Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

Detecting Unseen Malicious VBA Macros with NLP
Techniques

Mamoru MiMURA

1,a)

Hirova Mr1ural

Received: December 10, 2018, Accepted: March 5, 2019

Abstract: Inrecent years, the number of targeted email attacks which use Microsoft (MS) document files has been in-
creasing. In particular, malicious VBA (Visual Basic for Applications) macros are often contained in the MS document
files. Some researchers proposed methods to detect malicious MS document files. However, there are a few methods
to analyze malicious macros themselves. This paper proposes a method to detect unseen malicious macros with the
words extracted from the source code. Malicious macros tend to contain typical functions to download or execute the
main body, and obfuscated strings such as encoded or divided characters. Our method represents feature vectors from
the corpus with several NLP (Natural Language Processing) techniques. Our method then trains the extracted feature
vectors and labels with basic classifiers, and the trained classifiers predict the labels from unseen macros. Experimental
results show that our method can detect 89% of new malware families. The best F-measure achieves 0.93.

Keywords: VBA macro, machine learning, natural language processing technique, bag-of-words, Doc2vec, TFIDF

1. Introduction

In recent years, email has become one of the most popular com-
munication tools. This situation has led to targeted email attacks
becoming a big threat to society. A targeted email attack is a spe-
cific attack in which the attacker attempts to persuade a victim
to run specific action. Depending on the specific action, there
are two types of targeted email attacks. One is to open malicious
links and download a malicious program, and the other is to open
malicious attachments. Attackers attempt to earn credibility with
their victims through an eloquent mail text. Moreover, the at-
tackers convince victims to unknowingly download a malicious
file or click-through to a malicious site. According to a report
published by Sophos [1], malicious attachment files are used in
most targeted email attacks. The report shows that 85% of the
attached files are Microsoft Office (MS) document files. Further-
more, most of the MS document files contain malicious VBA (Vi-
sual Basic for Applications) macros. VBA is an implementation
of Microsoft’s programming language Visual Basic 6, and built
into most Microsoft Office applications. Malicious macros have
a long history. For example, the LOVELETTER worm, one of the
most famous malicious macro infected more than 45 million com-
puters, and some organizations suffered serious damage in 2000.
Subsequently, malicious macros gradually faded out. They grew
in popularity again with the rise of targeted email attacks. Macros
are a powerful tool to automate common tasks in MS document
files. However, malicious macros use this functionality to infect
the computer. In targeted attacks, attackers often use unseen mali-
cious macros which are not detected by anti-virus programs with
the latest definition. In general, anti-virus programs require virus

I National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan

¥ mim@nda.ac.jp

© 2019 Information Processing Society of Japan

pattern files, and the pattern files have to be updated. Most attack-
ers, however, obfuscate programs to evade detection. Therefore,
it is difficult to detect unseen malicious macros that contain new
malware families.

To detect unseen malicious macros, some previous methods
can be applied. For instance, Nissim et al. [2] analyzed the struc-
ture of docx files, and proposed a method to detect malicious
docx files. These previous methods detect malicious MS docu-
ment files. These methods, however, do not discriminate between
malicious macros and benign macros. Hence, if a MS document
file contains benign macros, these methods might detect the be-
nign macros as malicious ones. If the malicious MS document
file is camouflaged with the structure of a benign MS document
file, the attacker can probably evade the detection method. De-
tecting malicious macros themselves can overcome these weak-
nesses. However, there are a few methods to analyze malicious
macros themselves [3], [4]. Hence, there is room for improve-
ment on these methods.

This paper proposes a method to detect unseen malicious
macros themselves. Malicious VBA macros tend to contain typ-
ical functions to download or execute the main body, and ob-
fuscated strings such as encoded or divided characters. To in-
vestigate the source code, we focus on NLP (Natural Language
Processing) techniques. NLP techniques are usually used to an-
alyze natural languages as the name indicates. In this paper, we
presume VBA macros are written in a natural language, and at-
tempt to learn the difference between benign and malicious VBA
macros with Doc2vec. Doc2vec is an unsupervised algorithm that
learns fixed-length feature representations from variable-length
pieces of texts. Then we input the extracted feature vectors with
the label into supervised learning models to classify benign and
malicious VBA macros. The key idea of this research is reading

Electronic Preprint for Journal of Information Processing Vol.27

VBA macros as a natural language. To the best of our knowl-
edge, Doc2vec has never been applied to detecting malicious
VBA macros. Doc2vec enables extracting feature vectors from
VBA macros automatically. That is why we focus on Doc2vec.

