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非線形構造制約付き大規模機械学習問題への取り組み
～ 非厳密リーマン多様体最適化の理論と応用 ～

笠井 裕之 †1,a)

概要：本講演では，非線形構造制約付き大規模機械学習問題への取り組みについて紹介する．具体的には，
大規模データを対象とした非厳密リーマン多様体最適化理論の基本と研究成果について紹介する．講演の
前半部では，機械学習の研究について階層モデルにより整理し，近年の大規模機械学習の課題について
最適化問題の視点から整理する．その後，構造制約問題に着目し，リーマン多様体最適化が活躍する問題
設定と実際の適用事例を紹介する．そして，あらためてリーマン多様体最適化問題を定義し，その最適化
手法について紹介する．後半は，大規模機械学習問題へのアプローチとして，講演者らが取り組む非厳密
リーマン多様体最適化理論の基本と，近年の研究成果について紹介する．最後に，最適化処理を考慮した
多様体の幾何空間についても触れる．

1. Introduction

Nonlinear and nonconvex constraints have attracted
much attention recently in machine learning applications.
They include, for example, orthogonality, fixed rankness,
and symmetric positive definiteness. One versatile frame-
work to tackle the problems under such constraints is Rie-
mannian optimization ormanifold optimization. This pre-
sentation provides a basic concept, fundamentals and ap-
plications of Riemannian optimization in machine learn-
ing field. In addition, some recent progresses on inexact
approaches for large-scale learning problems are mainly
addressed.

2. Riemannian optimization

We consider the optimization problem

min
x∈M

f(x), (1)

where f : M → R is a smooth real-valued function on a
Riemannian manifold M [1], [2]. The particular focus is
when f has a finite-sum structure, which frequently arises
as big-data problems in machine learning applications.
Specifically, we consider the form f(x)≜ 1

n

∑n
i=1 fi(x),

where n is the total number of samples and fi(x) is the
cost function for the i-th (i ∈ [n]) sample.
“Riemannian optimization translates the constrained

optimization problem (1) into an unconstrained optimiza-
tion problem over the manifold M”. This viewpoint has
shown benefits in many applications. The principal com-
ponent analysis and subspace tracking problems are de-
fined on the Grassmann manifold [3]. The low-rank ma-
trix & tensor completion problems are examples on the
manifold of fixed-rank matrices and tensors [4], [5]. The
linear regression problem is defined on the manifold of the
fixed-rank matrices. The independent component analy-
sis problem requires a whitening step that is posed as a
joint diagonalization problem on the Stiefel manifold.
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3. Inexact Riemannian optimization

3.1 First-order stochastic optimization

A popular approach to solve (1) is the Riemannian
steepest descent (RSD) algorithm [1], which is traced back
to Luenberger’s work in 1972. It calculates the Rieman-
nian full gradient gradf(x) every iteration, which can be
computationally heavy when the data size n is extremely
large. To address this issue, the Riemannian stochastic
gradient descent (RSGD) algorithm, which is a counter-
part of the stochastic gradient descent (SGD) in the Eu-
clidean space [6], becomes a computationally efficient ap-
proach [7]. The advantage of RSGD is that it calculates
only Riemannian stochastic gradient gradfi(x) for an i-th
sample every iteration, which results in that the complex-
ity per iteration is independent of n.
However, similarly to SGD, RSGD suffers from slow

convergence due to a decaying stepsize . For this issue,
variance reduction (VR) methods on Riemannian mani-
folds, including RSVRG [8], [9], [10] and RSRG [11],
have achieved a faster convergence rate, which are gen-
eralization of the algorithms in the Euclidean space [12].
The core idea is to reduce the variance of noisy stochastic
gradients by periodical full gradient estimations, resulting
in a linear convergent rate. It should, however, be pointed
out that such Riemannian VR methods require retraction
and vector transport operations at every iteration.
Besides, a class of algorithms including, for example,

