
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

Using Seq2Seq Model to Detect Infection
Focusing on Behavioral Features of Processes

Shun Tobiyama1,a) Yukiko Yamaguchi2,b) Hirokazu Hasegawa2,c)

Hajime Shimada2,d) Mitsuaki Akiyama1,e) Takeshi Yagi3,f)

Received: November 26, 2018, Accepted: June 11, 2019

Abstract: Sophisticated cyber-attacks intended to earn money or steal confidential information, such as targeted at-
tacks, have become a serious problem. Such attacks often use specially crafted malware, which utilizes the art of
hiding such as by process injection. Thus, preventing intrusion using conventional countermeasures is difficult, so a
countermeasure needs to be developed that prevents attackers from reaching their ultimate goal. Therefore, we pro-
pose a method for estimating process maliciousness by focusing on process behavior. In our proposal, we first use
one Seq2Seq model to extract a feature vector sequence from a process behavior log. Then, we use another Seq2Seq
model to estimate the process maliciousness score by classifying the obtained feature vectors. By applying Seq2Seq
models stepwise, our proposal can compress behavioral logs and extract abstracted behavioral features. We present
an experimental evaluation using logs when actual malware is executed. The obtained results show that malicious
processes are classified with a highest Areas Under the Curve (AUC) of 0.979 and 80% TPR even when the FPR is
1%. Furthermore, the results of an experiment using the logs when simulated attacks are executed show our proposal
can detect unknown malicious processes that do not appear in training data.

Keywords: malware, machine-learning, Seq2Seq model

1. Introduction

E-crimes such as cyber-attacks have become a serious problem
for Internet users. Many recent attacks are aimed at acquiring
money, thus attackers are using more sophisticated techniques.
One of the most common examples is targeted attacks. In these at-
tacks, organized attackers first draw up a strategy optimized for a
target to achieve the attack’s purpose, and then assail the target in
various ways in accordance with this strategy. The overall attack
is difficult to figure out from individual indicators, so some mod-
els divide the attack into stages [1], [2]. According to the model
of the Information-technology Promotion Agency (IPA) of Japan,
targeted attacks are divided into five stages [1]. In the first stage,
the attackers draw up a careful plan. At this stage, they collect in-
formation of the target by using social-engineering or reconnais-
sance malware [3]. Then in the second stage, they infiltrate the
target using targeted e-mail attacks, watering hole attacks, and
so on. At this stage, multiple kinds of malware are used, such
as installing more sophisticated malware along with decoy mal-
ware, like Droppers or Trojans, on infected machines by execut-
ing document files containing malicious macros or scripts. Once

1 NTT Secure Platform Laboratories, Musashino, Tokyo 180–8585, Japan
2 Nagoya University, Nagoya, Aichi 464–8601, Japan
3 NTT Security Japan, Chiyoda, Tokyo 101–0021, Japan
a) syun.tobiyama.nt@hco.ntt.co.jp
b) yamaguchi@itc.nagoya-u.ac.jp
c) hasegawa@icts.nagoya-u.ac.jp
d) shimada@itc.nagoya-u.ac.jp
e) akiyama@ieee.org
f) takeshi.yagi@ntt.com

attackers have intruded, they attempt to install a backdoor to es-
tablish a communication path with the C&C server and then build
an attack infrastructure by installing additional malware or tools
via the communication path. Both the backdoor and malware are
difficult to detect, because they are crafted to avoid anti-virus de-
tections, store binary code into the memory or registry so as not
to exist as a file, or inject malicious code into the memory area
of a benign process to conceal their existence. Malware has also
appeared that has only minimal functionality at first but is able
to expand itself by downloading modules from the C&C server
and deploying them in the memory [4]. Then in the fourth stage,
the attackers probe the system by gathering information in the
machine, stealing authentication information, or expanding the
infection by using not only malware but also OS standard com-
mands or utility tools such as net, psexec [3], [5]. Finally, the
attackers take full control of the target and achieve the final goal
of the attack, such as stealing credential information.

To defend the machines from attackers, many malware detec-
tion methods have been proposed. However, many of these meth-
ods use the result of static/dynamic analysis of the target file as
a feature, so they are not applicable in the situation where spec-
ifying a target file is hard because attackers are already in the
target machine. Thus, it is not sufficient to prevent the sophisti-
cated attacks we described above but countermeasure after intru-
sion is required. However, there are few researches focusing on
a countermeasure after intrusion. The purpose of our research is
to detect attacks even when attackers have already intruded in a
target.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

In this paper, we propose the attack detection method applica-
ble for after intrusion by monitoring the behavior of all processes
running on the machine and estimate the maliciousness of each
process. Focusing on a process running on a machine is effec-
tive for considering a countermeasure after intrusion, because an
action of attackers or malware finally emerges as process behav-
ior. We believe that malicious/benign behavior is different (e.g.,
read/write attempt to a specific registry, deletion of a large num-
ber of files), so it is possible to detect malicious processes by
modeling and classifying the behavior of a malicious/benign pro-
cess. Moreover, our proposal monitors the behavior of all pro-
cesses running on a target machine and then estimates the ma-
liciousness of processes, so it can apply to the situation when
specifying a target file is hard.

In our proposal, we are modeling process behavior with
Seq2Seq model, which is a DNN structure used for time-series
data, to effectively recognize the feature that is contained in pro-
cess behavior. We show that our proposal can detect malicious
processes derived from malware by using a process behavior log
that is recorded during a simulated attack performed in an ex-
perimental environment with servers and clients managed by a
domain controller.