Our method uses some NLP techniques to investigate the
macro’s source code. Our method divides the source code into
words, and represents feature vectors from the corpus with sev-
eral NLP techniques. Term Frequency (TF) and Term Frequency-
Inverse Document Frequency (TFIDF) are used to select im-
portant words for classification. TF is a simple method which
weights the value corresponding to frequency of words in a cor-
pus. TFIDF is a more sophisticated method which weights a rep-
resentative word in a corpus. Bag-of-Words (BoW) and Doc2vec
represent feature vectors from the corpuses. BoW is a basic
method that represents vectors corresponding to the frequency of
the words. Doc2vec is a more complicated model that represents
vectors from the context of the documents. Our method then uses
the extracted feature vectors and labels, and trains basic clas-
sifiers, Support Vector Machine (SVM), Random Forests (RF)
and Multi Layer Perceptron (MLP). Finally, the trained classi-
fiers predict the labels from unseen macros. Experimental results
show that our method can detect 89% of new malware families.
The best F-measure achieves 0.93.

This paper addresses 4 research questions as follows.

(1) Does our method detect unseen malware families?

(2) Does Doc2vec represent feature vectors effectively?

(3) What is the best combination of these NLP techniques and
classifiers?

(4) Does TFIDF select important words to classify macros?

In order to address these questions, we conduct some experi-
ments. Based on the results, this paper makes the following con-
tributions:

(1) Propose a method to detect unseen malicious macros which
contain new malware families [5].

(2) Doc2vec is effective in classifying malicious macros [6].

(3) Linear classifiers are effective for Doc2vec [6].

(4) Reducing words using Term Frequency is effective for clas-
sifying macros [6].

We will introduce the structure of this paper. Section 2 intro-
duces related work and reveals the differences between this pa-
per and other relevant study. Section 3 describes malicious VBA
macros, and Section 4 presents some NLP techniques. Section 5
proposes the method, and Section 6 conducts experiments. Sec-
tion 7 discusses the results, and finally, describes conclusion.

2. Related Work

In targeted email attacks, attackers use attachment files which
contain malicious codes. Methods to detect these malicious files
can be categorized into static analysis and dynamic analysis. Our
method does not execute the MS document files or VBA macros.
Therefore, we focus on static analysis in this section. The at-
tachment files are mainly categorized into executable files and
document files. Our method investigates document files. The
document files are roughly categorized into MS document files
and PDF files. VBA macros are embedded in MS document files.
We will show the details in the followings.

© 2019 Information Processing Society of Japan

2.1 MS Document File

Nissim et al. proposed a framework (ALDOCX) that classi-
fies malicious docx files using various machine learning classi-
fiers [2]. ALDOCX creates feature vectors from the path struc-
ture of docx files. Naser et al. proposed a method to detect mali-
cious docx files [7]. The method parses the structure of docx files,
and analyzes suspicious keywords. These methods do not support
Compound File Binary (CFB) file format. Our method, however,
supports MS document files which conform to Compound File
Binary (CFB) file format and Office Open XML (OOXML) file
format.

Otsubo et al. proposed a tool (O-checker) to detect malicious
document files (e.g., rtf, doc, xls, pps, jtd, pdf) [8]. O-checker
detects malicious document files which contain executable files,
using deviation of file format specifications. Boldewin imple-
mented a tool (OfficeMalScanner) to detect MS document files
which contain malicious shellcodes or executable files [9]. The
tool scans entirely malicious files, and detects features of strings
of Windows API, shellcode patterns, and embedded OLE data.
This tool scores each document corresponding to each of the fea-
tures. If the scores are more than a threshold, this tool judges
the file as malicious. Mimura et al. proposed a tool to deobfus-
cate embedded executable files in a malicious document file (e.g.,
doc, rtf, xIs, pdf) and detect them [10]. These methods focused
on embedded malicious executable files or shellcodes, and do not
detect malicious macros. Our method on the other hand, detects
malicious macros.

2.2 VBA macro

There are a few methods to detect malicious macros. Bearden
et al. proposed a method of classifying MS Office files containing
VBA macros as malicious or benign using the K-Nearest Neigh-
bors machine learning algorithm, feature selection, and TFIDF
where p-code opcode n-grams compose the file features [3]. This
study achieved 96.3% file classification accuracy. However, the
samples were only 40 malicious and 118 benign MS Office files.
This paper provides more reliable results with thousands of dis-
tinct samples. Kim et al. focused on obfuscated source code and
proposed a method to detect malicious macros with a machine
learning technique [4]. This method extracts feature vectors from
obfuscated source code. Therefore, this method might not detect
malicious VBA macros which are not obfuscated. Our method
uses not only features in obfuscated macros, but also other fea-
tures.

2.3 PDF File

Some researchers deal with the detection of malicious PDF
files. For instance, Igino Corona et al. proposed a method to
classify malicious files according to the frequency of suspicious
reference APIs[11]. Liu et al. proposed a method which ana-
lyzed obfuscated scripts to classify malicious PDF files [12]. This
method uses the characteristics of obfuscation, which is com-
mon to our method. These methods classify malicious PDF files.
Our method investigates MS document files and detects malicious
macros.

Electronic Preprint for Journal of Information Processing

Table 1 Typical functions in malicious macros.

