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Improved Algorithms for Online Load Balancing

Yaxiong Liu1,3,a) Kohei Hatano2,3,b) Eiji Takimoto1,c)

概要：We construct algorithms for online load balancing and its extension in the framework of online learning.
On each round a player predicts a distribution over K-machines. Then the player receives the true load of each
machine. The cost incurred by the player is the p-norm (if p = ∞, the makespan) of the cumulative load vector.
Our algorithms achieve the best known bound for p = ∞ and an improved bound for p > 2. In particular, our
algorithm for the online load balancing involves linear programming and second order cone programming, which
are solved in polynomial time.
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1. Introduction

We consider the online learning problem for global cost

functions posed by Even-Dar et al. [5]. A motivating exam-

ple of the problem is an online load balancing problem defined

as follows. There are K-parallel machines and the protocol is

defined as a game between the player and the environment. On

each round t = 1, . . . , T , (i) the player selects a distribution

αt over K-machines, which can be viewed as an allocation of

a task, (ii) then the environment assigns loss lt,i for each ma-

chine i and the load of machine i is given as αt,ilt,i. The goal

of the player to minimize the makespan of cumulative loads of

all machines after T rounds, i.e., maxi=1,...,K
∑T

t=1 αt,ilt,i, com-

pared relatively to the makespan obtained by the optimal static

allocation α∗ in hindsight. More precisely, the goal is to min-

imize the regret, the difference between the player’s makespan

and the static optimal makespan. The makespan cost can be

viewed as a ∞-norm of the vector of cumulative loss of each

machine and can be generalized to the p-norm (p > 2). We re-

fer the online problem for global cost functions as the problem

where the cost is given as the p-norm of cumulative losses (we

will give a formal definition of the problem in the next section).

The problem of online learning for global functions is dif-
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ferent from the standard problem of online learning or online

convex optimization (e.g., [4], [6], [11]) in that the cost of on-

line learning/online convex optimization is given as a sum of

convex functions among rounds, while the cost in this problem

is not. So, apparently, techniques of online learning cannot be

applied to this problem directly. The problem of online learn-

ing for global functions also differs from the standard online

load balancing problem in the online algorithm literature (e.g.,

[2]). A main difference is that the online algorithm literature

considers the competitive ratio, the total cost of the player di-

vided by that of the best sequence of allocations. Therefore, the

competitor in the competitive analysis is stronger, while the re-

gret analysis of online learning considers the regret w.r.t. the

static optimal solution as a performance measure.

Even-Dar et al.[5] gives an algorithm based on the regret

minimum framework by involving an extra concept, the Black-

well approachability [3], to a target set, which is defined in the

following section. This algorithm can give an upper bound to

the regret of the online load balancing problem in O(
√

KT ).

In the same paper, the authors give another algorithm, DIFF,

for the makespan problem with an upper bound of the regret

as O((ln K)
√

T ). The reason why the first algorithm achieves a

relative bad regret bound is that we can not give a good enough

convergence rate to the target set from the L2-norm to L∞-

norm. With other words, we can not give a small enough upper

bound for the L∞-norm distance between the average payoff

vector to the target set, if we can only apply L2-norm distance

to measure the convergence rate to our target set. Since the
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running procedure of DIFF is not easy, naturally we prefer to

improve the algorithm following Blackwell approachability.

Rahklin et al. [10] give a theoretical result for the online load

balancing problem, that the upper bound to regret can achieve

O(
√

(ln K)T ), rather than O((ln K)
√

T ). However there is no

efficient algorithm given in this paper to obtain the regret. The

above papers inspire us that we can product an efficient algo-

rithm to achieve O(
√

(ln K)T ) regret, if we can find a good

enough convergence rate to our target set, i.e., if we can give a

tighter bound for the L∞-norm distance from the average pay-

off vector to target set.

In following years, there are some new explorations about

the equivalence between the Blackwell approachability and on-

line linear optimization [1], in addition and online convex op-

timization by involving a support function [12]. These results

show that choosing an appropriate online convex optimization

algorithm we may give a better bound to the convergence rate

not only for L2-norm but also for L∞-norm. More specifically

speaking, the convergence rate of the target set can be bounded

by the regret of a chosen online convex optimization algorithm,

i.e., the distance from the average payoff vector to the target set

is bounded by the regret, of course this distance can be in L∞-

norm.

