
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

Design and Implementation of Superinstructions
for JavaScript Virtual Machine Generation System

for Embedded Systems eJSTK

Tomoya Nonaka1,†1,a) Tomoharu Ugawa1,b)

Received: February 18, 2019, Accepted: May 17, 2019

Abstract: Embedded systems generally have a small amount of memory and slow CPUs. Therefore it is desirable
to increase the speed of JavaScript virtual machines (VMs) without increasing memory footprint. In this research, we
introduce superinstructions, combinations of constant load instructions and arithmetic, logical, and relational (ALR)
instructions to increase execution speed. Introducing superinstructions increases the size of a VM. Thus, we designed
superinstructions so that they would share their implementation code with the ALR instructions, from which they are
made. Furthermore, we simplified their type-based dispatching code through specialization to the datatypes of their
constant operands. We developed a VM generator that creates VMs that have superinstructions in accordance with this
approach and a compiler that compiles JavaScript programs using them.

Keywords: superinstruction, virtual machine, interpreter, JavaScript, embedded system

1. Introduction

Development of embedded systems has become popular in
recent years. A variety of devices with poor processors and
small memories for their sensor and communication facilities
have come to be available for the Internet of Things (IoT). To
support software development for these devices, some JavaScript
VMs for embedded systems, such as eJS [1], [2], JerryScript *1,
and mJS *2, have been developed.

Certain design decisions need to be made to keep virtual ma-
chines (VMs) small in embedded system. JavaScript VMs for
embedded systems avoid just-in-time (JIT) compilation mecha-
nisms, which require a large amount of memory. Rather, they are
implemented as pure interpreters. This means they are slower ex-
ecuting than JavaScript VMs working in Web browsers [2]. Nev-
ertheless, execution speed is important even for embedded sys-
tems. It is particularly important for battery-powered systems:
having a higher execution speed allows their CPU return to sleep
mode quicker and thereby save more energy.

In this research, we use superinstructions [3] to speed up the
execution of a JavaScript VM while minimizing VM bloat. Our
target is eJS. The eJS JavaScript system exploits the character-
istic of embedded systems that each individual system executes
a particular application to reduce the size of the VM. It gen-
erates a customized VM for each application that VM only has
functionalities that the application actually uses. We introduce a
new customization method to eJS, in which eJS generates VMs
with superinstructions that are combinations of frequently exe-

1 Kochi University of Technology, Kami, Kochi 782–0003, Japan
†1 Presently with COLOPL, Inc., LTD., Shibuya, Tokyo 150–6011, Japan
a) nonaka@pl.info.kochi-tech.ac.jp
b) ugawa.tomoharu@kochi-tech.ac.jp

cuted VM instructions. In particular, we focus on combinations
of constant loading instructions and arithmetic, logical, and rela-
tional operation instructions (ALR instructions).

The eJS JavaScript system comprises a eJS compiler and a
VM generator eJSTK (embedded JavaScript Tool Kit). The com-
piler compiles a JavaScript program into intermediate code. The
intermediate code is executed on eJSVM, the VM generated by
eJSTK. eJSVM is designed as a reduced instruction set computer
(RISC) style register machine. In the instruction set of eJSVM,
ALR instructions take only registers as operands. This design
simplifies the instruction interpreter and hence reduces the size of
the VM. On the other hand, the VM has to load constants to reg-
isters by using constant loading instructions prior to carrying out
operations on them. Thus, this instruction set has two disadvan-
tages that affect execution time in comparison with an instruction
set where constants are allowed to be operands. First, the VM
executes more instructions, each of which requires an instruction
dispatch. Second, memory accesses increase because constant
loading instructions store constants to registers, which is imple-
mented with an array, and the following ALR instructions loads
them from the registers. If constants are allowed to be operands of
ALR instructions, the instruction decoder would be able to store
the constant to a local variable of the interpreter, which is likely
to be allocated to a machine register, and the operation can use
it. In this research, we combine frequently used combinations of
constant loading instructions and ALR instructions to make su-
perinstructions that take constants as operands.

We optimize the implementations of the superinstructions in
two ways. First, we implemented each superinstruction so that it

*1 http://jerryscript.net
*2 https://github.com/cesanta/mjs

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

shares its implementation with its original instruction to avoid
VM bloat. Second, we simplified the type-based dispatching
code of the superinstructions by leveraging the datatypes of con-
stant operands. In JavaScript, operators are overloaded; that
is, operators change their behavior depending on their operand
datatypes. For example, a plus operator computes the sum of
numeric operands, while it concatenates string operands. There-
fore, the instruction interpreter has to perform a type-based dis-
patch, which selects an appropriate implementation based on
the datatypes of operands. However, for superinstructions, the
datatypes of constant operands can be decided statically. This
allows us to simplify the type-based dispatching code. We uti-
lize eJSTK’s mechanism to generate interpreters that limit the
operand datatypes of operators on the basis of user’s specifica-
tions.

In consideration of the above in Section 3, we design the su-
perinstructions in the way that allows the optimizations above.
Then, in Section 4, we show five implementation strategies with
different optimizations of the superinstructions. Some of these
strategies implement superinstructions such that they share their
implementations with their original instructions, while others
give independent implementations to the superinstructions so
that they can be specialized to the datatypes of their constant
operands. We compare these implementation strategies in Sec-
tion 6.