Downloader
CreateObject function
Shell function
SendKey statement
Declare statement

Dropper
CustomProperties collection

3. Malicious VBA Macro

3.1 Behavior

This section describes the behavior of malicious macros, and
reveals their features. Attackers use a slick text of the type that
the victim expects, and induces the victim to open an attachment.
When the victim opens the attachment and activates the macro,
the macro compromises the computer. There are two types of
malicious macros, Downloader and Dropper.

Downloader is a malicious macro which forces the victims
computer to download the main body. When Downloader con-
nects to the server, it tends to use external applications. Finally,
the computer downloads and installs the main body from the
server.

In contrast, Dropper contains the main body in itself. When
a victim opens the attachment of a phishing email, Dropper ex-
tracts the code and executes it as an executable file. The differ-
ence between Dropper and Downloader is that Dropper contains
the main body in itself. Therefore, Dropper can infect victims
without communicating with external resources.

Malicious macros tend to contain functions to download or ex-
tract the main body in the source code. Hence, our method at-
tempts to detect these features.

3.2 Typical Function

To detect these features, we focus on typical functions de-
scribed in the source code. Table 1 shows the typical func-
tions which are frequently described in Downloader and Drop-
per. CreateObject function returns a temporary object which
is part of an external application function. For example, if
CreateObject function parses “InternetExplorer.Application”
as an argument, the function accesses Internet Explorer. Shell
function enables to execute an argument as a file name. SendKey
statement and Declare statement also appear in the Downloader.
SendKey statement sends keystrokes to the active window as if
typed at the keyboard. Attackers use SendKey statement with
Shell function to execute any commands. Declare statement is
used to declare references to external procedures in a dynamic-
link library. The Declare statement allows accessing a variety
of functions. CustomProperties represents additional informa-
tion, and the information can be used as metadata. Attackers fre-
quently use CustomProperties collection to conceal malicious
binary code.

3.3 Obfuscation

Most malicious macros are obfuscated to prevent analysis.
Therefore, capturing obfuscated strings is an effective method
for detecting malicious macros. We will show some obfuscation
techniques of the source code.

Table 2 shows typical obfuscation techniques in malicious

© 2019 Information Processing Society of Japan

Vol.27

Table 2 Typical obfuscation methods.

summary
Replace statement name, etc.
Encode and decode with ASCII code
Use XOR

Split characters

Use reflection functions

DR W~ 3

macros. Method 1 replaces class names, function names et al.
with random strings. The random strings tend to be more than
20 characters. Method 2 encodes and decodes strings with ASCII
code. VBA macros provide AscB function and ChrB function.
AscB function encodes characters to ASCII codes. ChrB func-
tion decodes ASCII codes to characters. Method 3 encodes and
decodes characters by XOR operation. Method 4 divides a string
into characters. The divided characters are assigned to variables.
By adding together those variables, the original string is restored.
Method 5 uses reflection functions which execute the strings as
instructions. These strings contain function names, class names
and method names. Attackers often conceal malicious functions
with these techniques.

4. NLP Technique

4.1 Bag-of-Words

BoW is a basic method to extract feature vectors from a doc-
ument. BoW represents the frequency of a word in a document,
and extracts matrix from documents. In this matrix, each row cor-
responds to each document, and each column corresponds to each
unique word in documents. This method does not consider word
order or meaning. In this method, the number of unique words
corresponds to the dimension of matrix. Thus, the more num-
ber of unique words increases, the more the number of matrix
dimensions increases. Therefore, methods to adjust the number
of dimensions are required. To adjust the number of dimensions,
important words have to be selected.

4.2 Term Frequency-Inverse Document Frequency

Term Frequency-Inverse Document Frequency (TFIDF) is
one of the most popular methods for selecting important words.
We will introduce how a T FIDF value is calculated.

D
X lo
&2 document_frequency;

TFIDF;; = frequency; ;

The frequency; ; (TF) is the frequency of a word i in a docu-
ment j. The document_frequency; is the frequency of documents
in which the word i appears. The IDF is the logarithm of a value
in which D (the number of total documents) is divided by the
document_frequency;. T FIDF value is a value which is a prod-
uct of TF and IDF. Finally, TFIDF values are normalized. In
this model, if a word appears rarely in an entire corpus and ap-
pears frequently in a document, the TFIDF value increases.

4.3 Doc2vec

Doc2vec [13] is an extension of Word2vec [14]. First, we will
introduce Word2vec. Word2vec is a model that is used to rep-
resent word embeddings. Word2vec is a two-layer neural net-
work that is trained to reconstruct the linguistic context of words.
Word2vec has a hidden layer and an output layer. The input of

Electronic Preprint for Journal of Information Processing Vol.27

Word2vec is a large corpus of documents, and Word2vec rep-
resents the input in feature vectors. The number of dimensions
of the feature vector is typically several hundred. Each unique
word in the corpus is assigned a corresponding element of the
feature vector. Word vectors are positioned in the vector space
such that common contexts in the corpus are positioned in close
proximity to one another in the space. This is based on the prob-
ability of words co-occurrence around a word. Word2vec has
two algorithms, Continuous Bag-of-Words (CBoW) and Skip-
gram. CBoW is an algorithm which predicts a centric word from
surrounding words. Skip-gram is an algorithm which predicts
surrounding words from a centric word. Word2vec enables ob-
taining similarity of words, and also predict equivalent words.
Doc2vec has two algorithms, Distributed Memory (DM) and Dis-
tributed Bag-of-Words (DBoW). DM and DBoW are extensions
of CBoW and Skip-gram respectively. Doc2vec enables to ob-
tain similarity of documents, and also extract feature vectors from
documents.