In conclusion we can construct an algorithm for online load

balancing problem with a potential better upper bound to re-

gret, based on a faster convergence speed to the target set. This

faster convergence speed is guaranteed by an online convex op-

timization algorithm. Our main contributions in this paper are

in following:

• 1. We give a reduction from online learning with global

cost function with respect to p-norm to online linear opti-

mization.

• 2. We construct an algorithm for online load balancing

problem with the foundation of an online convex opti-

mization algorithm, EG plus minus [7], [8]. This algo-

rithm can be considered as a combination of an online

convex optimization algorithm and linear programming.

And we show that this new algorithm achieves an upper

bound to regret as O(
√

(ln K)T ) for running T rounds.

• 3. We give some details for implementation of this algo-

rithm. In our algorithm we do not apply Follow the Leader

or Gradient descent these ordinary online learning algo-

rithms directly, but on each round Linear Programming

and Second Order Cone Programming(SOCP) [9].

This paper is composed in following form. In section 2 we

introduce the basic definitions in this paper like online load bal-

ancing problem, Blackwell approachability and target set. Next

in section 3 we give the algorithm for online global cost func-

tion with respect to p-norm and online load balancing problem.

Then in section 4 we give some details in implementation of

this algorithm.

2. Preliminaries

First we give some notations in this paper. We utilize ∥ · ∥
to denote the norm of a vector. Especially, for x ∈ Rd,

∥x∥p =
(∑d

i=1(xi)d
)1/d
. ∥x∥∞ = maxi xi. Moreover we denote

∥x∥∗ as dual norm of ∥x∥, and ∥x∥∗ = sup{x|⟨x, z⟩, ∥z∥ ≤ 1}.
The formal definition of online global cost function problem

is as follows: At round t = 1, · · · ,T, firstly a learner chooses

a distribution αt ∈ ∆(K), then this learner receives the vector

of load of K alternatives or machines as lt ∈ [0, 1]K .We define

that LT (i) =
∑T

t=1 lt(i), (α ⊙ l) = (α(1)l(1), · · · , α(K)l(K)). A

function C(·) : RK → R is defined as global cost function. We

denote that Cp(a) = ∥a∥p. For a certain algorithm A we define

the cumulative load as follows:

Cp(LAT ) = Cp

 T∑
t=1

αt ⊙ lt

 , (1)

and the competitor is defined as follows:

C∗p(LT ) = min
α∈∆(K)

Cp

 T∑
t=1

α ⊙ lt

 . (2)

Hence the regret of the online global cost function with p-norm

is in following:

RegretT,p = Cp(LAT ) −C∗p(LT ). (3)

Note that in this paper we consider the case that p > 2. Of

course in online load balancing problem, we set that p = ∞,
and thus we have the regret for online load balancing problem

as

RegretT,∞ = C∞(LAT ) −C∗∞(LT ). (4)

Now we have a review to Blackwell approachability theo-

rem. For two convex and compact set A ⊂ Ra and B ⊂ Rb, we

suppose a vector valued function r : Ra × Rb → Rc, as pay-

off function, and an arbitrary convex and closed set S ∈ Rc as

target set.

Firstly we introduce a Blackwell approaching game, which

is a game between a player and environment. At each round

t = 1, · · · ,T,
• 1. this player picks up a vector at ∈ A.

• 2. environment chooses a vector bt ∈ B.

The target of the player is to let the average payoff vector into

the target set after repeating this game T rounds with the en-

vironment. To ensure that this player can achieve his goal, we

may involve the following definitions.
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Definition1 [3] We say a set S is approachable with con-

vergence rate γ(t) if there exists an algorithm for choosing a se-

quence of vectors a1, · · · ,at ∈ A such that for every sequence

b1, · · · , bt ∈ B and all integers t ≥ 1 :

• 1. the value of at depends only on the value of r(as, bs) for

s < t.