2. eJS

2.1 Overview
eJS [1], [2] is a JavaScript system that has a mechanism to re-

duce the VM footprint by generating specialized VMs for individ-
ual applications. In particular, the VM generator of eJS, eJSTK,
specializes VM instructions to their operand datatypes. eJS sup-
ports a subset of ECMA Script 5.1 [4], excluding facilities that
requires complicated mechanisms such as eval.

Figure 1 shows the structure of the eJS system. Users enu-
merate the possible datatypes to be given to each VM instruction
as operands in the executions of the target application. These
datatypes are described in the operand specification. From the
operand specification, eJSTK generates a VM, eJSVM, with an
optimized instruction interpreter. For this eJSVM, the eJS com-
piler compiles the application into a sequence of VM instructions
(intermediate code). These VM instructions are executed on the
eJSVM in the embedded systems.

eJS is a successor to a server-side JavaScript VM, and it inher-
its some features that are not suitable for embedded systems. For
example, eJS assumes a 64-bit environment. Nevertheless, the
results of this work are also applicable to eJS if it is modified to
fit embedded systems in a future.

Fig. 1 Structure of eJS.

2.2 eJSVM

eJSVM is a JavaScript VM written in C. Its instruction in-
terpreter is generated by the VM instruction generator, which is
the heart of eJSTK. In the current implementation, fixed source
code written in C is used for some parts of the eJSVM, includ-
ing runtime systems, such as object manipulations and garbage
collection, and built-in functions.
2.2.1 VM Datatypes

JavaScript is a dynamically typed language. Thus, each
JavaScript value in eJSVM has a field to record its datatype. The
internal datatypes of eJSVM, which we call VM datatypes, do not
necessarily have a one-to-one correspondence to the datatypes
defined in the JavaScript specification. The Number type of
JavaScript, which is defined like a double of the C language, cor-
responds to two VM datatypes for efficiency: fixnum and flonum.
fixnum is used for integers that fit within a fixed length of bits, and
flonum is used for the others. The Boolean type, the null and
undefined values of JavaScript belong to a single VM datatype:
special.

eJSVM uses two kinds of tags to represent VM datatypes:
pointer tags and header tags. Pointer tags are type tags recorded
in spare bits in pointers. Header tags are type information stored
in the headers of data in the heap. Because spare bits in point-
ers are limited, only limited VM datatypes are assigned unique
pointer tags: datatypes of values embedded in words (fixnum and
special) and frequently used datatypes (flonum and string) have
unique pointer tags. Other datatypes share a common pointer tag,
and are distinguished by their header tags. Note that eJSTK al-
lows users to customize VMs by selecting datatypes that are dis-
tinguished by their pointer tags.
2.2.2 Instruction Set and Internal Instruction Format

eJSVM is a RISC-style register machine. It has distinct regis-
ter sets for each function call. A function can use an unlimited
number of registers. The register set is implemented as an array
in C language, and the array is allocated to the execution stack.
Registers are used for holding the intermediate values of com-
putations of JavaScript expressions and for JavaScript local vari-
ables that are not referred to from closures. ALR instructions can
only access registers. Local variables referred to from closures
and object properties are accessed using dedicated instructions.

Every instruction occupies 64 bits in eJSVM, of which the first
16-bit field holds its opcode. However, eJSVM employs the
threaded code technique for instruction dispatch, and so the op-
code field is not used during executions.

Figure 2 shows the format of the ALR and constant loading
instructions. An ALR instruction takes three register operands.
The first one is the destination register, and the subsequent ones

Fig. 2 Format of eJS instructions.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

are source registers, holding values to be computed. In the rest
of this paper, we call these two source operands left and right

operands, respectively. Each operand occupies a 16-bit field.
eJSVM has constant loading instructions for fixnum, flonum,

special, string and regexp datatypes. The regexp datatype is
for regular expressions. These constant loading instructions fall
into two categories: value containing instructions, which contain
the constant values in the instructions, and external referencing

instructions, which refer to external constants. The instructions
loading fixnum and special are value containing instructions. The
fixnum instruction, which loads a fixnum constant, has a 16-bit
field for the destination register and a 32-bit field for the constant
value.

The flonum, string, and regexp datatypes each require more
than 32 bits. Thus, the constant loading instructions for them
are external referencing instructions. The constant values to be
loaded using these instructions are created when the VM loads
the intermediate code. An external referencing instruction has a
16-bit field containing a displacement to the location of the con-
stant value.
2.2.3 Type-based Dispatch

In JavaScript, operators are overloaded on operand datatypes.
Thus, an ALR instruction performs type-based dispatch to select
an appropriate implementation based on the operand datatypes.
The VM instruction generator, which is the heart of eJSTK, gen-
erates a specialized type-based dispatching code according to the
given operand specification.

Type-based dispatch is realized in the form of nested switch
statements, each of which tests the pointer or header tag of an
operand and selects the lower level switch statement or an ap-
propriate implementation. The generated type-based dispatching
code basically tests the pointer tags of the operands one by one,
and then the header tags. It is optimized as follows. First, the gen-
erated switch statements do not have branch targets that cannot
be selected according to the given operand specifications. Sec-
ond, the branch targets of a switch statement are merged into a
single branch target to avoid code duplication. Third, if a switch
has only a single branch target as a result of the optimizations
above, the switch statement is removed in order to skip the test
of the tag.