5. Proposed Method

5.1 Outline

We proposes a method to detect unseen malicious macros with
NLP techniques. Our method requires a language model and a
classifier to detect malicious macros. Figure 1 shows an outline
of the proposed method.

In the training phase, our method requires both malicious and
benign samples with the labels. Step 1 extracts words from la-
beled macros in MS document files. Step 2 selects important
words and constructs a language model with the corpus. Then
the extracts words are converted into feature vectors with the lan-
guage model. Step 3 trains classifiers with the extracted feature
vectors and labels.

In the test phase, our method investigates unlabeled samples.
Step 1 extracts words from unknown macros in MS document
files. Step 2 converts extracted words into feature vectors with
the language model. Step 3 classifies the extracted feature vectors
with the trained classifiers, and the predicted labels are obtained.

5.2 Extract Word

Our method extracts macros from MS document files with
Olevba[15]. Olevba is open source software that can extract
macros from MS document files. Then, our method divides the
source code into words. Our method uses some special characters
as the delimiter. Table 3 shows the special characters.

Thereafter, our method replaces some patterns. Table 4 shows
the patterns.

These patterns frequently appear in malicious macros. Be-
cause most malicious macros are obfuscated with these meth-
ods [4], [6]. If our method does not replace these patterns, each
word is handled as each feature respectively. These words, how-
ever, have a common context or meaning. Our method replaces
these patterns into single words to improve accuracy.

5.3 Language Model

In the training phase, our method selects important words
based on the TF or TFIDF values. Then, our method constructs

© 2019 Information Processing Society of Japan

il
33

Training Phase : Test Phase
L= = = : “_ = Unknown
Benign 1 ‘
! |
| Stepl: Extract words | I | Stepl: Extract words |
1
- !
: 5 a la " 1
Step2: Construct a language model Step2: Extract feature vectors
and extract feature vectors |
] ! i
Step3: Train classifiers T Step3: Detect malicious macros
1
! v
I
1

1 Benign Malicious
Fig. 1 An outline of the proposed method.

Table 3 Special characters as the delimiter.

special character name special character name
” double quote + plus
’ single quote / slash
{} square bracket & and
0 round bracket % percentage
, comma ¥ yen sign
. period $ dollar sign
* asterisk # sharp
- hyphen @ at mark

Table 4 The patterns to replace.

method pattern replaced word
1 Hexadecimal 1 (e.g., 0xXX) Oxhex
2 Hexadecimal 2 (e.g., &HXX) andhex
3 Asc, AscB, AscW asc
4 A string of 20 or more characters longchr
5 A number of 20 digits or more longnum
6 Element of array elementofarray

a language model with the selected words. To construct a lan-
guage model, our method uses BoW and Doc2vec. Thereafter,
our method converts the words into feature vectors with the lan-
guage model. In the test phase, our method uses the constructed
language model, and converts the words extracted from unknown
macros. Our method uses gensim-2.0.0 [16] to implement BoW
and Doc2vec. Gensim has many functions related to natural lan-
guage processing techniques. The Doc2vec model is trained 30
epochs with the DBoW algorithm. The number of dimensions is
100. These parameters are determined through a trial and error
process.

5.4 Classifier

Our method uses the extracted feature vectors and labels, and
trains the classifiers, Support Vector Machine (SVM), Random
Forests (RF), and Multi Layer Perceptron (MLP). These classi-
fiers are fundamental and often used for this field. Our method
uses scikit-learn-0.18.1[17] to implement SVM, RF, and MLP.
Scikit learn is a machine learning library and has many classi-
fication algorithms. These classifiers use default values for all
parameters.

6. Experiment

6.1 Environment

This section conducts experiments to evaluate our method. Ta-
ble 5 shows the environment. We implemented our method with
Python 2.7 in this environment.

6.2 Dataset
To evaluate our method, we use actual malicious and benign

Electronic Preprint for Journal of Information Processing

Table 5 Environment.

CPU IntelCorei7 (3.30 GHz)
memory 32GB
oS Windows8.1Pro

Table 6 The numbers of samples.

