
graphic Hardware and Embedded Systems - CHES 2004, Lecture
Notes in Computer Science, Vol.3156, pp.205–219, Springer (2004).

[14] Marsaglia, G.: Xorshift RNGs, Journal of Statistical Software, Vol.8,
pp.1–6 (2003).

[15] McEvoy, R.P., Tunstall, M., Murphy, C.C. and Marnane, W.P.: Dif-
ferential power analysis of HMAC based on SHA-2, and countermea-
sures, Kim, S., Yung, M. and Lee, H.W. (Eds.), Information Secu-
rity Applications, 8th International Workshop, WISA 2007, Vol.4867,
pp.317–332, Springer (2007).

[16] National Institute of Advanced Industrial Science and Technol-
ogy, Side-channel Attack Standard Evaluation Board (SASEBO),
SASEBO-W (2012), available from 〈http://satoh.cs.uec.ac.jp/
SASEBO/en/board/sasebo-w.html〉.

[17] National Institute of Standards and Technology (NIST), Spe-
cial Publication 800-131A Revision 1, Transitions: Recommen-
dation for Transitioning the Use of Cryptographic Algorithms
and Key Lengths (2015), available from 〈https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf〉.

[18] National Institute of Standards and Technology (NIST), Fed-
eral Information Processing Standards Publication (FIPS) 197,
Advanced Encryption Standard (AES) (2001), available from
〈https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf〉.

[19] National Institute of Standards and Technology (NIST), Federal Infor-
mation Processing Standards Publication (FIPS) 198-1, The Keyed-
Hash Message Authentication Code (HMAC) (2008), available from
〈https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.198-1.pdf〉.

[20] National Institute of Standards and Technology (NIST), Federal
Information Processing Standards Publication (FIPS) 180-4, Se-
cure Hash Standard (SHS) (2015), available from 〈http://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf〉.

[21] Schneider, T., Moradi, A. and Güneysu, T.: Arithmetic addition over
boolean masking - towards first- and second-order resistance in hard-
ware, Malkin, T., Kolesnikov, V., Lewko, A.B. and Polychronakis,
M. (Eds.), Applied Cryptography and Network Security - 13th Inter-
national Conference, ACNS 2015, Revised Selected Papers, Lecture
Notes in Computer Science, Vol.9092, pp.559–578, Springer (2015).

[22] Won, Y.-S. and Han, D.-G.: Efficient conversion method from arith-

metic to boolean masking in constrained devices, Guilley, S. (Ed.),
Constructive Side-Channel Analysis and Secure Design - 8th Inter-
national Workshop, COSADE 2017, Revised Selected Papers, Lecture
Notes in Computer Science, Vol.10348, pp.120–137, Springer (2017).

Appendix

A.1 Arithmetic-to-Boolean Conversion based
on Biryukov et al.’s Addition

Based on the Biryukov et al.’s masked addition of Algorithm
3, we can derive an arithmetic-to-Boolean conversion. Algorithm
7 shows the conversion. It requires two random masks as ours
does.

Algorithm 7 Arithmetic-to-Boolean Conversion based on
Biryukov et al.’s Addition

Input: A, r ∈ {0, 1}k and n = max(�log2(k − 1)	, 1) such that A = x − r ∈ Z2k

Output: x′ such that x′ ⊕ r = A + r mod 2k

1: x2, y2 ← {0, 1}k
2: x1 = A ⊕ x2

3: y1 = r ⊕ y2

4: p1, p2 = SecXor2(x1, x2, y1, y2)

5: g1, g2 = SecAnd2(x1, x2, y1, y2)

6: g1, g2 = ((g1 ⊕ x2) ⊕ g2, x2)

7: for i := 1 to n − 1 do

8: h1, h2 = SecShift2(g1, g2, 2i−1)

9: u1, u2 = SecAnd2(p1, p2, h1, h2)

10: g1, g2 = SecXor2(g1, g2, u1, u2)

11: h1, h2 = SecShift2(p1, p,2i−1)

12: h1, h2 = ((h1 ⊕ x2) ⊕ h2, x2)

13: p1, p2 = SecAnd2(p1, p2, h1, h2)

14: p1, p2 = ((p1 ⊕ y2) ⊕ p2, y2)

15: end for

16: h1, h2 = SecShift2(g1, g,2n−1)

17: u1, u2 = SecAnd2(p1, p2, h1, h2)

18: g1, g2 = SecXor2(g1, g2, u1, u2)

19: x′ = A ⊕ 2g1 ⊕ 2g2

20: return x′

Yuichi Komano was born in 1978. He
received his M.S. and D.Sci. degrees from
Waseda University in 2003 and 2007, re-
spectively. He belongs to the Corporate
R&D center of Toshiba corporation since
2003. He has been engaged in the Infor-
mation Processing Society of Japan since
2003 and he has been a senior member

since 2016. His research interest includes the cryptography and
information security. He is a senior member of the IEICE, and a
member of the IACR, IEEE and ACM.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Hideo Shimizu was born in 1964. He
received his M.E. and D.E. degrees
from Kanazawa Institute of Technology,
Ishikawa, Japan, in 1990 and 1994, re-
spectively. He joined Toshiba Corporation
in 1994. From 1999 to 2000, he was a re-
searcher at the Information & Communi-
cation Security Project of Telecommuni-

cations Advanced Organization of Japan. He has been engaged
in cryptography and information security.

Hideyuki Miyake was born in 1976. He
received his B.E. degree in information
engineering from Tohoku University in
2000, and his M.S. degree from Japan Ad-
vanced Institute of Science and Technol-
ogy in 2002. He has been engaged in
the research on cryptography and infor-
mation security at the Corporate Research

and Development Center, Toshiba Corporation. He received the
SCIS paper award in 2003.

c© 2019 Information Processing Society of Japan