For example, Fig. 3 (a) shows the body of the unspecialized
add instruction, where v1 and v2 are variables holding operands,
dst is a macro to be expanded to the destination register, and
PTAG and HTAG are macros to obtain the pointer and header tags,
respectively. If the pointer tag of an operand is GENERIC, its
header tag has to be tested to distinguish its datatype, because
GENERIC is shared among multiple VM datatypes. Figure 3 (b)
shows the specilalised code for the body of the add instruction
that only works when both operands are fixnums or both operands
are strings. This optimized instruction selects the implementa-
tion solely by testing v1. Furthermore, the test for its header tag
is omitted because fixnum and string have unique pointer tags.
As a result, type-based dispatch is realized with a single switch
statement.
2.2.4 Instruction Interpreter

The instruction interpreter of eJSVM employs threaded

Fig. 3 Body of add instruction.

code [5] for instruction dispatch. Each instruction comprises the
following steps.
(1) Decode the instruction where the operand values are stored

into interpreter’s local variables.
(2) Execute the body of the instruction.
(3) Jump to the next instruction.

For example, the add instruction is shown below I_ADD in
Fig. 4. First, it decodes the instruction; it reads the destination
register number from the instruction and the values of the source
registers; then it stores them in the interpreter’s local variables
r0, v1, v2. Here, Register and JSValue are the types of vari-
ables that have register numbers and JavaScript values, respec-
tively. Next, it executes the body of the instruction that uses those
local variables. The body of the instruction is generated as a sep-
arate file by the VM instruction generator. For I_ADD in Fig. 4,
code like Fig. 3 is generated in insn/add.c.

The fixnum instruction, which loads a fixnum value, is shown
below I_FIXNUM in Fig. 4. It first decodes the instruction as add
does. Here, get_small_immediate is a macro to obtain the
constant in the 32-bit field of the instruction. Next, it executes
the body of the instruction, where it calls cint_to_fixnum to
add a fixnum tag to the obtained integer and stores the tagged
value to the register, the element of the register array, regbase,
indexed by r0. The bodies of the constant loading instructions
are not generated by the VM instruction generator. Rather, fixed
code fragments are used.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 4 Implementation of VM instructions.

2.3 VM Instruction Generator
The VM instruction generator receives an instruction defini-

tion as well as the operand specification. An instruction defi-
nition describes the specifications of an instruction in a domain
specific language (DSL) for defining instructions. In particular, it
describes, for each combination of datatypes of operands, a frag-
ment of a C program to be executed for the datatype combination.
The VM instruction generator generates the body of the VM in-
structions, such as the one in Fig. 3, by merging the type-based
dispatching code, which consists of nested switch statements
generated from the operand specification, and the C code frag-
ments in the instruction definition.

3. Design of Superinstructions

In this research, we combine an ALR and a constant loading
instructions into a superinstruction, which is an ALR instruc-
tion taking a constant operand. For example, a superinstruc-
tion addfixreg is formed by combining the fixnum instruction,
which loads a fixnum value, and the add instruction that receives
the loaded constant as its left operand. We use the word the orig-

inal ALR instructions to refer to the ALR instruction that is a
source of a superinstruction. We also call the operand of a su-
perinstruction to which a constant value is to be given a constant

operand. We give the superinstructions the names of the original
ALR instructions followed by the abbreviations of the datatypes
of the constant for constant operands and reg for the register
operands.

3.1 Format of Superinstruction
Each operand field of an ALR instruction has 16 bits (see Sec-

tion 2.2.2). For superinstructions, we store a bit sequence rep-
resenting a constant value rather than the register number. All
constant loading instructions specify constants in 16 bits, except
for the fixnum instruction. fixnum loads a 32-bit fixnum value.
Thus, we combine a fixnum instruction only when the value can

be represented in 16 bits. We believe this restriction does not de-
grade the usefulness by much because integer constants are usu-
ally small. We also believe that it will be still useful if a future
change to eJSVM reduces the number of bits for an operand field.

3.2 Limitations on Constant Operands
We impose the following limitations on constant operands of

superinstructions to create room for optimizations of type-based
dispatch of superinstructions.

First, we design the superinstructions so that the datatype of
the constant operand is unique for each superinstruction. In the
instruction set of eJSVM, all constant loading instructions are in
one-to-one correspondence with the VM datatypes, except for the
number instruction. The number instruction loads a fixnum (inte-
ger) value that exceeds 32 bits or a flonum (floating point number)
value. However, we decided to disallow superinstructions from
taking integer operands exceeding 16 bits, in Section 3.1. Thus,
we combine a number instruction only when it loads a flonum.

Next, we restrict constant operands to those values whose
datatypes can be determined solely by their pointer tags. This al-
lows superinstructions and their original ALR instruction to share
their implementation by arranging the tests in type-based dispatch
so that the pointer tags of the operands are tested in an appropriate
order (see Section 4.3 for details). In the default configuration, all
constants of eJSVM other than regexps can be determined from
their datatypes by using pointer tags.