2015’s samples 2016’s samples
(Training) (Test)
benign | malicious | benign | malicious
622 515 1,200 641

Table 7 The rates of malware families in 2015°s samples.

family rate
1 097M/Donoft 78.0%
2 097M/Adnel 5.2%
3 097M/Bartallex 4.3%
4 W97M/Adnel 3.3%
5 X97M/Donoff 2.8%
6 097M/Madeba 0.9%
7 0O97M/Farheyt 0.9%
8 None 0.9%
9 097M/Daoyap 0.9%
10 | W97M/Bartallex | 0.6%

Table 8 The rates of malware families in 2016’s samples.

family rate
1 097M/Donoff 65.4%
2 New malware families | 14.6%
3 None 7.1%
4 097M/Madeba 5.3%
5 W97M/Thus 3.4%
6 WO97M/Marker 1.7%
7 097M/Farheyt 1.3%
8 097M/Macrobe 0.4%
9 W97M/Adnel 0.2%
10 097M/Bartallex 0.2%

macros. Table 6 shows the numbers of samples.

This dataset was collected and provided by Virus Total [18].
We selected all VBA macros whose file extensions were doc,
docx, xls, xIsx, ppt, and pptx. These samples were uploaded to
Virus Total between 2015 and 2016 for the first time. The mali-
cious samples are judged malicious by a rate of more than 50%
anti-virus vendors. The benign samples are judged benign by the
whole anti-virus vendors. We investigated the rates in Septem-
ber 2018. This means that anti-virus vendors have plenty of time
for analyzing. Therefore, we assume the rates are partially re-
liable. However, some malicious VBA macros for APT attacks
might not be shared with all anti-virus vendors. Hence, we chose
these thresholds for sample selection. There is no overlap in these
specimens. We use 2015’s samples as training data and 2016’s
samples as test data in the following experiments. In the follow-
ing experiments, we assume that the present time is the end of
2015. In the end of 2015, 2016’s samples were unseen samples.
At that time, many anti-virus programs with the latest definition
probably could not detect these samples. Because, anti-virus pro-
grams need samples to update the definition, and these samples
were uploaded during 2016 for the first time. Subsequently, these
samples had been analyzed and finally labeled.

Table 7 and Table 8 illustrate the malware families and
rates in the datasets. These malware families are defined by
Microsoft Defender [19]. The representative malware family is
097M/Donoff in the both datasets. In comparison with 2015’s
samples, 2016’s samples contain 14.6% of new malware families.

© 2019 Information Processing Society of Japan

Vol.27

Table 9 Confusion Matrix.

actual value
true | false
predicted | positive TP FP

result false FN TN

6.3 Evaluation Measure
To evaluate accuracy, this paper uses Precision, Recall, and F-
measure as metrics. These metrics are defined as follows.

i TP
7 = —
ecision TP " FP
Recall = — L
AT TP FN

2Recall X Precision

F — measure = —
Recall + Precision

Table 9 shows the confusion matrix.

F-measure is useful metrics and considers both the precision
and recall. Since this paper does not investigate the details of
detection rates deeply, this paper focuses on F-measure.

6.4 Experiment
To evaluate our method, we conduct the four following exper-
iments. Each experiment corresponds to each research question
described in Section 1.
Experiment 1
After extracting words from both benign and malicious
macros, our method selects the important words. To select
these words, our method has 3 options as follows.
e Select words from malicious macros
e Select words from benign macros
e Select words from both macros
Note that the selected words are extracted from both benign
and malicious macros in any options. In this experiment, we
attempt these 3 options with BoW and SVM. To adjust the
number of dimensions, important words are selected with
TF. The purpose of this experiment is investigating the most
effective method to extract words and construct a corpus. In
the following experiments, our method uses the best method
to construct a corpus.
Experiment 2
Our method replaces some patterns into single words. To
evaluate the effectiveness, our method has 2 options as fol-
lows.
e Replace some patterns into single words (Replaced)
e Do not replace (Unreplaced)
In this experiment, we attempt these methods with BoW and
SVM. To adjust the number of dimensions, important words
are selected with TF. The purpose of this experiment is eval-
uating the effectiveness of the replacement process.
Experiment 3
This experiment compares the combinations of the language
models and classifiers. In this experiment, we attempt BoW
and Doc2vec as the language models, SVM, RF, and MLP
as the classifiers. To adjust the number of dimensions, im-
portant words are selected with TF. The purpose of this
experiment is investigating the best combination of the lan-
guage models and classifiers. In the following experiment,

Electronic Preprint for Journal of Information Processing Vol.27

F-measure
o
»

0 4000 8000 12000 16000 20000 24000

Dimension

—%—Malicious = ®= Benign - Both

Fig. 2 The classification accuracy of the methods with BoW and SVM.

°

°

°

F-measure
e o © o o o

0 4000 8000 12000 16000 20000 24000

Dimension

—®—Replaced X+ Unreplaced

Fig.3 The classification accuracy of the replaced method and unreplaced
method with BoW and SVM.

our method uses the best combination.

Experiment 4
The final experiment compares the methods to select impor-
tant words. TF and TFIDF are used to adjust the number of
dimensions. The purpose of this experiment is investigating
the most effective method to select important words.