2. Related Work

There are many malware detection/classification methods that
use machine-learning techniques such as Support Vector Machine
(SVM), Decision-Tree, or clustering algorithms [6], [7], [8]. Tian
et al. proposed a method for malware detection and malware-
family classification, which uses the frequency of API call or
its attribute collected by executing malware binaries on a vir-
tual environment as a feature [8]. In recent year, methods ap-
plying DNNs to malware detection also have been proposed [9],
[10], [11], [12], [13]. Pascanu et al. proposed a method to clas-
sify malware by extracting a linguistic feature from an API call
sequence by using an RNN [11]. This method regards an API
call sequence as a sentence and extracts an effective feature by
constructing the language model of API call sequences. Wang
and Yiu also proposed a malware classification method that uses
a multitask Seq2Seq model [12]. In this method, an API call
sequence is compressed to a fixed-length feature vector by the
Seq2Seq model, which is trained to output a sequence the same
as the input sequence and then output the classified label and the
file-access summary of the sequence. Hardy et al. proposed the
malware detection method using Stacked Auto Encoder, which
uses a list of API calls that the binary imports as a feature [13].

However, in these existing methods, we have to specify a pro-
gram or process to collect data before classification when we
have a machine which may be infected, because a feature is ex-
tracted from a result of dynamic analysis [11], [12], or static anal-
ysis [13]. This also means that these methods are targeted for
classifying a specific file.

On the other hand, few methods have been proposed which use
information which does not rely on a specific file, such as infor-
mation extracted from process running on the machine. Nakazato
et al. proposed a method for detecting suspicious processes from
the process frequency, the number of users executing the process,

and the network conditions [14]. This method tries to detect the
attack using an anomaly detection approach. By focusing on the
features of targeted attacks such that unusual processes appear
and these processes communicate with C&C servers, they judge
whether a process is suspicious or not by calculating the suspi-
ciousness degree. Some Anti-virus products have the behavior
based detection module [15], [16], [17]. These modules detect
suspicious behavior of a machine such as unusual file/registry
access attempts using signature or machine learning based tech-
niques. However, as new malware appears every day, and attack-
ers continue to develop methods to avoid them, these heuristic
techniques require malware analysis continuously in order to cre-
ate signatures or select features for machine learning. Therefore,
these technologies are still insufficient to completely prevent mal-
ware or attacks, and more research for detecting such malware
with less analysis is needed.

We previously proposed a method to estimate process ma-
liciousness that uses two DNNs (a Recurrent Neural Network
(RNN) and a Convolutional Neural Network (CNN)) in multiple
stages [18]. There are problems that information of the feature
sequence tends to be lost as the sequence becomes longer, and
the amount of evaluation data is small. Therefore, in this paper,
we propose a method that doesn’t rely on information extracted
from file by extracting the feature from the behavior of process
running on the machine with a deep learning based technique.

3. Proposed Method

3.1 Overview
In our proposal, process maliciousness is estimated by recog-

nizing and classifying linguistic features included in process be-
havior. Malicious and benign processes may behave differently
because of the functions they have. Malicious processes often
have functions that rarely appear in benign processes, such as hid-
ing themselves or collecting input histories. Thus, malicious and
benign processes are expected to have different behaviors, such
as reading or writing frequency of files and registries, access at-
tempts, and process manipulation. Therefore, we estimate pro-
cess maliciousness by extracting appropriate features from pro-
cess behavior.

In our proposal, we regard event sequence as process behavior.
An event sequence is constructed with some events, and an event
represents an operation of the process. When considering a cer-
tain event sequence W = [CreateFile, SUCCESS, WriteFile,
SUCCESS], for example, CreateFile and WriteFile represent
the operation of opening a file and writing to a file, respectively,
and the event sequence W represents process behavior in which a
file is created and written. In this way, each event in an event se-
quence represents an operation of a process, and a combination of
events can represent continuous operation, or behavior. Process
behavior can be represented by a sequence of events executed in
accordance with a purpose in the process just as meaningful sen-
tences can be constructed by arranging words in accordance with
the grammar in a language. Thus, an event sequence can be seen
as a sentence, and we can extract appropriate features by applying
the feature extraction method in the language processing to them.

The flow of the proposed method is shown in Fig. 1. We first

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 1 Overview of our proposal.

Fig. 2 Architecture of basic Seq2Seq model.

convert a process log into event sequences, which is a format that
can be inputted to a feature extractor. At the training stage, we
train a feature extractor and a feature classifier using converted
training log data. At this time, the feature extractor is trained to
output a sequence the same as an input data sequence, and the
feature classifier is trained to output maliciousness of the feature
vector sequence by predicting whether a sequence is benign or
not. Finally, at the estimation stage, the maliciousness of pro-
cesses is estimated by classifying log data of processes using the
trained feature extractor and the trained feature classifier. In our
proposal, we use the Seq2Seq model, which is commonly used in
language processing such as machine translation, for the feature
extractor and the classifier. The Seq2Seq model of the feature
extractor trains linguistic features of an event sequence, and the
Seq2Seq model of the feature classifier trains the maliciousness
of extracted features.

3.2 Seq2Seq Model
The Seq2Seq model, which was proposed by Sutskever et

al. [19], is composed of an encoder RNN to encode an input se-
quence to a vector and a decoder RNN to decode the encoded
vector. Its basic architecture is shown in Fig. 2. First, the input se-
quence [w1, w2, . . . , wl] of length l is entered to the encoder RNN
in reverse order to obtain a vector in which information of the
input sequence is compressed. After obtaining the vector, output
is started by inputting the start symbol (START) to the decoder
RNN with the compressed vector as an initial state of the RNN,
and finally a prediction sequence [y1, y2, . . . , ym] of length m is
obtained. The input to the decoder is a correct output sequence
in the training phase, and the previous output in the estimation
phase. The output length m is determined manually or by the
model itself. If m is determined by the model, the model should
be trained to output the EOS symbol at the end of a sequence.

3.3 Preprocessing Log Data
We treat the process log recorded by Process Monitor [20] as

process behavior, and use it as input data for our proposal. Pro-
cess Monitor is a tool that can display and record process be-
havior, such as access to the file system and registry, process
or thread creation, and communication with the network, in real

Table 1 Items recorded by Process Monitor.