A future change to eJSVM may reduce the number of bits for
pointer tags; in that case, pointer tags would not be able to de-
termine some constants. Nevertheless, eJS allows users to cus-
tomize the VM in such a way that they can select datatypes that
can be determined by pointer tags. Thus, the users can select the
datatypes of the constants that they want to allow to be operands
of superinstructions.

4. Implementation of Superinstruction

As we mentioned in Section 2, the code to process an ALR
instruction of eJSVM comprises
• instruction decoding code,
• type-based dispatching code, and
• code for operations to be selected by type-based dispatch

(we call this operation code).
Among these, the type-based dispatching code can be specialized
if the operand datatype is fixed.

In this research, we use superinstructions to reduce execution
time, while minimizing VM bloat. Our policy has two factors.
F1 To minimize VM bloat, the superinstructions share type-

dispatching and operation code with their original ALR in-
struction.

F2 To shorten execution time, type-based dispatching code is
specialized to the datatype of the constant operand.

These two factors have some contradictions. We consider vari-
ous implementation strategies, each of which takes the factors in
a different way.

If we follow only factor F1, the superinstructions and their
original ALR instruction can share the entire of the type-based
dispatching and operation code. We name this implementation

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Table 1 Implementation strategies of superinstructions. IND, IND+SP, and
SH represent “independent”, “independent and specialized”, and
“shared”, respectively.

implementation strategy type-based opera-
dispatch tion

S1 naive (Section 4.1) IND IND
S2 dispatch code sharing (Section 4.2) SH SH
S3 improved dispatch code sharing (Section 4.3) partly SH SH
S4 specialized dispatch (Section 4.4) IND+SP IND
S5 improved specialized dispatch (Section 4.5) IND+SP SH

strategy dispatch code sharing. In this strategy, a superinstruction
jumps to the entry point of the type-based dispatch of its original
ALR instruction.

The dispatch code sharing implementation strategy can be op-
timized by leveraging the datatypes of constant operands. This
optimization is possible when the operand that the first switch
statement of the type-based dispatch tests is a constant in a su-
perinstruction. In this case, the superinstruction skips the first
switch statement. In particular, it jumps to the appropriate
branch of the switch statement rather than the entry point of
the type-based dispatch. We call this implementation strategy im-

proved dispatch code sharing.
If we follow only factor F2, we implement superinstructions

separately from the original ALR instruction. In this implemen-
tation strategy, we can specialize the type-based dispatch of each
superinstruction to the datatype of its constant. We call this im-
plementation strategy specialized dispatch.

Even if we specialize type-based dispatch of superinstructions,
superinstructions can share the operation code with their original
ALR instruction. We call this implementation strategy improved

specialized dispatch. In this implementation, superinstructions
are type-based dispatched to an appropriate operation code of the
original ALR instruction.

In addition to the four implementation strategies above, we will
explain a naive implementation strategy, in which instructions do
not share code and type-based dispatch is not specialized. Table 1
summarizes the implementation strategies, and the following sub-
sections describe them in details.

4.1 Naive Implementation Strategy
In the naive implementation strategy, a superinstruction has its

own code. The code is the same as its original ALR instruction
except for instruction decoding, which loads a constant.

For example, Fig. 5 shows addfixreg, which is the superin-
struction of add taking a fixnum as its left operand. addfixreg
reads an integer value from the left operand field of the instruc-
tion, calls the cint_to_fixnum macro to add the fixnum type
tag to the integer, and stores it in the local variable v1. The
subsequent process is the same as add. Thus, the included file
insn/addfixreg.inc, the body of the instruction, is almost the
same as insn/add.inc, but has different label names that are
used locally to avoid name collisions. The body of an instruction
uses labels described explicitly in the instruction definition and
labels generated by the VM instruction generator. The DEFLABEL
and USELABEL macros in Fig. 5 add a prefix to the former labels.
Instruction definitions have following form:
DEFLABEL(HEAD):

Fig. 5 Superinstruction in naive implementation strategy.

Fig. 6 Dispatch code sharing implementation strategy.

for a label definition and
goto USELABEL(HEAD);

for jumping to a label. For the latter labels, the VM instruction
generator adds prefixes.

4.2 Dispatch Code Sharing
In dispatch code sharing, a superinstruction uses goto to jump

to the entry point of the type-based dispatch of its original ALR
instruction. In this way, the superinstruction and its original ALR
instruction share code. These two instructions are generated in
the same scope, because they share the interpreter’s local vari-
ables to store their operands.

Figure 6 shows the addfixreg instruction in the dispatch
code sharing implementation strategy. I_ADDREGFIX is its en-
try point. It decodes the instruction, stores the operands to the
interpreter’s local variables r0, v1, and v2, and then jumps to the

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

label I_ADD_BODY placed before the body of the add instruction,
insn/add.inc.

4.3 Improved Dispatch Code Sharing
In improved dispatch code sharing, a superinstruction jumps

into the middle of the type-based dispatch of its original ALR
instruction, if possible, to skip a switch statement.

Figure 7 (a) shows the addfixreg instruction in the improved
dispatch code sharing implementation strategy. This is similar
to the unimproved version, but the labels of the goto statements
differ. In this improved strategy, it jumps to a label placed in
the middle of the type-based dispatch in add.inc, as shown in
Fig. 7 (b), the body of the add instruction. The left operand (the
value of v1) of addfixreg can statically be determined to be a
fixnum. Thus, it skips dispatch based on the datatype of its left
operand and jumps to an appropriate entry point of dispatching
on the basis of the right operand (the value of v2).