6.5 Result

Experiment 1
Figure 2 shows the classification accuracy of the 3 meth-
ods with BoW and SVM. The horizontal axis corresponds
to the dimensions, and the vertical axis corresponds to the
F-measure.
As aresult, extracting words from malicious macros is effec-
tive. Therefore, our method uses this method to construct a

F-measure

0 4000 8000 12000 16000 20000 24000

Dimension

e BoW —@— Doc2vec

Fig. 4 The classification accuracy of the SVM with BoW and Doc2vec.

F-measure

0 4000 8000 12000 16000 20000 24000
Dimension

e BoW —@— Doc2vec

Fig.5 The classification accuracy of the RF with BoW and Doc2vec.

F-measure

0 4000 8000 12000 16000 20000 24000
Dimension

i BoW —@— Doc2vec

Fig. 6 The classification accuracy of the MLP with BoW and Doc2vec.

vertical axis corresponds to the F-measure.

corpus in the following experiments.

Experiment 2

Figure 3 shows the classification accuracy of the replaced
method and unreplaced method with BoW and SVM. The
horizontal axis corresponds to the dimensions, and the verti-
cal axis corresponds to the F-measure.

As a result, replacing these patterns into single words is ef-
fective. Therefore, our method replaces these patterns into
single words in the following experiments.

Experiment 3

Figure 4, Fig. 5, and Fig. 6 show the classification accuracy
of the combinations of the language models and classifiers.
The horizontal axis corresponds to the dimensions, and the

© 2019 Information Processing Society of Japan

Overall, the F-measure of Doc2vec is higher than BoW in
Fig.4 and Fig.6. In contrast, the F-measure of BoW is
higher than Doc2vec in Fig. 5. In Fig. 6, the best F-measure
Moreover, the F-measure with MLP and
Doc2vec is stable. The combination of SVM and Doc2vec is
also stable and quite good. Therefore, we conclude the best

achieves 0.93.

combination is MLP and Doc2vec.

Experiment 4

Figure 7 shows the classification accuracy of the methods
with TF and TFIDF. The horizontal axis corresponds to
the dimensions, and the vertical axis corresponds to the F-
measure.

As a result, TF is more effective than TFIDF. The best F-

Electronic Preprint for Journal of Information Processing Vol.27

06

F-measure
°

04

0 4000 8000 12000 16000 20000 24000
Dimension

—@—TF w3+ TFIDF

Fig. 7 The classification accuracy of the methods with TF and TFIDFE.

measure achieves 0.93.

7. Discussion

7.1 Detecting Unseen Malware Families

We investigated new malware families in the 2016’s samples.
Table 10 shows the families.

Our method detected 89% of the new malware families. There-
fore, our method can detect unseen malicious macros which con-
tain new malware families. The main functions of malicious
macros are downloading and executing the main body. New mal-
ware samples have to contain these functions to some extent. Be-
cause, they require the main body which has many sophisticated
functions. Therefore, our method can effectively detect new mal-
ware samples.

Our method could not detect some malicious macros. These
malicious macros are not obfuscated. Hence, one possible reason
is that these macros do not contain the typical patterns described
in Section 3. These macros contain suspicious SQL commands
and URLs. These suspicious words do not frequently occur in
benign macros. If we replace these suspicious words into single
words, the detection rate might be improved.

7.2 Frequent Words in Malicious Macros

In the first experiment, extracting words from malicious
macros was the most effective. To reveal the reason, Table 11
shows the frequent words in malicious macros. The ratio is cal-
culated by dividing “the number of samples which contain the
word” by “the number of samples”.

The left half of the table contains frequent words in malicious
macros. The right half corresponds to the word frequency in be-
nign macros. Malicious macros include many of these frequent
words. In contrast, benign macros rarely include these words ex-
cept some words. Therefore, classifiers can easily discriminate
between malicious and benign macros. This also explains why
TFIDF was less effective than TF to classify macros. TFIDF val-
ues increase, if a word appears rarely in an entire corpus. These
frequent words, however, frequently appear in malicious macros.
Hence, these TFIDF values decrease. That is why TFIDF was
less effective than TF. Furthermore, these frequent words con-
tain some replaced words such as “elementofarray” or “longchr”.
This might be one possible reason that replacing some patterns
into single words was effective.

© 2019 Information Processing Society of Japan

Table 10 The new malware families in the 2016’s samples.

family family
1 JS/Swabfex 15 WO97M/Nsi
2 097M/Zinunlate 16 | X97M/ShellHide
3 097M/Vibro 17 W97M/Qncwan
4 X97M/Mailcab 18 WI97M/Groov
5 W97M/Avosim 19 W97M/Agent
6 X97M/Laroux 20 Win32/Bitrep
7 097M/Powmet 21 ‘W97M/Walker
8 XM/Laroux 22 ‘W97M/Broxoff
9 097M/Pyordonofz | 23 Win32/Occamy
10 W97M/Xaler 24 Win32/Skeeyah
11 097M/Emulasev 25 | O97M/Prikormka
12 097M/Bancarobe | 26 W97M/Ursnif
13 Gen 27 Win32/Tiggre
14 097M/DarkSnow 28 097M/Pollwer