Field Description
Time Time when the event was executed
Process Name Process name in which event was executed
PID Process ID in which event was executed
Event Name of the event (ex. ReadFile)
Path Current path when the event was executed
Result Result of the event (ex. SUCCESS)
Detail Further information about the event

(ex. arguments of the event)

time. Recorded information for each event is shown in Table 1.
We create label data associated with process logs by matching a
malicious process list that is first obtained by the manual analysis
of processes if the logs are used for training. In our proposal, we
use only values of Event, Path, and Result fields for each event.
In the following description, a value of Event, Path, or Result
fields are simply represented as an event, and events arranged in
chronological order are represented as an event sequence. Event
sequences must be preprocessed before being input to the feature
extractor. We first abstract a path, then convert event sequences
into vector sequences, and finally split them.
3.3.1 Path Abstraction

Process Monitor also records accessed paths when recording
an event of file/registry access, so a recorded path is composed
of file/directory names in file access events, or, key/subkey/value
names in registry access events. To simplify the explanation, we
use dirname to refer to a directory/key/subkey name, and file-
name to refer to a file/value name, in this section. Since the kinds
of dirname and filename appearing in recorded logs become enor-
mous and most are unique, many unique paths that do not appear
in training data can appear in test data, and the number of path-
kinds is unpredictable. To reduce the kinds and improve general-
ization performance, we abstract paths in three steps.

In the first step, we replace deeper dirnames of a path whose
directory depth is deeper than three with <omit>. Then, we re-
place UUIDs appearing in filenames or dirnames with <UUID>.
In the last step, we abstract filenames by replacing them with
<extension of filename>.
3.3.2 Vectorization

We convert event sequences into vectors by converting each
event into 1-hot vector in two steps. First, a dictionary that asso-
ciates events with unique IDs is created from training data. We
add UnknownCall to the dictionary to represent unknown events
that do not appear in training data. Then each event is converted
into 1-hot vector using the dictionary. A 1-hot vector of the event
is filled with zeros, except for ID of the event, and its dimensions
are the size of the dictionary.
3.3.3 Vector Split

In our proposal, a vector sequence is split to avoid the vanish-
ing information problem. The Seq2Seq model has a problem that
the information on the first part of the input sequence vanishes
when the sequence is long. We deal with this problem by splitting
the sequence and discarding the split sequences near the end. For
example, when we obtain s partial sequences [X′1,X′2, . . . ,X′ s]
by dividing the vector sequence X = [x1, x2, . . . , xN] of length
N into subsequences whose max length is L, we only use the
first S (S ≤ s) partial sequences. Information near the top of

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

a sequence can be retained even when the sequence is long by
extracting features from each partial sequence.

3.4 Feature Extractor Training
We use the Seq2Seq model for the feature extractor. As in

the method by Wang and Yiu [12], the feature extractor is trained
to output the same sequence as an input sequence. Also, in our
method, the feature extractor is trained to output a vector se-
quence the same as the input sequence. By training in this man-
ner, information included in a variable length vector sequence can
be compressed in the middle layer of the Seq2Seq model.

The encoder unit has two hidden layers: the first layer is a nor-
mal hidden layer, and the second one is a Long Short-Term Mem-
ory (LSTM) unit. The decoder unit has three hidden layers: the
first and last layers are normal hidden layers, and the middle layer
is an LSTM unit. We apply Dropout, the method to improve gen-
eralization performance, to the non-recurrent connection except
for the input and output connection. The output of the decoder is
a probability vector that represents the probability of each event
appearing at the next event.

During feature extraction, a second hidden layer of the encoder
when all events are inputted is extracted as a feature vector fi for
each of the partial event sequence X′i (0 < i ≤ S ≤ s). This
operation is performed S times, and a feature vector sequence, of
length S is extracted for the vector sequence X of the process.

3.5 Feature Classifier Training
We also use the Seq2Seq model for the feature classifier to

recognize a whole feature of an event sequence from the feature
sequence that is extracted from partial sequences. As mentioned
in Section 3.4, a feature vector sequence of length S is extracted
by the trained feature extractor from the event sequence X that is
divided into s (S ≤ s). We attempt to recognize it and classify it
into malicious or benign using the Seq2Seq model.

The feature classifier has almost the same structure as the fea-
ture extractor except for the dimensions of the decoder output
and the application of Dropout to the output connection of the
decoder. The output of the decoder is a two-dimensional vec-
tor whose elements represent the benignness and maliciousness
score of a process as probabilistic values.

In the training of the feature classifier, we input the feature vec-
tor sequence F = [f1, f2, . . . , fS] (S ≤ s) to the encoder RNN in
reverse order and train the feature classifier to output malicious or
benign. The training is continued until the termination condition
is satisfied.

3.6 Maliciousness Estimation
The process maliciousness is estimated by using the trained

feature extractor and the trained feature classifier. Even in the es-
timation phase, as in the training phase, the vector sequence X of
the process is divided into S partial sequences [X′1,X′2, . . . ,X′S]
described in Section 3.3.3, and then S (S ≤ s) feature vectors
F = [f1, f2, . . . , fS] are extracted from the partial sequences by us-
ing the feature extractor. Finally, the maliciousness score of the
process is estimated by obtaining the classified result from the
feature vector sequence F using the feature classifier.

4. Experiment

To evaluate our proposal, we performed two experiments.
We first evaluate the validity of the proposal by using log data
recorded in a separated environment. Then we investigate if our
method can detect unknown malicious processes, which means
the process that is generated from malware that do not appear in
training data, generated from the latest malware.

4.1 Experiment 1: Using Logs of Malware Binaries
In experiment 1, we evaluated the validity of the proposal us-

ing process logs collected by executing malware in a separated
environment. Malicious or benign binaries were executed on a
Windows 7 machine (Victim) under monitoring of Process Moni-
tor to record the behavior of all processes executed on the Victim.
Binary execution and monitoring were performed automatically
by using Cuckoo Sandbox *1, and the imitated environment of the
Internet, simulated by Inetsim *2 (which can simulate common
Internet services such as HTTP, and DNS), was running on a net-
work different from the Victim via the router. Monitoring time
was 30 minutes from the start of the binary execution.
4.1.1 Collecting Process Logs

We collected process logs by recording logs when executing
benign or malicious binaries. The collected benign process logs
contains the logs of process that are generated from the benign bi-
naries, and system processes when the binary was executed. We
also randomly select system processes those name are duplicated
because behavior of system process may be differ because of the
executed binary. We presumed a process log to be malicious if it
satisfied at least one of the following conditions and was extracted
from process logs of malicious binaries.
(1) A process of a predetermined malicious binary (same name)
(2) A process generated from process (1)
(3) A process injected with malicious code from (1) or (2)
We used Cuckoo Sandbox to confirm whether or not the process
satisfies condition (2) or (3).