To make this possible, the VM instruction generator computes
the paths of the tree of the nested switch statements that can
be statically followed when parts of the operand datatypes are

Fig. 7 Improved dispatch code sharing implementation strategy.

known, for all combinations of operand datatypes, and it adds a
label to the end of each path. For the add instruction, it adds the
label TLadd_fixnum_any where the left operand is known to be
fixnum and the right is unknown, where any corresponds to an
operand whose datatype is not known.

To create more chances to skip tests in type-based dispatch, we
arrange the order of the tests of the operand datatypes. If the type-
based dispatch tests the left and right operands in this order like,
add.inc in Fig. 7 (b), a superinstruction whose right operand is
a constant, but the left (right-constant superinstruction), cannot
skip the type-based dispatch. Thus, the VM instruction genera-
tor creates a type-based dispatch testing the right operand before
the left when such a superinstruction is added. When both left-
constant and right-constant superinstructions are added, the user
decides the priority. eJSVM tests the pointer tags of all operands;
then, it tests the header tags, if necessary. This is because testing a
header tag is costly, as it involves memory accesses. Because our
design in Section 3.2 restricts the datatypes of constant operands
to those that can be determined by pointer tags, rearranging the
order of the tests of the pointer tags suffices for this purpose, and
no extra header tag tests are needed.

4.4 Specialized Dispatch
Our design in Section 3.2 guarantees that the datatype of the

constant operand of every superinstruction is unique. This al-
lows the VM generator to generate efficient type-based dispatch-
ing code specialized to the datatypes of constant operands.

Figure 8 (a) shows the addfixreg instruction in the special-
ized dispatch implementation strategy. Its body is generated using
the VM instruction generator from the operand specification that
restricts its left operand to fixnum. Figure 8 (b) shows the gen-
erated code. Because the left operand is restricted to fixnum, the
dispatching code testing the left operand is omitted, and the nest
of switch statements is shallower. This reduces both VM bloat
and type-based dispatch time.

We have to be careful about the case where a superinstruc-
tion uses the code of its original ALR instruction. This happens
when the instruction carries out a second type-based dispatch af-
ter converting the datatype of its constant operand. For exam-
ple, in JavaScript, when a string operand and an integer operand
are given to the plus operator, it converts the integer operand to a
string and concatenates them. There are many other combinations
of operand datatypes that cause type conversion. eJS handles
these cases with compact code uniformly by jumping to the entry
point of the outermost switch statement of type-based dispatch
after type conversion (see Fig. 3 (a)). However, if the operand
datatypes are restricted, the type-based dispatching code may not
have an appropriate branch target for the converted datatype from
the constant operand. For example, the body of the addregfix
instruction cannot handle the left operand if it is converted to a
string value because it is specialized to fixnum right operands.

To handle these cases, the labels in the original ALR instruc-
tions are used for the jump targets in the superinstructions if the
labels are derived from the descriptions in the instruction defi-
nitions. For this reason, the USELABEL macro before including
insns/addfixreg.inc adds the ADD prefix. Note that the la-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 8 Specialized dispatch implementation strategy.

bels defined in insns/addfixreg.inc are not used. Also note
that superinstructions and their original ALR instruction are gen-
erated in the same scope because they share the interpreter’s local
variables.

4.5 Improved Specialized Dispatch
In the improved specialized dispatch implementation strategy,

type-based dispatch is specialized to the datatypes of constant
operands, similarly to its unimproved version. In the improved
version, a superinstruction jumps to the appropriate operation
code of its original ALR instruction after a type-based dispatch.
Figure 9 shows the bodies of the add and addfixreg instruc-
tions in this implementation strategy. Each fragment of opera-
tion code in add.inc has a label like TLadd_fixnum_fixnum.

Fig. 9 Improved specialized dispatch implementation strategy.

addregfix.inc jumps to the appropriate label among them af-
ter the type-based dispatch.

5. Compiler

We modify the eJS compiler so that it uses superinstructions
implemented in the VM. The compiler originally had a con-
stant propagation optimizing pass. This pass replaces an ALR
instruction with a constant loading instruction when both source
operands are determined to be constants. However, it replaces the
ALR instruction only when both operands are constants because
the normal eJSVM does not have ALR instructions one of whose
operand is a constant.

We extend this constant propagation pass in a way that it re-
places an ALR instruction with a superinstruction if one of its
operands comes from a single constant loading instruction, and
if the appropriate superinstruction is available in the VM. Even
if the pass successfully replaces an ALR instruction, it leaves the
constant loading instruction. This is because the constant can be
used by other instructions as well. If no other instructions use the
constant, the constant loading instruction will be eliminated as a
redundant instruction in a following optimization pass.

Figure 10 (a) shows an example. This program is compiled to
the code shown in Fig. 10 (b), where the variable ppfix is put
in a register. The first operand of each instruction is its destina-
tion register. If the VM only has the superinstruction addregstr,
whose right operand is a string constant, the program is compiled
to the code shown in Fig. 10 (c) using this superinstruction.