Table 11 Frequent words in malicious macros.

word ratio in malicious | ratio in benign
elementofarray 99.0% 43.0%
andchr 93.9% 28.0%
next 90.9% 27.9%
function 85.1% 18.3%
string 83.3% 25.7%
len 79.0% 14.7%
public 77.5% 17.7%
longchr 73.7% 19.7%
createobject 73.0% 6.6%
error 73.0% 20.7%
byte 56.1% 1.5%
callbyname 51.3% 0.1%

7.3 The Best Combination of the NLP Techniques and Clas-
sifiers

In the third experiment, Doc2vec was more effective than BoW
for classifying macros. This result might have depended on the
word order or meaning. The F-measure with MLP and Doc2vec
was stable, and the best F-measure achieved 0.93. The combina-
tion of SVM and Doc2vec was also stable and quite good. MLP
and SVM have something in common. These classifiers perform
quick pattern classification by linear separation. Therefore, we
conclude that Doc2vec and linear classifiers are effective for clas-
sifying macros.

In the first and second experiments, we used BoW and SVM,
which are the most basic and fundamental algorithms. We did not
evaluate with RF, MLP, and Doc2vec. Hence, there is some possi-
bility that these combinations might achieve better results. SVM,
however, obtained the most stable results. Therefore, it appears
that the rough results make little difference.

7.4 Comparison

The purpose of our method is detecting unseen malicious VBA
macros. In practical use, many methods which contain our
method can only use previous samples for training, and the test
samples should not be the previous samples. If test samples con-
tain previous samples, it is not possible to evaluate the perfor-
mance appropriately. Therefore, appropriate experimental condi-
tions with enough samples are required.

Bearden et al. proposed a method to detect malicious VBA
macros with machine learning and NLP techniques [3]. Their
method uses traditional machine learning and NLP techniques,
and achieved 96.3% classification accuracy. However, the sam-
ples were only 40 malicious and 118 benign MS Office files. To

Electronic Preprint for Journal of Information Processing Vol.27

evaluate their method in practical use, more samples are required.

Kim et al. proposed a method to detect malicious VBA macros
Their
method might not be able to detect non-obfuscated malicious

with feature vectors from obfuscated source code [4].

VBA macros. Our method uses not only features in obfuscated
macros, but also other features. Moreover, they conducted cross-
validation with thousands of samples to evaluate their method.
The details of the samples are not described in their paper. How-
ever, in reality, their method can only use previous samples for
training. Hence, cross-validation is not appropriate in this case.
Their method might not detect unseen malicious macros which
contain new malware families. We evaluated our method with
thousands of samples, and used only previous samples for train-
ing. We described details of our samples, and indicated that our
method could detect unseen malicious macros which contain new
malware families.

8. Conclusion

In this paper, we propose a method to detect unseen malicious
macros themselves. To investigate the source code, we focus
on NLP techniques. Our method divides the source code into
words, and extracts feature vectors from the corpus with BoW
and Doc2vec. Our method selects important words with TF and
TFIDF to improve accuracy. Then, our method uses basic clas-
sifiers to detect unseen macros. Experimental results show that
our method can detect 89% of new malware families, and the
best F-measure achieves 0.93. Doc2vec represents feature vec-
tors effectively, and the best combination of NLP techniques and
classifiers is Doc2vec and MLP. Contrary to our expectations, TF
is more effective than TFIDF in classifying macros.

In this paper, we used both malicious and benign samples ob-
tained from Virus Total. We assumed these samples represented
all VBA macros on the Internet. We selected the whole VBA
macros whose file extensions were doc, docx, xls, xIsx, ppt, and
pptx. Hence, we believe these malicious samples mostly repre-
sent the population of malware samples. More benign samples,
however, might have to be collected to represent the population.
For future work, we should evaluate our method with other sam-
ples. To derive more reliable results, samples should be obtained
from other sources. More latest malware samples should be in-
vestigated. However, as we mentioned previously, these latest
samples should be analyzed on a long-term basis. It seems to
take more time to label precisely. Developing a practical detec-
tion system is another task for future work.

References

[1] Wolf in sheep’s clothing: A SophosLabs investigation into delivering
malware via VBA, available from ¢https://nakedsecurity.sophos.com/
2017/05/31/wolf-in-sheeps-clothing-a-sophoslabs-investigation-into-
delivering-malware-via-vbay/).

[2] Nissim, N., Cohen, A. and Elovici, Y.: ALDOCX: Detection of
Unknown Malicious Microsoft Office Documents Using Designated
Active Learning Methods Based on New Structural Feature Extrac-
tion Methodology, IEEE Trans. Information Forensics and Security,
Vol.12, No.3, pp.631-646 (2017).

[3] Bearden, R. and Lo, D.C.-T.: Automated microsoft office macro mal-
ware detection using machine learning, 2017 IEEE International Con-
ference on Big Data, BigData 2017, pp.4448-4452, IEEE (2017) (on-
line), available from (http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=8241556).