• 2. the average payoff r̄t =
1
t
∑t

s=1 r(as, bs) satisfies

dist(r̄t, S ) ≤ γ(t).
Note that in this definition the distance of average payoff

to target set dist(r̄t, S ) is defined according to Lp-norm, as

dist(r̄t, S ) = infs∈S ∥r̄T − s∥p. In online load balancing prob-

lem p = ∞, specially.

Definition2 We say that S satisfies the Blackwell criterion

if S is convex and closed and for every b ∈ B there exists a ∈ A

such that r(a, b) ∈ S .

In p-norm global cost function problem, where p > 2, we let

A as ∆(K) and B as [0, 1]K . And payoff function rt is defined as

rt(αt, lt) = (αt ⊙ lt, lt), where (αt ⊙ lt, lt) is a 2K-dimensional

vector, moreover we define that r̃T =
∑T

t=1 rt = (LAT , LT ). Fi-

nally, we define the target set in online learning as

S = {(x,y) ∈ Rk × Rk : xi, yi ∈ [0, 1]; Cp(x) ≤ C⋆p (y)}. (5)

Lemma1 ([5]) For any p ≥ 2, Cp(·) is convex function and

C∗p(·) is concave function. And S defined above is a convex set.

Definition3 The support function hS : Rd → R ∪ {∞} of S

is defined as

hS (w) = sup
s∈S
⟨s,w⟩,w ∈ Rd. (6)

Proposition1 s∗ = arg mins∈S ⟨s,w⟩ is a sub-gradient of

hS (w) at w.

Proof For any w,u ∈ S , we define that s∗ =

arg maxs∈S ⟨s,w⟩, and su = arg maxs∈S ⟨s,u⟩. Therefore we

have

hS (w) − hS (u) = sup
s∈S
⟨s,w⟩ − sup

s∈S
⟨s,u⟩ = ⟨s∗,w⟩ − ⟨su,u⟩

≤ ⟨s∗,w − u⟩,

where the inequality is from the definition of hS (·). So we get

our proposition. □

Lemma2 ([12]) Let S be a closed convex set with support

function hS and let d(z, S ) = mins∈S ∥z − s∥ denote the point

to set distance with respect to a norm. Then, for any z ∈ Rd,

d(z, S ) = max
∥w∥∗≤1

{⟨w, z⟩ − hS (w)}. (7)

Now we need consider our concrete case that

S = {(x,y) ∈ Rk × Rk : xi, yi ∈ [0, 1]; Cp(x) ≤ C⋆p (y)},

where Cp(x) = ∥x∥p, C∗p(y) = minα∈∆(K) ∥α ⊙ y∥p and for any

w ∈ Bq(2K), where 1/p + 1/q = 1, we have w = (w1,w2),

where w1 and w2 are two K-dimensional vectors. Bq is the

unit ball in R2K space with respect to ∥ · ∥q. S is a convex set by

Lemma 1.

Lemma3 S is given as above, for any w ∈ Bq(2K) we have

following equation:

min
α∈∆(K)

max
l∈[0,1]K

⟨w, r(α, l)⟩ ≤ hS (w). (8)

Before we prove our Lemma, we need introduce a theorem.

Theorem1 ([4]) Let f (x, y) denote a bounded real-valued

function defined on X × Y, where X and Y are convex sets and

X is compact. Suppose that f (·, y) is convex and continuous for

each fixed y ∈ Y and f (x, ·) is concave for each fixed x ∈ X.

Then

inf
x∈X

sup
y∈Y

f (x, y) = sup
y∈Y

inf
x∈X

f (x, y).

By this theorem we know that

min
α∈∆(K)

max
l∈[0,1]K

⟨w, r(α, l)⟩ = max
l∈[0,1]K

min
α∈∆(K)

⟨w, r(α, l)⟩,

while by the definition of r we have

f (α, l) = ⟨w, r(α, l)⟩ =
K∑

i=1

αi · li · w1,i +

K∑
i=1

li · w2,i.

Now we give the proof of Lemma 3.