A superinstruction may be executed quicker because its type-
based dispatch is specialized to the datatype of its constant
operand in some implementation strategies. Therefore, the com-
piler uses superinstructions aggressively even if the constant load-
ing instructions cannot be eliminated.

6. Evaluation

We implemented all the implementation strategies described in
Section 4 in eJSTK and evaluated them. We used a subset of the

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 10 Compilation using superinstructions.

Fig. 11 triple benchmark.

SunSpider benchmark suite *3 and the triple benchmark shown in
Fig. 11 as a representative program using a superinstruction with
a string constant operand. The SunSpider benchmarks were mod-
ified in the same way as in the article [2]: the number of iterations
were adjusted to be suitable for the evaluation of eJSVM, for ex-
ample.

We generated VMs for each benchmark program so that the
VM had the superinstructions listed in Table 2. We selected
the superinstructions in the following way. First, we counted the
number of executions of each instruction in an execution of the
benchmark program on the eJSVM that has all the possible su-
perinstructions. Then, we picked those that are executed in more
than 1% of the total execution count. For the improved dispatch
code sharing implementation strategy, when we added both left-
constant and right-constant superinstructions made from the same
ALR instruction, we made eJSVM so that more frequently exe-
cuted instructions could skip the type-based dispatch.

Although users collect profiling information in a normal use
case not only for superinstructions but also for limiting operand
datatypes of instructions, one may interested in the performance
of unspecialized VM to a particular application in the sense of
selection of superinstructions. Thus, in addition to these spe-
cialized VMs with a dedicated set of superinstructions for each
benchmark program (indicated by “specialized” in the figures),
we measured two unspecialized VMs that had commonly used
superinstructions: “generic 1” and “generic 2”. The “generic 1”
VM had all superinstructions listed in Table 2. The “generic 2”
VM had those five superinstructions that appear twice or more in
Table 2, as indicated by the dagger marks (†). We generated these
unspecialized VMs in every implementation strategy described in
Section 4.

We measured the execution times on Raspberry Pi 3. The con-

*3 https://webkit.org/perf/sunspider/sunspider.html

Table 2 Implemented superinstructions.

program superinstruction execution ratio (%)
3d-cube addregfix† 5.35

lessthanregfix† 1.05
access-binary-trees subregfix† 2.44

lessthanfixreg 1.66
mulfixreg 1.63

access-fannkuch addregfix 6.68
rightshiftregfix† 1.01

access-nbody addregfix 1.84
access-nsieve addregfix 8.10
bitops-3bit-bits-in-byte bitandregfix 9.99

bitandfixreg 9.99
leftshiftregfix† 6.66
lessthanregfix 3.36
addregfix 3.34
rightshiftfixreg 3.33
rightshiftregfix 3.33

bitops-bits-in-byte lessthanregfix 10.42
leftshiftregfix 8.33
addregfix 5.21

bitops-bitwise-and-func addregfix 9.09
controlflow-recursive subregfix 6.38

lessthanregfix 3.23
equalregfix 2.34

math-cordic addregfix 3.90
lessthanregfix 3.90
mulregfix 1.20

math-spectral-norm addregfix 10.28
divregfix 3.39
divfixreg 3.39

string-fasta addregfix 1.11
triple addregstr 10.71

addstrreg 3.57
addregfix 3.57

figuration is listed below.
Compiler: gcc 8.2.0 (arm-linux-gnueabihf)
Optimization: -Os -marm
OS: Raspbian GNU/Linux 9

We used two operand specifications: any and fixnum. With the
any operand specification, all the VM instructions accept any
datatype of operands. fixnum is a normal use case of eJS. With
fixnum, the add instruction accepts operands of both fixnums or
both strings, and the other ALR instructions accept only fixnum

operands. The VMs generated with fixnum could not execute
some of the benchmarks, because these VMs were specialized
to certain applications in the sense of the operand datatype re-
striction.

6.1 Effectiveness of Superinstruction
Figure 12 shows the execution times of the benchmark pro-

grams on each VM. The results are normalized to the counter-
part on the VM without superinstructions. The suffixes of the
benchmark names, any and fixnum, indicate the operand speci-
fications.

Figure 13 shows the sizes of the interpreters, where dashed
lines indicate the size of the interpreter of the VM without su-
perinstructions. The legend keys from “S1” to “S5” correspond
to those in Table 1. The sizes of the built-in functions are not
counted as part of the interpreter sizes, because we expected that
only built-in functions that are actually used would be imple-
mented in applications of memory constraint embedded systems.
The size of the libc library was not counted either, because al-
though eJSVM depends on some standard library functions, such

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 12 Normalized execution times.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 13 Interpreter sizes. Dashed lines indicate the sizes of the interpreters without superinstructions.

as string parsing functions for numbers, we plan to implement
such functions with our own short code in the future.
6.1.1 Execution Time

For the VMs with dedicated sets of superinstructions generated
using the any operand specification, the results fell into two cat-
egories. For bitops-3bit-bits-in-byte and bitops-bits-in-byte, the
execution times were substantially reduced by superinstructions.
For example, for improved dispatch code sharing, they were re-
duced by around 10%. These benchmarks are those that execute
superinstructions rather frequently (see Table 2). For the other
benchmarks, there were few differences even when the execu-
tion times were reduced; some of the benchmarks became slightly
slower when certain implementation strategies were used. The re-
sults for fixnum operand specification showed a similar tendency,
but with a greater reduction in execution time. These VMs are
specialized in the sense of the operand datatype restriction.
6.1.2 Size of Interpreter