We executed 320 malicious binaries, which were collected by
NTT Secure Platform Laboratories from April to October 2014,
and obtained 641 malicious process logs that are matched to the
condition as we explained above. The types of these 320 binaries
classified by Kaspersky are shown in Table 2. We also executed
37 benign binaries that were collected from commonly used soft-
ware, an installer of the software, or from software originally in-
stalled in Windows, and obtained 1,000 benign process logs.

Table 2 Types of malicious binaries.

Type # Type #
Adware 92 Trojan-Dropper 6
Downloader 86 Trojan-PSW 4
Trojan 61 Trojan-Ransom 2
Trojan-Downloader 21 DangerousObject 1
Backdoor 17 RiskTool 1
Trojan-Spy 15 RootKit 1
WebToolbar 12 Trojan-GameThief 1

*1 https://cuckoosandbox.org/
*2 http://www.inetsim.org/

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

4.1.2 Evaluation Method
The generalization performance of the method is evaluated us-

ing five-fold cross validation, and its efficiency is evaluated by
calculating the Area Under the Curve (AUC), which is calcu-
lated from the Receiver Operating Characteristic (ROC) curve,
and comparing it with AUCs of other methods. The ROC curve
is a graph that shows the relationship between the True Positive
Rate (TPR) and False Positive Rate (FPR) when the threshold
value is changed. In our proposal, processes are estimated to be
malicious (P: Positive) or benign (N: Negative) on the basis of the
relationship between the maliciousness score of a process and a
threshold value determined in advance. The relationship between
True Positive (TP) and False Positive (FP) is shown in Table 3,
and TPR=TP/P, FPR=FP/N.

To evaluate the efficiency of our method, we compared it with
a comparison method often used by existing malware detection
methods. In the comparison method, a uni-gram feature is ex-
tracted from an event sequence of a process and is then classified
by using an SVM.

We used a uni-gram feature for the comparison method because
it is one of the simplest but most widely used features of sequen-
tial data. A uni-gram feature is extracted in two ways in this
experiment: Bag of Words (BoW) and Term Frequency (TF). In
either way, an event set {w1, w2, . . . , wn} that appears in training
data is first created. Then, in BoW, a uni-gram feature is created
considering only the presence/absence of each event in an event
sequence. In TF, it is created considering the frequency of each
event. When b(w) outputs the presence/absence of the event w
in an event sequence as a binary value and f (w) outputs the fre-
quency of w, the feature vector of the event sequence X becomes
[b(w1), b(w2), . . . , b(wn)] in BoW, and [f (w1), f (w2), . . . , f (wn)] in
TF.

We adopted an SVM for the feature classifier of the compari-
son method because it is one of the commonest supervised ma-
chine learning methods used for classification. The SVM classi-
fies data using a hyper-plane that best separates the labeled data.
The hyper-plane is determined by maximizing the distance from
the hyper-plane to the nearest training sample. The SVM requires
the hyper-parameters C, γ and kernel function. The parameter C

is called a cost parameter, which determines the tolerance of mis-
classification, and the larger the value of C, the more misclassi-
fication is allowed. The parameter γ is used in the Radial Basis
Function (RBF) kernel, and the hyper-plane can be a more com-
plicated shape as γ increases. We use RBF kernel for the kernel
function, and set C = 1,000, γ = 0.001.
4.1.3 Parameter Configuration

Hyper-parameters of the feature extractor and the classifier
used in the experiment are shown in Table 4. Vocabulary means
the kind of event appearing in training data at each cross vali-
dation, and dimension of hidden layers means the dimension of

Table 3 Relationship between TP and FP.

Classified Class
True Class Malicious Benign
Malicious (P) True Positive (TP) False Negative (FN)
Benign (N) False Positive (FP) True Negative (TN)

hidden-layers of the feature extractor and the classifier. L and
S mean the maximum lengths of a partial event sequence and a
feature sequence, respectively. An epoch means that all event se-
quences in training data are entered just once to the model.
4.1.4 Results

We calculated average ROC curves using a total of 1,641 pro-
cess logs of 641 malicious processes and 1,000 benign processes
that were collected by the methods mentioned in Section 4.1.1.
Figure 3 shows ROC curves of each method and parameters
when FPR (the horizontal axis) is a logarithmic scale. Since
ROC curves are calculated for each validation, we used the aver-
age ROC curve of five calculated ROC curves for evaluation. In
Fig. 3, S2S means Seq2Seq, and X-Y-Z such as 150-150-100 in
the legend is the hyper-parameters. X, Y, Z mean the dimension
of hidden layers, the maximum length of the input sequence, the
maximum length of the feature sequence, respectively. As shown
in Fig. 3, higher AUCs were obtained in the proposal when the pa-
rameters were 150-150-100 or 150-250-60. Its highest AUC was
0.979, which is 0.005 and 0.043 higher than the highest AUCs
of BoW and TF, respectively. Figure 3 also shows that our pro-
posal can estimate malicious processes with an 80% or higher
TPR even if the FPR is 1%. An average of 9.2 malware families
are contained in each validation, and malicious processes derived
from an average of 5.8 malware families were detected under the
above condition. Focusing on the hyper-parameters in the pro-
posal, the AUCs are slightly different.