Proof ∀α ∈ ∆(K) and l ∈ [0, 1]K we have

f (α, l) ≤ max
l∈[0,1]K

f (α, l) = f (α, l∗),

where l∗ = arg maxl f (α, l). So that we have

min
α∈∆(K)

f (α, l) ≤ min
α∈∆(K)

max
l

f (α, l) = min
α

f (α, l∗) = f (α∗, l∗),

where for α∗ = arg minα f (α, l∗).

For l∗ by the definition of S we can find an ᾱ∗ such that

∥ᾱ∗ ⊙ l∗∥p = min
α∈∆(K)

∥α ⊙ l∗∥p. (9)

Hence we have that (ᾱ∗ ⊙ l∗, l∗) ∈ S .

By Theorem 1 we have

min
α

max
l

f (α, l) = max
l

min
α

f (α, l) = f (α∗, l∗).

Hence we get

min
α

max
l

f (α, l) = max
l

min
α

f (α, l) = min
α

f (α, l∗)

≤ f (ᾱ∗, l∗)

=

K∑
i=1

ᾱ∗i · l∗i · w1,i +

K∑
i=1

l∗i · w2,i

= ⟨w, ((ᾱ∗ ⊙ l∗), l∗)

≤ hS (w).

□
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3. Main result

In this section, we propose algorithms for online learning

with global cost functions.

Note that in Algorithm 1 we denote st = arg maxs∈S ⟨s,wt⟩,
and we denote SOCP as the Second Order Conic Programming

to calculate s ∈ S .

Therefore we can give the algorithm as follows:

Algorithm 1 Algorithm for global cost function
Initialization: An online linear optimization algorithm OLO,

S = {(x,y) ∈ Rk × Rk : xi, yi ∈ [0, 1]; Cp(x) ≤ C⋆p (y)}. (10)

for t = 1, · · · ,T do
1. Let wt be the output of OLO.
2. Compute

αt = arg min
α∈∆(K)

max
l∈[0,1]K

⟨wt, (α ⊙ l, l)⟩, (11)

3. Compute a subgradient st ∈ ∂hS (wt) and feed gt = −(αt ⊙ lt, lt)+
st to OLO.

end for

Moreover we have the following theorem.

Theorem2 Given an algorithm OLO for online linear op-

timization with its regret RegretOLO, algorithm 1 achieves

RegretT,p ≤ 2
p−1

p RegretOLO.

Before we prove this Theorem, we give a Lemma for sub-

gradient of ft(w).

Lemma4 For our target set S , and the loss function

ft(w) = ⟨−rt,w⟩+ hS (w), so we have that for any z ∈ ∂ ft(w):

∥z∥p ≤ (2K)1/p.

Proof For any w,u in unit ball with respect to Lq-norm.

And we define that sw = arg maxs∈S ⟨s,w⟩, and su =

arg maxs∈S ⟨s,u⟩. we have

ft(w) − ft(u) = ⟨−rt,w − u⟩ + ⟨sw,w⟩ − ⟨su,u⟩

≤ ⟨−rt,w − u⟩ + ⟨sw,w⟩ − ⟨sw,u⟩

= ⟨−rt,w − u⟩ + ⟨sw,w − u⟩

≤ ∥ − r + sw∥p∥w − u∥q
≤ (2K)1/p∥w − u∥q,

the first inequality is from the definition of support function and

the second is from Cauchy-Schwartz inequality. Therefore we

showed that ft is Lipschitz with respect to ∥ · ∥q with Lipschitz

constant (2K)1/p. By Lemma 2.6 [11] we obtain z ∈ ∂ ft(wt),

∥z∥p ≤ (2K)1/p. □

Now we give the proof of Theorem 2.

Proof By above Lemma 3 we see that if we choose αt ac-

cording to our algorithm, we see that each αt satisfies that

⟨wt, (αt ⊙ lt, lt)⟩ ≤ hS (wt),

for any wt ∈ Bq, and 1/p + 1/q = 1.