© 2019 Information Processing Society of Japan

[4]

[5]

[6]

[7]

[8]

[91
[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]
[19]

Kim, S., Hong, S., Oh, J. and Lee, H.: Obfuscated VBA Macro De-
tection Using Machine Learning, DSN, pp.490-501, IEEE Computer
Society (2018) (online), available from (http://ieeexplore.ieee.org/xpl/
mostRecentlssue.jsp?punumber=8415926).

Miura, H., Mimura, M. and Tanaka, H.: Discovering New Malware
Families Using a Linguistic-Based Macros Detection Method, 2018
Sixth International Symposium on Computing and Networking Work-
shops (CANDARW), pp.431-437 (online), DOI: 10.1109/
CANDARW.2018.00085 (2018).

Miura, H., Mimura, M. and Tanaka, H.: Macros Finder: Do You Re-
member LOVELETTER?, Proc. Information Security Practice and
Experience - 14th International Conference, ISPEC 2018, pp.3—18
(online), DOI: 10.1007/978-3-319-99807-7_1 (2018).

Naser, A., Hjouj Btoush, M. and Hadi, A.: Analyzing and Detect-
ing Malicious Content: DOCX Files, International Journal of Com-
puter Science and Information Security (IJCSIS), Vol.14, pp.404—-412
(2016).

Otsubo, Y., Mimura, M. and Tanaka, H.: O-checker: Detection of Ma-
licious Documents through Deviation from File Format Specifications,
Black Hat USA (2016).

Boldewin, F.: Analyzing MSOffice malware with OfficeMalScanner,
30th July (2009).

Mimura, M., Otsubo, Y. and Tanaka, H.: Evaluation of a Brute Forcing
Tool that Extracts the RAT from a Malicious Document File, AsiaJ-
CIS, IEEE Computer Society, pp.147-154 (2016) (online), available
from (http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=
7781470).

Corona, I., Maiorca, D., Ariu, D. and Giacinto, G.: LuxOR: Detec-
tion of Malicious PDF-embedded JavaScript code through Discrimi-
nant Analysis of API References, Proc. 2014 Workshop on Artificial
Intelligent and Security Workshop, AISec 2014 (2014), Dimitrakakis,
C., Mitrokotsa, A., Rubinstein, B.I.P. and Ahn, G.-J. (Eds.), pp.47-57,
ACM (2014) (online), available from ¢http://dl.acm.org/citation.
cfm?id=2666652).

Liu, D., Wang, H. and Stavrou, A.: Detecting Malicious Javascript
in PDF through Document Instrumentation, DSN, pp.100-111, IEEE
Computer Society (2014) (online), available from (http://ieeexplore.
ieee.org/xpl/mostRecentIssue.jsp?punumber=69001 16; http://www.
computer.org/csdl/proceedings/dsn/2014/2233/00/index.html).

Le, Q.V. and Mikolov, T.: Distributed Representations of Sentences
and Documents, Proc. 31th International Conference on Machine
Learning, ICML 2014, pp.1188-1196 (2014) (online), available from
(http://jmlr.org/proceedings/papers/v32/le14.html).

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G.S. and Dean, J.:
Distributed Representations of Words and Phrases and their Com-
positionality, Advances in Neural Information Processing Systems
26: Proc. 27th Annual Conference on Neural Information Process-
ing Systems 2013, pp.3111-3119 (2013) (online), available from
(http://papers.nips.cc/paper/5021-distributed-representations-of-
words-and-phrases-and-their-compositionality).

olevba, available from (https://github.com/decalage2/oletools/wiki/
olevba).

gensim topic modelling for humans, available from
(https://radimrehurek.com/gensim/).

scikit-learn Machine Learning in Python, available from
(https://scikit-learn.org/).

Virus Total, available from (https://www.virustotal.com/).

Windows Defender Antivirus, available from (https://www.microsoft.
com/en-us/windows/windows-defender/).

Electronic Preprint for Journal of Information Processing Vol.27

Mamoru Mimura received his B.E. and
M.E. in Engineering from National De-
fense Academy of Japan, in 2001 and
2008 respectively. He received his Ph.D.
! in Informatics from the Institute of Infor-

mation Security in 2011 and M.B.A. from
‘ . Hosei University in 2014. During 2001—
2017, he was a member of the Japanese

Maritime Self Defense Forces. During 2011-2013, he was with
the National Information Security Center. Since 2014, he has

been a researcher in the Institute of Information Security. Since
2015, he has been with the National center of Incident readiness
and Strategy for Cybersecurity. Currently, he is an Associate Pro-
fessor in the Department of C.S., National Defense Academy of
Japan.

Hiroya Miura received his B.E. and
M.E. in Engineering from National De-
fense Academy of Japan, in 2013 and
2019 respectively. Currently, he is a mem-
ber of the Japanese Ground Self Defense
Forces.

© 2019 Information Processing Society of Japan