We implemented our proposal and comparison methods with
Python3 and trained them on a machine with Intel(R) Core(TM)
i7-4790 CPU, and NVIDIA GTX 960 with 4 GB MEM. In
our proposal, training took about 10 hours and estimation took
30 minutes for each validation. Since about 280 process logs

Table 4 Hyper-parameters of feature extractor and classifier.

Parameters Values
Vocabulary 11,584–12,499
Dim. of hidden layers 150
Minibatch size 35
Gradient Clipping 5
Optimizer Adam
Termination Feature Extractor: 15 epochs
condition Feature Classifier: 25 epochs
(L, S) (60, 250) (150, 100) (250, 60)

Fig. 3 ROC curves.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 4 Recording environment (Experiment 2).

are used for estimation in each validation, estimation speed is
6 sec./process in our method. In the comparison methods, train-
ing took 15 seconds and estimation took 1 second.

4.2 Experiment 2: Using Logs of a Simulated Attack
In experiment 2, we investigated whether our method can de-

tect an unknown malicious process, which mean the process that
is generated from malware which does not appear in training data,
by performing a simulated attack in a more realistic environment.
4.2.1 Recording Environment

The recording environment for experiment 2 is shown in Fig. 4.
This environment consisted of a Domain Controller, Mail Server,
two File Servers, and two client machines. Machine A is oper-
ated by Victim 1 and the privileged Machine B is operated by ad-
ministrator Victim 2. These clients are constructed in the virtual
environment to simplify rollback. We manage user accounts and
file permissions of each client with an Active Directory server as
the Domain Controller. The Mail Server manages email accounts
of Victims 1 and 2. Almost all files and folders in the File Server
can be accessed by any clients, but some folders require the ad-
ministrator’s authorization to access.

We deployed the C&C Server, which is operated by the At-
tacker, in this environment to execute a simulated attack and per-
formed the attack under monitoring to record the behavior of ma-
licious processes executed on Machine A and/or B.
4.2.2 Simulated Attack Scenarios

We simulated an attack to record realistic logs using some
Remote Access Tool (RAT) simulators and post exploitation
frameworks: ShinoBOT SUITE *3, Koadic *4, and PowerShell-
Empire *5 (PSE). We built seven attack scenarios that follow
each stage of targeted attacks step by step and performed attacks
against the recording environment in accordance with each sce-
nario.
Scenario 1: Initial infiltration

Scenario 1 simulates the initial infiltration phase. In this sce-
nario, an attacker sends a target email with the ShinoBOT
downloader attached to Victim 1 and infiltrates into the tar-
get network by infecting Machine A used by Victim 1 with

*3 https://shinosec.com/shinobotsuite/
*4 https://github.com/zerosum0x0/koadic
*5 https://github.com/EmpireProject/Empire

ShinoBOT.
Scenario 2: Building an attack infrastructure

Scenario 2 simulates building an attack infrastructure phase.
The attacker first collects system information of Machine
A and the network configuration by using ShinoBOT and
then installs Koadic. The attacker escalates privilege us-
ing sdclt.exe and steals authentication information using
mimikatz *6 and MailPassView *7.

Scenario 3: Building an attack infrastructure via HTTP
Scenario 3 is almost the same as scenario 2, but the attacker
steals email authentication information by uploading files
that contain the information via HTTP instead of using Mail-
PassView.

Scenario 4: Probing the system
In scenario 4, the attacker deploys a PSE downloader imi-
tating a document file to the Public Folder. Then Victim 2
accidentally executes the downloader and Machine B used
by Victim 2 is infected with PSE.

Scenario 5: Pursuing the final goal of the attack
Scenario 5 simulates the purpose accomplishment phase. In
this scenario, the attacker uploads stolen confidential files
stored in the File Server to C&C server by using ftp com-
mand. The attacker first compresses the file at Machine B,
moves the compressed file to Machine A, and then uploads
the file from Machine A.

Scenario 6: Pursuing the final goal of the attack via HTTP
Scenario 6 also simulates the purpose accomplishment
phase. The difference from scenario 5 is the attacker uploads
files via HTTP instead of ftp and only uses Machine B.

Scenario 7: Preparation of re-intrusion
In Scenario 7, the attacker erases the traces of intrusion and
prepares re-intrusion. First, the attacker replaces a desk-
top shortcut with a script for re-installing RATs. Then the
attacker erases event logs, downloaded files and installed
RATs from machines. We use SDelete *8 for deleting files.

4.2.3 Collecting Process Logs
The scenario was executed in the order of 1→ {2 or 3} → 4→

{5 or 6} → 7, and we collected 490 malicious process logs. Ta-

*6 https://github.com/gentilkiwi/mimikatz
*7 https://www.nirsoft.net/utils/mailpv.html
*8 https://technet.microsoft.com/ja-jp/sysinternals/sdelete.aspx

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Table 5 Number of malicious process logs extracted from each scenario.

Scenario (Machine) # of malicious process
Scenario 1 (A) 48
Scenario 2 (A) 228
Scenario 3 (A) 35
Scenario 4 (A) 49
Scenario 4 (B) 8
Scenario 5 (A) 53
Scenario 5 (B) 4
Scenario 6 (B) 7
Scenario 7 (A) 30
Scenario 7 (B) 28
Sum 490

ble 5 shows the number of extracted malicious process logs for
each scenario.

We collected malicious process logs from Machine A and/or
B when executing a simulated attack in accordance with scenar-
ios 1–7. We collected benign process logs for 30 minutes from a
client PC running in the recording environment in a normal state,
and a Windows PC running in the real environment. We collected
117 benign process logs from a client PC in the normal state and
178 benign process logs from the PC running in the real envi-
ronment, which is connected to the Internet and have some client
machines on the same network.

Then we created a dataset from the collected 785 process logs
and 1,641 process logs used in experiment 1.
Training Data Training data was the 1,641 process logs used in

experiment 1, 30 malicious process logs of scenario 7 (A),
and 178 benign logs of the Windows machine running on the
real environment.

Test Data Test data was the remaining 577 process logs.
4.2.4 Evaluation Method

In this experiment, we use F-measure and Specificity showed
in Eqs. (3) and (4) for evaluation because the test data of each
scenario was too small to calculate ROC curves.