Adam, AdaGrad, and RMProp, that has become increas-
ingly common lately, especially in deep learning, adapts
the learning rate of each coordinate of the past gradients.
However, such explorations on Riemannian manifolds are
relatively new and challenging. This is because of the in-
trinsic nonlinear structure of the underlying manifold and
the absence of a canonical coordinate system. In machine
learning applications, however, most manifolds of interest
form as matrix with notions of row and column subspaces.
To this end, such a rich structure should not be lost by
transforming matrices to just a stack of vectors. For this
particular purpose, RASA has been very recently pro-
posed for problems on Riemannian matrix manifolds by
adapting the row and column subspaces of gradients [13].
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3.2 Second-order stochastic optimization

All the above algorithms are first-order algorithms,
which guarantee convergence to the first-order optimality
condition, i.e., ||gradf(x)||x = 0, using only the gradient
information. Thus, their performance in ill-conditioned
problems suffers due to poor curvature approximation.
Second-order algorithms, on the other hand, alleviate
such effects by exploiting curvature information effec-
tively. Therefore, they are expected to converge to a solu-
tion that satisfies the second-order optimality conditions,
i.e., ||gradf(x)||x = 0 and Hessf(x) ⪰ 0, where Hessf(x)
is the Riemannian Hessian of f at x. The Riemannian
Newton method is a second-order algorithm, which has a
superlinear local convergence rate [1]. It, however, lacks
global convergence and its practical variants are compu-
tationally expensive to implement. A popular alterna-
tive is the Riemannian limited memory BFGS algorithm
(RLBFGS) that requires lower memory. It, however, ex-
hibits only a linear convergence rate and requires many
vector transports of curvature information pairs. Finally,
the Riemannian trust-region algorithm (RTR) comes with
a global convergence property [1] and a superlinear local
convergence rate [1].
A common issue among second-order algorithms is

higher computational costs for dealing with exact or ap-
proximate Hessian matrices, which is computationally
prohibitive in a large-scale setting. To address this issue,
inexact RTR has been proposed [14], where Sub-RTR
adopts sub-sampling techniques that have recently been
proposed in the Euclidean space. On the stochastic front,
the VR methods have been recently extended to take cur-
vature information into account as R-SQN-VR [15].

4. Geometries for optimization

Recent many applications in data science and engi-
neering increasingly have multidimensional or multi-array
data structure called as tensors. The tensor-based learning
problem or simply the tensor learning problem has gained
much attentions in machine learning fields. Examples of
such tensor learning problems include, to name a few,
tensor completion and decomposition, low-rank regres-
sion, multilinear multitask learning, and spatiotemporal
regression. Preconditioned Tucker manifold with a
quotient manifold structure that represents the Tucker de-
composition of tensor has been proposed [5]. It especially
uses manifold preconditioning with a tailored metric (in-
ner product) in the Riemannian optimization framework
on quotient manifolds. More concretely, a novel Rieman-
nian metric or inner product is proposed that exploits the
second-order information as well as the structured symme-
try in the Tucker decomposition.
Lastly, a novel Riemannian geometry of a generalization

of the simplex constraint to constraints with matrices, i.e.,
the matrix simplex constraint X1+X2+. . .+XK = I, has
been proposed [16]， where Xi ⪰ 0 is a symmetric posi-
tive semidefinite. It is called as the simplex of positive
definite matrices. Although the constraint is a natural
generalization of the simplex constraint, its study is rather
limited. It focuses on developing optimization-related in-
gredients that allow to propose optimization algorithms
on this constraint set. The expressions of the ingredients
extend to the case of Hermitian positive definite matrices.

5. Furthermore

There exist active efforts for numerical tools of Rieman-

nian optimization. Among them, a de-facto standard tool
is Manopt [17] *1, where some works above are integrated.
In addition, McTorch *2 has been recently released [18] for
a manifold optimization library for deep learning. They
support various ready-to-use manifold factories and Rie-
mannian optimization solvers.
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