Now for r̄T there exists s = (x,y) ∈ S such that

Cp(LA
T ) −C⋆p (LT ) = [Cp(x) −C⋆p (y)] + [Cp(LA

T ) −Cp(x)]

+ [C⋆p (y) −C⋆p (LT )]

≤ 1(∥LA
T − x∥p + ∥LT − y∥p)

≤ 2(p−1)/(p)∥((LA
T , LT ) − (x,y))∥p

= 2(p−1)/p∥r̃T − (x,y)∥p,

where the first inequality is from the definition of S , and trian-

gle inequality for p-norm. The second inequality is from the

following inequality

(xp + yp) ≤ 2p−1(x + y)p.

By the definition of support function, hS (wt) is a convex

function, hence we know that ft(wt) = −⟨rt,wt⟩ + hS (wt) is

a convex function, too. Thus we have that

ft(wt) − ft(w∗) ≤ ⟨gt, (wt −w∗)⟩, (12)

where gt ∈ ∂ ft(wt).

Therefore we obtain that

dist(r̃T , S ) = ∥r̃T − (x,y)∥p = max
∥w∥q≤1

{⟨w, r̃T ⟩ − hS (w)}

= − min
∥w∥q≤1

{−⟨w, r̃T ⟩ + hS (w)}

≤ − min
∥w∥q≤1

{−⟨w, r̃T ⟩ + hS (w)} +
T∑

t=1

{−⟨wt, rt⟩ + hS (wt)}

= − min
∥w∥q≤1

T∑
t=1

ft(w) +
T∑

t=1

ft(wt)

≤
T∑

t=1

⟨gt,wt⟩ − min
∥w∥q≤1

T∑
t=1

⟨gt,w⟩

≤ RegretT (OLO),

the first inequality holds by −⟨wt, rt⟩ + hS (wt) is always pos-

itive, and the second inequality is by the convexity of our loss

function ft. □

For online load balancing problem we have a specific algo-

rithm. Principally, in this algorithm we utilize EG plus-minus

in [7] as an oracle OLO algorithm. First we give an intro-

duction of EG plus-minus algorithm. The EG plus-minus al-

gorithm begins with two 2K-dimensional initialization weight

vectors w+1 = w−1 = (1/4K, · · · , 1/4K).We denote gt(i) for the

i-th element in vector gt, at each round t, we update

w+t+1,i =
w+t,ie

−η·gt(i)∑2K
j=1 w

+
t, je
−η·gt( j) + w−t, je

ηgt( j)
,
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w−t+1,i =
w−t,ie

η·gt(i)∑2K
j=1 w

+
t, je
−η·gt( j) + w−t, je

ηgt( j)
,

and wt = w+t −w−t . This algorithm predicts wt ∈ {w : ∥w∥1 ≤
1}. The regret of this algorithm is given in following:

Theorem3 ([8]) Assuming that ∥gt∥∞ ≤ G for all rounds t.

Then the regret of EG plus-minus satisfies

T∑
t=1

⟨gt,wt⟩ − min
∥w∥1≤1

T∑
t=1

⟨gt,w⟩ ≤ G
√

2T ln(4K), (13)

setting η =
√

2 ln 4K
TG2 .

According to above Theorem we get the regret for online

load balancing problem in following corollary.

Corollary1 Consider the online load balancing problem

with K-machines. If we run algorithm 2 for T times. The regret

of online load balancing problem is as follows:

RegretT,∞ ≤ 2
√

2T ln 4K.

Proof

C∞(LA
T ) −C⋆∞(LT ) = [C∞(x) −C⋆∞(y)] + [C∞(LA

T ) −C∞(x)]

+ [C⋆∞(y) −C⋆∞(LT )]

≤ 1(∥LA
T − x∥∞ + ∥LT − y∥∞)

≤ 1∥2((LA
T , LT ) − (x,y))∥∞

= 2∥r̃T − (x,y)∥∞,

The rest part of the proof is similar to the proof of Theorem 2.

So we obtain that

dist(r̃T , S ) ≤ RegretT (OLO).

In online load balancing problem we have known that the

sub-gradient is gt = −(αt ⊙ lt) + st, so by Lemma 4 ∥gt∥∞ ≤ 1.

Therefore if we utilize EG plus-minus we have

C∞(LA
T ) −C⋆∞(LT ) ≤ 2

√
2T ln 4K.