Precision =
T P

T P + FP
(1)

Recall =
T P

T P + FN
(2)

F-measure = 2 · Precision · Recall
Precision + Recall

(3)

Specificity =
T N

T N + FP
(4)

F-measure is a harmonic average of precision and recall values,
and Specificity is a percentage of what is expected to be benign
out of what is actually benign. Therefore, the malicious pro-
cess detectability is high in the method in which both values are
higher.

We set the parameters of the proposal almost the same as those
of experiment 1, but L and S were fixed to 150 and 100. To show
the validity of the results, we compared the results of our pro-
posal with those of the comparison method (BoW) explained in
Section 4.1.2.
4.2.5 Results

We calculated F-measure values of our proposal and BoW for
each scenario and Specificity value using the test dataset men-
tioned in Section 4.2.3. Figure 5 shows the values of F-measure

calculated from the all benign process logs of test data and the
malicious process logs of each scenario and shows the value of

Fig. 5 F-measure values for each scenario and Specificity value.

Specificity. Since the classifier trains the maliciousness score as
a probability value, we set 0.5 (50%), which is the intermediate
value, as a threshold value.

As shown in the graph of each scenario in Fig. 5, our proposal
obtained higher F-measure values than the comparison method
in many scenarios. Particularly for Machine A in scenario 1 and
Machine B in scenarios 4, 5, 6, and 7, which is a scenario using a
different RAT simulator from learning data, our proposal showed
F-measure values especially higher than the comparison method.
Besides, the Specificity value in Fig. 5 shows that our proposal
correctly classified 90% or more benign processes.

5. Discussion

5.1 Discussion of Experimental Results
From experiment 1, our proposal properly estimates malicious

processes even if the process is derived from different malware
families, therefore, our proposal can potentially detect different
kinds of malware. The result of experiment 1 also showed that
our proposal needs 6 seconds for estimating a process. Our pro-
posal record process logs for X seconds (X is 1,800 in the experi-
ment), and then performs the estimation. Therefore, our proposal
has practical speed for estimation if all recorded process logs are
estimated malicious or benign in X minutes. An elapsed time for
estimation is calculated by num o f process × 6. Assuming that
X = 1,800, we can estimate the number of recorded process may
be 100 to 200 from the Section 4.2.3 and estimated elapsed time is
600 to 1,200 seconds. Thus, our proposal can estimate processes
in practical speed.

The result of experiment 2 shows that our proposal works
against recent malware even if the amount of training malicious
logs derived from recent malware is small. This may be because
recent malware has a similar behavioral feature to the old mal-
ware, so our proposal learns the generic feature from old malware
and can detect recent malware.

5.2 Extracted Feature Analysis
We adopted the Seq2Seq model to our proposal to compress in-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Table 6 Example of event sequence prediction using trained feature
extractor.

Order Inputs Predicted Events
1 QueryBasicInformationFile QueryBasicInformationFile

2 C:\Users\sun\<omit>\ C:\Users\sun\<omit>\
3 SUCCESS SUCCESS

4 CloseFile CloseFile

5 C:\Users\sun\<omit>\ C:\Users\sun\<omit>\
6 SUCCESS SUCCESS

7 CreateFile CreateFile

8 C: C:

9 SUCCESS SUCCESS

10 FileSystemControl QueryDirectory

11 C: C:\Users
12 INVALID DEVICE REQUEST SUCCESS

.
94 FileSystemControl CreateFile

95 C:\Users\sun\<omit>\ C:\Users\sun\<omit>\<exe>
96 INVALID DEVICE REQUEST SUCCESS

97 QueryDirectory QueryAttributeTagFile

98 C:\Users\sun\<omit>\ C:\Users\sun\<omit>\<exe>
99 SUCCESS SUCCESS

100 CloseFile QueryBasicInformationFile

101 C:\Users\sun\<omit>\ C:\Users\sun\<omit>\<exe>
102 SUCCESS SUCCESS

103 RegQueryKey CloseFile

104 HKCU\Software\Classes C:\Users\sun\<omit>\<exe>
105 SUCCESS SUCCESS

.

formation of an input sequence and extract features considering
a time-series of the input sequence. In this section, we analyze if
the feature extractor actually compresses information of input se-
quences and learns a time-series of input sequence by predicting
a sequence using a trained feature extractor.

Table 6 shows an example of a partial predicted sequence. We
used the log of a benign system process in test data for input data.
Order shows the order of input/predicted sequence, Inputs shows
the sequence inputted to the trained feature extractor, and Pre-
dicted Events shows the sequence outputted from the extractor.
Predicted Events shows the extractor correctly learns the order of
events: Operation → Path → Result. It also shows a file path
is predicted when the previous Operation is related to file access
such as the prediction of order 94 and 95. Furthermore, the ex-
tractor probably recognizes behavior that is constructed with mul-
tiple Operations such as “CreateFile → some operations
related to file access→ CloseFile” from the prediction
of order 94–105. Therefore, the feature extractor certainly seems
to learn the time-series of the sequence.

Next, we discuss from the perspective of the relationship be-
tween inputs and prediction. Table 6 shows that the beginning
and ending of the event sequence are predicted roughly correctly,
but the predicted events of order 94–105 are wrong. Therefore,
the extracted feature retains partial information of the input se-
quence.

5.3 Influence of Event Presence Ratio
Although the proposed method obtained a quite high preci-

sion performance of AUC=0.979 at best, the comparison method
(BoW) also obtained an almost equally high performance of
AUC=0.974. These results suggest that the presence/absence of
events is the important factor for estimation in the proposal. In
this section, we investigate the cause of misclassification in our
proposal to infer the important factors for estimation. In the fol-
lowing, TP/FP and TN/FN sets mean sets of malicious/benign

Fig. 6 Events and their presence ratios of TP, TN, and FP sets
in experiment 1.