The sizes of the interpreters increased by adding superinstruc-
tions. The increases differed depending on the number of superin-
structions added and the implementation strategy. For bitops-

3bit-bits-in-byte, we added the most atasuperinstructions among
the VMs with dedicated sets of superinstructions. Depending
on the implementation strategy, the interpreter became between
1 KB and 4 KB larger when the any operand specification was

used.
6.1.3 Merits of Dedicated Set of Superinstructions

The VMs with dedicated sets of superinstructions outper-
formed those with commonly used superinstructions (“generic
1” and “generic 2”) in terms of execution time and interpreter
size, though the generic VMs also reduced their execution time
(Fig. 12). On the other hand, users have to make special effort to
use a VM with a set of superinstructions dedicated to their appli-
cation. This effort includes collecting profiling information from
the application in order to select the superinstructions and gen-
erating the VM. However, users would still have to do this in a
normal use case of eJSTK, even if they do not use superinstruc-
tions, as we have described.

6.2 Comparison of Implementation Strategies
We compared implementation strategies in detail. We added

seven frequently executed superinstructions in bitops-3-bit-bits-

in-byte to the VM one by one from the most frequent one to the
least. Figure 14 plots the execution times against interpreter size.
The data point closest to the upper-left corner on each curve rep-
resents the result of the VM with one superinstruction, and the
number of superinstructions increases along the line. The execu-
tion times are normalized to the counterpart on the VM without
superinstructions and the sizes are the increases relative to the

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 14 Execution times and interpreter sizes for bitops-3bit-bits-in-byte.

VM without superinstructions.
Although the execution times were usually reduced and the in-

terpreters usually became larger as more superinstructions were
added in every implementation strategy, the results substantially
differed from one strategy to another. The curves were sometimes
not monotonic; we think the changes to the code affected the op-
timization strategy of the gcc compiler used to compile the VMs.
6.2.1 Effect of Code Sharing in Limiting VM Bloat

The sizes of the interpreters generated from the any operand
specification increased substantially for the naive and specialized
dispatch implementation strategy. This is because they duplicated
type-based dispatching and operation code. Note that, for the
specialized dispatch implementation strategy, the increase was
milder than the one for the naive implementation strategy because
the type-based dispatch of superinstructions was specialized. For
the improved specialized dispatch implementation strategy, the
increase was even milder because the operation code was shared.
For the dispatch code sharing implementation strategy and its im-
proved version, the sizes increased the least, although the sizes
sometimes did not increase monotonically against the number of
superinstructions.

With the fixnum operand specification, the type-based dispatch
of the original ALR instructions were sufficiently optimized by
leveraging the restriction on the operand datatypes. Thus, the

sizes of the interpreters in the naive and specialized dispatch im-
plementation strategies were similar. Similarly, the sizes of the
interpreters were similar for the other strategies. In other words,
the results fell into two groups: the group of strategies that shared
the operation code and those that did not.
6.2.2 Effect of Specialization of Type-based Dispatch

When we used the any operand specification, the VMs gener-
ated in some of the implementation strategies that somehow re-
duced the cost of type-based dispatch (the specialized dispatch,
improved specialized dispatch, and improved dispatch code shar-
ing implementation strategies) were faster than the others. In par-
ticular, the specialized dispatch and improved dispatch code shar-
ing implementation strategies generated the fastest VMs, with the
exception of the data point at which seven superinstructions were
added to the specialized dispatch implementation strategy.

Regarding the fixnum implementation strategy, the VMs in the
group that shared the operation code were faster than the others,
regardless of whether the type-based dispatch was specialized or
not. This is because the type-based dispatch had been sufficiently
specialized by leveraging the information in the operand specifi-
cations.
6.2.3 Effect of Reducing Instruction Dispatch

The executions become faster even in the naive and dispatch
code sharing implementation strategies. This is because the num-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

ber of instruction dispatches and number of accesses to registers
in memory were reduced.
6.2.4 Other Performance Factors

When we used the fixnum operand specification, the VMs in
the implementation strategies that shared operation code were
slightly slower than the others. This difference depends on
whether the goto statements jumping from the superinstructions
to the operation code shared with the original ALR instructions
were executed or not.

7. Related Work

Adding superinstructions is a well-known technique to im-
prove VM performance. Proebsting [3] added superinstructions
to a C language interpreter to improve its performance. Proebst-
ing generated an interpreter from the specifications of the prim-
itive instructions and a list of instructions to be combined. Ertl
et al. [6] developed Vmgen, a system to generate a VM with su-
perinstructions from the templates of primitive operations and a
specification of superinstructions. Vmgen was used to develop
Java VMs for embedded systems [7], [8]. We also added superin-
structions. But our target was eJSVM, which posed a new chal-
lenge. Proebsting’s interpreter and the VMs generated by Vmgen
assume that intermediate code is type-monomorphic. Thus, a VM
generator does not have a chance to optimize the type-based dis-
patching. In contrast, eJSTK generates a type-based dispatching
VM. We proposed optimizations of type-based dispatching that
leverage the datatypes of constant operands.