□

Note that our regret is better than the regret achieved by al-

gorithm DIFF in [5], since the parameter here is 2
√

2 ln 4K√
T

rather

than ln K√
T
.

4. Algorithmic details

In this section we give details to proceed Algorithm 1. In

particular, for the makespan problem, i.e., p = ∞, we give a

polynomial time algorithm.

4.1 Computing αt

There are two procedures in Algorithm 1. Specifically, on

the round t, we need to choose αt, which is the optimal solu-

tion of the problem (11). That is,

min
α∈∆(K)

max
l∈[0,1]K

⟨wt,1, (α ⊙ l)⟩ + ⟨wt,2, l⟩, (14)

where we set that wt = (wt,1, wt,2) and wt,1 is a K-dimensional

vector. We see that the optimization of this objective function

is defined by li = 0 if wt,1(i) · α(i) + wt,2(i) ≤ 0, otherwise we

let l(i) = 1. Hence we can convert our problem to choose α as

min
α∈∆(K)

max
l∈[0,1]K

⟨wt,1, (α⊙l)⟩+⟨wt,2, l⟩ = min
α∈∆(K)

K∑
i=1

max
{
0, α(i)wt,1(i) + wt,2(i)

}
,

which is equivalent to

min
K∑

i=1

β(i)

s.t.β(i) ≥ wt,1(i)α(i) + wt,2(i) ∀i

K∑
i=1

αt(i) = 1

β(i), αt(i) ≥ 0 ∀i.

The above problem is a linear program with O(K) variables

and O(K) linear constraints.

4.2 Computing subgradients gt for p = ∞
The second component of Algorithm 1 is to compute sub-

gradients gt ∈ ∂ ft(wt). By Proposition 1, gt is given as

gt = −(αt ⊙ lt, lt) + st and thus the main part is to compute

st = arg mins∈S ⟨s,wt⟩. Recall that S = {(x,y) ∈ [0, 1]K ×
[0, 1]K | C∞(x) ≤ C∗∞(y)} for p = ∞.

First of all, C∗∞(y) is given as follows:

Proposition2 (Even-Dar et al.[5]) For y ∈ [0, 1]K ,

C∗∞(y) =
1∑K

i=1
1
yi

.

In particular, the condition that C∞(x) ≤ C∗∞(y) can be rep-

resented as

max
i

xi ≤ min
α∈∆(K)

C∞(α ⊙ y) ⇐⇒ xi ≤
1∑K

j=1
1
y j

,∀i.

Therefore, the computation of the subgradient st is formulated

as

max
x,y
w1 · x + w2 · y

s.t.xi ≤
1∑
j

1
y j

∀i;

xi, yi ∈ [0, 1] ∀i.

(15)

Now we show that there exists an equivalent second order cone

programming(SOCP) formulation (e.g., [9]) for this problem.

First we give the definition of second order cone program-

ming, and then we give a proposition, which states that our
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optimization problem is equivalent to second order cone pro-

gramming.

Definition4 The standard form for the Second Order Conic

Programming(SOCP) model is as follows:

min
x

c⊤x : Ax = b, ∥Cix + di∥2 ≤ e⊤i x + fi i = 1, · · · ,m,

where the problem parameters are c ∈ Rn, Ci ∈ Rni×n, di ∈ Rni ,

e ∈ Rn, fi ∈ R, A ∈ Rp×n, and b ∈ Rp. x ∈ Rn is the optimiza-

tion variable.

Then we obtain the following proposition.

Proposition3
∑k

i=1
x2

yi
≤ x, x ≥ 0 and yi ≥ 0 is equivalent

to x2 ≤ yizi, where yi, zi ≥ 0 and
∑k

i=1 zi = x.

Proof On the direction “ =⇒ ”

From
∑k

i=1
x2

yi
≤ x we obtain that

∑k
i=1

x
yi
≤ 1. By setting

zi = x ·
1
yi∑
i

1
yi

,

we can have that x2 ≤ yizi, and
∑k

i=1 zi = x.