Fig. 7 Events and their presence ratios of TN, TP, and FN sets
in experiment 1.

processes whose maliciousness score is more than 0.5 and less
than 0.5, respectively. Presence ratio means the percentage of
event sequences containing the event among event sequences of
all processes belonging to a specific set. We investigated the re-
sult of the proposal whose parameter was 150-150-100, and the
numbers of TP, FN, TN, and FP sets were 595, 46, 963, and 37,
respectively.

Figure 6 shows the events in which the presence ratio differs
by more than 30 points between the TP and FP sets or TN and
FP sets, and Fig. 7 shows the events in which the presence ratio
differs by more than 30 points between the TN and FN sets or TP
and FN sets. The X axis represents the events, and the Y axis rep-
resents the presence ratio of each set. For example, the leftmost
bars in Fig. 6 show the event C:\Users\sun\<omit>\<dic> is
contained in less than 10% of the event sequences of processes
belonging to the TN and FP sets but about 40% of the sequences
belonging to the TP set. Figures 6 and 7 show that the presence
ratio distributions are similar for the TN and FP sets or TP and
FN sets. The true class of TN and FP sets, or TP and FN sets
are same, so that the cause of misclassification is not the presence
ratio but any other features. Thus, the presence of events is not
the important factor for the proposal. From these results and re-
sults in Section 5.2, the order of events is presumed to affect the
estimation performance in our proposal.

5.4 Superiority and Limitations
The results of experiment 1 show our proposal classifies ma-

licious processes at least as the same as the comparison method
(BoW). The results of experiment 2 show that our proposal can

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

detect malicious processes derived from RAT simulators that do
not appear in the training data. In addition, Sections 5.2 and 5.3
reveal that the order of events is important for our proposal. Thus,
our proposal is superior to the comparison method in terms of the
generalization performance and can be said to extract and classify
features even from unknown malicious processes.

On the other hand, our proposal has several limitations. First,
we supposed that the client machine is constantly monitored and
data is gathered with short intervals. However, this assumption
may affect the performance of the machine. Second, our proposal
cannot show the reason for the result obtained by classification.
Some techniques to visualize effective features such as attention
mechanisms [21] have been proposed, but further study will be
required to apply these methods to our proposal, because our
model applies Seq2Seq model stepwise. Third, our proposal de-
pends on the logs generated from ProcessMonitor. This software
only works on the Windows OS, thus our proposal is only avail-
able for Windows machines. Moreover, if malware that cannot be
recorded by ProcessMonitor such as Bootkit, or which is just run-
ning and does nothing are used, our proposal cannot detect them.
Our proposal is based on the idea that the behavior of malicious
process and benign process is different, so the maliciousness of
a process that has very similar behavior to the malicious process
may become high.

6. Conclusion

In this paper, we proposed a method to estimate process mali-
ciousness by extracting features from the behavior of processes
running on a machine and classifying them into malicious or
benign. This method effectively compresses event sequences
into feature vector by applying Seq2Seq models stepwise. We
evaluated our proposal in two experiments and found the fol-
lowing. First, we showed our proposal obtains a higher AUC
value (0.979) than the comparison methods using uni-gram fea-
ture by performing 5-fold cross validation using 1,641 process log
recorded by Process Monitor. Second, we revealed the order of
events may be the important factor for estimation in our proposal
by analyzing the extracted features and event presence ratio of
the classified results. Finally, we indicated our proposal can de-
tect malicious processes derived from a recent malware simulator
that do not appear in the training data.

Our future work is to devise a new way to show reasons for
estimation. Moreover, we might collect many more malicious
process logs and more various benign binaries to reduce FPR and
increase TPR. We should also compare the proposal and com-
mercial products.

References

[1] Kobayashi, H., Konno, C., Souma, M., Ohmori, M. and Irisawa,
Y.: Design and Operational Guide to Protect against “Advanced
Persistent Threats” Revised 2nd edition, Information-tehnology Pro-
motion Agency (online), available from 〈https://www.ipa.go.jp/files/
000017299.pdf〉 (accessed 2018-02-16).

[2] Hutchins, E.M., Cloppert, M.J. and Amin, R.M.: Intelligence-Driven
Computer Network Defense Informed by Analysis of Adversary Cam-
paigns and Intrusion Kill Chains, Proc. 6th Int. Conf. Information War-
fare and Security, pp.113–125 (2010).

[3] Hatta, J., Ishikawa, Y. and Kaneko, H.: Cyber GRID View Vol.1 Re-
search Report on Advanced Persistent Threats in Japan, Lac Corpora-

tion (online), available from 〈https://www.lac.co.jp/english/report/
pdf/apt report vol1 en.pdf〉 (accessed 2018-02-16).

[4] Nakamura, Y.: ChChes - Malware that Communicates with C&C
Servers Using Cookie Headers, Japan Computer Emergency Response
Team Cordination Center (online), available from 〈http://blog.jpcert.
or.jp/2017/02/chches-malware--93d6.html〉 (accessed 2018-02-16).

[5] Japan Computer Emergency Response Team Cordination Center: De-
tecting Lateral Movement through Tracking Event Logs, Japan Com-
puter Emergency Response Team Cordination Center (online), avail-
able from 〈https://www.jpcert.or.jp/english/pub/sr/20170612ac-ir
research en.pdf〉 (accessed 2018-02-16).

[6] Ahmed, F., Hameed, H., Shafiq, M.Z. and Farooq, M.: Using Spatio-
Temporal Information in API Calls with Machine Learning Algo-
rithms for Malware Detection, Proc. 2nd ACM Workshop on Security
and Artificial Intelligence, pp.55–62 (2009).

[7] Ravi, C. and Manoharan, R.: Malware Detection using Windows
API Sequence and Machine Learning, Int. J. Computer Applications,
Vol.43, No.17, pp.12–16 (2012).

[8] Tian, R., Islam, R., Batten, L. and Versteeg, S.: Differentiating mal-
ware from cleanware using behavioural analysis, Proc. 5th Int. Conf.
Malicious and Unwanted Software, pp.23–30 (2010).