For VMs running on desktop computers, multiple instructions
are often combined dynamically. Piumarta et al. [9] combined
instructions dynamically and improved the performance of an in-
terpreter with a RISC-style instruction set. In approaches such as
JIT compilation, a VM has a machine code optimization mecha-
nism because combining VM instructions creates extra room for
optimization of the machine code implementing the combined in-
struction. In contrast, we optimized ahead of time because we
target embedded systems. We focused on optimizations to reduce
the cost of type-based dispatch, which is another difference from
previous work. Regarding optimizations for specific languages,
we note that Zakirov et al. [10] proposed superinstructions for the
Ruby VM to eliminate boxing of floating-point numbers.

Our superinstructions are ALR instructions taking constant
operands created from constant loading and primitive ALR in-
structions. However, there is another option: to develop a
single VM with a complex instruction set computer (CISC)
style instruction set including ALR instructions taking constant
operands. JerryScript is a JavaScript VM with such an instruc-
tion set. The body of the interpreter loop of JerryScript com-
prises three steps. The first step decodes an instruction and loads
operands. The operand values are stored in the interpreter’s vari-
ables. The second step is instruction dispatch and computation
of the instruction. The third step stores the result to the appropri-
ate location. The first and third step may access various locations
such as slots on the stack and registers. Although these steps are
implemented with a substantial amount of complicated code, they
are shared among all instructions. Although we prototyped this
approach for eJS, it degraded its performance.

In this research, we minimized VM bloat by implementing su-
perinstructions so that they can share the type-based dispatch and
operation code. Peng et al. [11] proposed a code sharing tech-
nique to avoid VM bloat due to duplication of instruction code
introduced by stack caching in the context of stack-based inter-
preters.

8. Conclusion

We introduced superinstructions, which are combinations of
constant loading and ALR instructions, to eJS, a JavaScript
system for embedded systems. We compared five implementa-
tion strategies carrying out different optimization in the sense of
code sharing and specialization of type-based dispatch leveraging
datatypes of constant operands. Although all of the implementa-
tion strategies we tested reduced the execution time, the degree of
improvement and increases in the size of the interpreters differed
from one strategy to another.

Acknowledgments The authors would like to thank all
members involved in the eJS project. They would also like to
thank the reviewer for valuable comments.

This work was supported by the JSPS KAKENHI Grant Num-
ber 16K00103.

References

[1] Kataoka, T., Ugawa, T. and Iwasaki, H.: A Framework for Construct-
ing JavaScript Virtual Machines with Customized Datatype Represen-
tations, Proc. SAC 2018, pp.1238–1247, ACM (2018).

[2] Ugawa, T., Iwasaki, H. and Kataoka, T.: eJSTK: Building JavaScript
virtual machines with customized datatypes for embedded systems,
Journal of Computer Languages, Vol.51, pp.261–279 (2019).

[3] Proebsting, T.A.: Optimizing an ANSI C Interpreter with Superoper-
ators, Proc. POPL 1995, pp.322–332, ACM (1995).

[4] ECMA International: Standard ECMA-262 - ECMAScript Language
Specification, 5.1 edition (2011).

[5] Bell, J.R.: Threaded Code, Comm. ACM, Vol.16, No.6, pp.370–372
(1973).

[6] Ertl, M.A., Gregg, D., Krall, A. and Paysan, B.: Vmgen - A gener-
ator of efficient virtual machine interpreters, Software: Practice and
Experience, Vol.32, No.3, pp.265–294 (2002).

[7] Beatty, A., Casey, K., Gregg, D. and Nisbet, A.: An Optimized Java
Interpreter for Connected Devices and Embedded Systems, Proc. SAC
2003, pp.692–697, ACM (2003).

[8] Ertl, M.A., Thalinger, C. and Krall, A.: Superinstructions and repli-
cation in the Cacao JVM interpreter, Journal of .NET Technologies,
Vol.4, pp.25–32 (2006).

[9] Piumarta, I., Riccardi, F. and Rocquencourt, I.: Optimizing Direct
Threaded Code By Selective Inlining, Proc. PLDI 1998, pp.291–300,
ACM (1998).

[10] Zakirov, S., Chiba, S. and Shibayama, E.: How to Select Superinstruc-
tions for Ruby, IPSJ Online Transactions, Vol.3, pp.54–61 (online),
DOI: 10.2197/ipsjtrans.3.54 (2010).

[11] Peng, J., Wu, G. and Lueh, G.-Y.: Code Sharing among States for
Stack-Caching Interpreter, Proc. IVME 2004, pp.15–22, ACM (2004).

Tomoya Nonaka was born in 1996. He
received his B.E. degree from Kochi Uni-
versity of Technology in 2019. He is a
member of IPSJ.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Tomoharu Ugawa received his B.Eng.
degree in 2000, M.Inf. degree in 2002,
and Dr.Inf. degree in 2005, all from Kyoto
University. He worked for a research
project on real-time Java at Kyoto Univer-
sity from 2005 to 2008. In 2008–2014,
he was an assistant professor at the Uni-
versity of Electro-Communications. He is

currently an associate professor at Kochi University of Technol-
ogy. His work is in the area of implementation of programming
languages with a specific focus on memory management. He re-
ceived the IPSJ Yamashita SIG Research Award in 2012.

c© 2019 Information Processing Society of Japan