On the other direction “ ⇐= ” Due to x2 ≤ yizi, we have
x2

yi
≤ zi. So we have that

k∑
i=1

x2

yi
≤

k∑
i=1

zi = x.

□

Again in our case we need find the optimal vector s ∈ S ,

which satisfies that st = arg maxs∈S ⟨wt, s⟩. Note that by

Lemma 1 S is a cone and it is a convex set. Therefore we

can reduce our problem in following theorem.

Theorem4 The optimization problem represented in Equa-

tion (15) can be solved by second order cone programming.

Proof To prove this theorem we only need to represent the

original problem in equation (15) as a standard form of SOCP

problem.

Note that we only consider the case that yi , 0. If yi = 0 the

problem is very trivial. If it exists yi = 0, by the definition of S

we know that for all i, xi = 0.

On the one hand, for xi ≤ 1∑
j

1
y j

, we can multiply xi on both

sides and rearrange the inequality then we have following:

k∑
j=1

x2
i

y j
≤ xi,

which implies the conic representation as

y jz j ≥ x2
i , y j, z j ≥ 0,

k∑
j=1

z j = xi.

By the paper [9] we may rewrite it as follow: For each i,

x2
i ≤ y jz j; y j, z j ≥ 0⇐⇒ ∥(2xi, y j−z j)∥2 ≤ y j+z j ∀ j ∈ [k].

(16)

The above equivalence is trivial.

On the other hand, since xi ≤ 1∑
j

1
y j

, and yi ∈ [0, 1], naturally

we have xi ∈ [0, 1]. So we need only constrain that yi ∈ [0, 1].

We can apply the face that if yi is positive so |yi| = yi, and if

yi ≤ 1, so |yi| ≤ 1.

Therefore we may give a (k2 + 2k) × (k2 + 2k)-matrix Ci in

SOCP, and the variable vector is composed as follow:

x̃ = (x1, · · · , xk, y1, · · · , yk, z1,1, · · · , z1,k, · · · , zk,1 · · · , zk,k),

(17)

where for zi, j, i is corresponding to xi.

Now we may give the second order cone programming of

our target problem as follows:

min
x̃
⟨−(w1, w2, 0, · · · , 0), x̃⟩

s.t.∥Cix̃∥2 ≤ e⊤i x̃ + di ∀i = 1, · · · , k2 + 2k,

Ax̃ = b.

(18)

where Ci, ei, A and b are defined as follows:

Firstly for hyperbolic constraints:

for a fixed s ∈ [k], where [k] = 1, · · · , k, in matrix Ci,

where i ∈ [(s − 1)k, sk] we let (Ci)1,s = 2, (Ci)k+i,k+i = 1,

(Ci)2k+(s−1)k+i,2k+(s−1)k+i = −1, and others are 0. ei is defined as

(ei)k+i = 1 and (ei)2k+(s−1)k+i = 1, others are 0.

Next we need to constrain that yi is less than 1 :

For i ∈ [k2, k2 + k] we let that (Ci)k+i,k+i = 1 and others are

0. And we let that ei is a zero vector and di = 1. It means that

∥yi∥ ≤ 1. For i ∈ [k2+k, k2+2k], we set (Ci)k+i,k+i = 1 ek+i = 1,

and di = 0

At last we need to constrain that
∑k

j=1 z j = xi in equation 16:

Let A ∈ Rk×(3k+k2) for each row vector A j, where j ∈ [k],

we have that (A j) j = 1 and (A j)2k+( j−1) j+m = −1, for all

m = 1, · · · , k. And matrix A is composed by the row vectors

A j. and b is a zero vector.

□

5. conclusion

In this paper we give a framework for online global cost

function with respect to p-norm, where p > 2. Especially, for

online load balancing problem we have an efficient algorithm

by involving EG plus-minus. On each update step of our al-

gorithm we can directly predict the allocation of loads by a

linear programming. Simultaneously, we show that we can up-

date the EG plus-minus by SOCP in polynomial time for on-

line load balancing problem. Since the efficiency of these two

programmings, we construct our algorithm, and show that the

upper bound of regret is better than other algorithms to the best

we known.
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