[9] Wang, W., Zhu, M., Zeng, X., Ye, X. and Sheng, Y.: Malware traf-
fic classification using convolutional neural network for representation
learning, Proc. 31th Int. Conf. Information Networking, pp.712–717
(2017).

[10] Saxe, J. and Berlin, K.: Deep Neural Network Based Malware Detec-
tion Using Two Dimensional Binary Program Features, Proc. 10th Int.
Conf. Malicious and Unwanted Software, pp.11–20 (2015).

[11] Pascanu, R., Stokes, J.W., Sanossian, H., Marinescu, M. and Thomas,
A.: Malware classification with recurrent networks, Proc. 40th IEEE
Int. Conf. Acoustics, Speech and Signal Processing, pp.1916–1920
(2015).

[12] Wang, X. and Yiu, S.M.: A Multi-task Learning Model for Mal-
ware Classification with Useful File Access Pattern from API Call
Sequence, CoRR, Vol.abs/1610.05945 (2016).

[13] Hardy, W., Chen, L., Hou, S., Ye, Y. and Li, X.: DL4MD: A Deep
Learning Framework for Intelligent Malware Detection, Proc. 12th
Int. Conf. Data Mining, pp.61–67 (2016).

[14] Nakazato, J., Tsuda, Y. and Takagi, Y.: A Suspicious Process Analysis
in Cooperation with End Hosts, Technical Report 2, National Institute
of Information and Communications Technology (2017).

[15] Symantec: About SONAR, Symantec (online), available from
〈https://support.symantec.com/en US/article.HOWTO80968.html〉
(accessed 2019-03-26).

[16] Kaspersky: Behavior-based Protection, Kaspersky (online), available
from 〈https://www.kaspersky.com/enterprise-security/wiki-section/
products/behavior-based-protection〉 (accessed 2019-03-26).

[17] FFRI, Inc.: Targeted Attack Protection Software FFRI yarai, FFRI Inc.
(online), available from 〈https://www.ffri.jp/assets/files/products/ctrg/
yarai E brochure.pdf〉 (accessed 2019-03-26).

[18] Tobiyama, S., Yamaguchi, Y., Shimada, H., Ikuse, T. and Yagi, T.:
Malware Detection with Deep Neural Network Using Process Behav-
ior, Proc. 6th IEEE Int. Workshop on Network Technologies for Secu-
rity, Administration and Protection, pp.577–582 (2016).

[19] Sutskever, I., Vinyals, O. and Le, Q.V.: Sequence to Sequence Learn-
ing with Neural Networks, Proc. 27th Int. Conf. Neural Information
Processing Systems, Vol.2, pp.3104–3112 (2014).

[20] Russinovich, M. and Cogswell, B.: Process Monitor, TechNet-
Microsoft (online), available from 〈https://technet.microsoft.com/
ja-jp/sysinternals/processmonitor.aspx〉 (accessed 2018-02-16).

[21] Bahdanau, D., Cho, K. and Bengio, Y.: Neural Machine Translation
by Jointly Learning to Align and Translate, CoRR, Vol.abs/1409.0473
(2014).

Shun Tobiyama received his M.E. de-
gree in Information Science from Nagoya
University, Japan in 2018. He joined
Nippon Telegraph and Telephone Corpo-
ration (NTT) in 2018, and is now with the
Secure Architecture Project of NTT Se-
cure Platform Laboratories. His research
interest is malware detection techniques,

network security, and machine learning.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Yukiko Yamaguchi graduated in 1983
from the Department of Information Engi-
neering, Nagoya Institute of Technology,
and obtained her Master’s degree in 1982
from Nagoya University. She then affil-
iated with Fujitsu Laboratories Ltd. In
April 1991 she joined Nagoya University
as an Assistant Professor in the Computer

Center. At present, she is an Assistant Professor in Information
Technology Center and engaged in research on network manage-
ment technology and cyber security. She is a member of IPSJ and
IEICE.

Hirokazu Hasegawa received his Ph.D.
degree in Information Science from
Nagoya University, Japan, in 2017. He is
currently an Assistant Professor at Infor-
mation Strategy Office, Nagoya Univer-
sity, Japan. His research interests include
the Internet and network security. He is a
member of IPSJ and IEICE.

Hajime Shimada received his B.E.,
M.E. and D.E. degrees from Nagoya Uni-
versity, Japan in 1998, 2000 and 2004 re-
spectively. He was an assistant professor
in Kyoto University from 2005 to 2009.
He wan an associate professor in NAIST
from 2009 to 2013. He is now an as-
sociate professor in Nagoya University,

Japan since 2013. He is currently focusing on both power ef-
ficient computer architectures and cyber security techniques in-
cluding network security and malware detection. He is a member
of IEEE, IPSJ, and IEICE.

Mitsuaki Akiyama received his M.E.
and Ph.D. degrees in information science
from Nara Institute of Science and Tech-
nology, Japan in 2007 and 2013. Since
joining Nippon Telegraph and Telephone
Corporation (NTT) in 2007, he has been
engaged in research and development on
cybersecurity. He is currently a Senior

Distinguished Researcher with the Cyber Security Project of NTT
Secure Platform Laboratories. His research interests include cy-
bersecurity measurement, offensive security, and usable security
and privacy.

Takeshi Yagi received his B.E. degree in
electrical and electronic engineering and
his M.E. degree in science and technology
from Chiba University, Japan in 2000 and
2002. He also received his Ph.D. degree in
information science and technology from
Osaka University, Osaka, Japan in 2013.
He joined the Nippon Telegraph and Tele-

phone Corporation (NTT) in 2002 and transferred to NTT Secu-
rity (Japan) KK in 2018, where he is currently researching honey-
pots, security-data analysis based on machine learning, and secu-
rity intelligence technologies such as URL/domain/IP blacklist-
ing and reputation. He is a member of the Institute of Electrical
and Electronics Engineers (IEEE) and the Institute of Electrical
Engineers of Japan (IEEJ) and IEICE.

c© 2019 Information Processing Society of Japan

