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A Simple Reranking Method for Knowledge Graph
Completion

Lu Yuxun1,a) Yutaro Shigeto2,b) Katsuhiko Hayashi3,c) Masashi Shimbo1,d)

Abstract: It has recently been reported that the performance of knowledge graph completion (KGC) is improved by
learning type embeddings of entities and relation arguments in addition to normal embeddings. We argue that the
type information can be induced from the normal embedding of entities learned by existing KGC models. A simple
reranking method is proposed that solely relies on normal entity and relation embeddings. This method requires com-
puting two vectors from normal embeddings per relation, and has four hyperparameters per relation to be tuned on the
validation data. Experimental results show that its performance is close to the approach based on type embeddings,
although it does not require retraining of embeddings.

1. Introduction
1.1 Background

Knowledge graphs (KGx) have been recognized as an impor-
tant resource to tackle many natural language processing tasks,
such as information extraction [6], question answering [9], and
named entity disambiguation [12]. A KG stores facts gathered
from various sources in the form of triplets (h, r, t), which repre-
sents the proposition that relation r holds between “head” entity
h and “tail” entity t. For example, a fact “Alice was born in Lon-
don” can be represented as (Alice, Born in, London) in a KG. A
KG can be represented as a directed graph composed of entities as
nodes and relations as arc labels. Every triplet thus corresponds
to an arc in the graph.

In general, KGs are incomplete because of the difficulty of col-
lecting an enormous number of facts in real world. Thus, one
of the important tasks on KGs is knowledge graph completion
(KGC), i.e., to supply knowledge graphs with new facts in order
to make them more complete. Instead of directly inferring new
facts, the task of KGC is often formulated as that of link predic-
tion: Given a triplet with either head h or tail t missing in a query,
predict most possible entities for the missing term.

Due to the discrete, symbolic nature of KGs, solving KGC di-
rectly using the topology of the graph is often difficult. For this
reason, many popular KGC models are based on vector embed-
dings of graphs [1], [14], [19], [21]. These models map compo-
nents of a KG (namely, entities and relations) into a continuous,
high dimensional vector space, substituting operations in the vec-
tor space for manipulation of symbols. When applied to the link
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prediction task, they assign all entities a score by a score function,
and rank them by their scores. The entities with higher scores are
more likely to be an appropriate candidate for the missed term.

Despite KGC models serve as a feasible approach to solve link
prediction, most models do not consider the type constraint of re-
lations. For queries relevant to relation Born in, such as (Alice,
Born in, ?) or (?, Born in, London), entities of type “Food” (e.g.,
Apples, Pears, Milk) barely become a correct answer. As a result,
these irrelevant entities in the KG lead to unsatisfying prediction.

There are many studies aiming to alleviate this issue [2], [5],
[7], [16], [20]. Most of them [2], [5], [16], [20] require resources
(attributes, type information, etc.) in addition to KG so that they
can encode the type of entities as parameters, and use these pa-
rameters to verify if entities match the constraints for a relation.
However, the required resources are not always available; they are
usually handcrafted by humans and are expensive to construct.

Recently, Jain et al. [7] have extended two existing KGC mod-
els, DistMult [21] and ComplEx [19], to learn the embeddings
of types of entities and relation arguments jointly with normal
embeddings. The score functions are also modified to use the
learned type embeddings in a way that soft constraints on types
are imposed on relation arguments. Different from the work listed
above, their method does not require additional resources on en-
tity types, but induces type information from a KG.

In this technical report, we propose another method that learns
and incorporates type information and constraints to KGC with-
out using external resources. In contrast to Jains et al.’s, our
method does not require training of additional embeddings. It
works as a post-processing step following the normal training of
DistMult and ComplEx, and can thus be regarded as a reranking
method. Experimental results showed that our method improves
the performance on KGC tasks over the base DistMult and Com-
plEx models, and is competitive with Jain et al.’s models.
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1.2 Notation
Vectors are denoted by lowercase boldface letters, and matrices

by uppercase boldface letters. G denotes a KG, E denotes the set
of entities in G, and R denotes the set of relations in G. KG G is
identified with the facts (triplets) it contains; thus, G ⊂ E×R×E.
For entity i ∈ E, its vector embedding is written ei. For relation
j ∈ R, its embedding is r j. We often use letters h and t to de-
note the head and tail entities of a triplet, and letter r to denote a
relation, e.g., (h, r, t) ∈ E × R × E. For brevity, their vector em-
beddings eh, et, and rr are also written h, t, and r. For a complex
vector v, v denotes its complex conjugate, and Re(v) and Im(v)
are operators that take the real part or imaginary part of v, re-
spectively. For two (complex) vectors u, v, u ⊙ v denotes their
elementwise product, and ⟨u, v⟩H = uTv denotes the Hermitian
inner product. For real vectors u, v, w ∈ Rd, we write ⟨u, v,w⟩ to
denote (u⊙v)Tw = uT(v⊙w) =

∑d
k=1 ukvkwk, where uk, vk, wk are

kth component of the respective vectors.

2. Related Work
2.1 Knowledge Graph and Knowledge Graph Completion

Models
Due to the discrete nature of KGs, it is difficult to utilize them

directly for KGC. Thus, many popular KGC methods do not di-
rectly operate on the structure of KGs, but are based on knowl-
edge graph embeddings, i.e., embedding of entities and relations
in vector space. More specifically, these methods define a score
function f (h, r, t) to assigns to triple (h, r, t) a score of its plau-
sibility, in terms of the vector embeddings h and t of h and t,
respectively, and embedding r of relation r. In typical benchmark
tasks of KGC, this score function is used to evaluate the plausi-
bility of entities in the KG as possible candidate of the missed
term in a triplet (h, r, ?) or (?, r, t). The entities are ranked by their
scores, and the prediction is a list of these ranked entities.

Embedding-based KGC models can be categorized into two
types according to the style of their score function: translation
models and multiplicative models.

Translation models define score functions based on distance.
A large distance indicates low plausibility of an entity to be the
right candidate for a query. TransE [1] is a representative transla-
tion model. In TransE, relations are represented as translations in
the vector space. If a fact (h, t, r) is observed in the KG, then the
embedding h of entity h should be close to the embedding t of t
after translated by the embedding r of relation r, i.e., h + r ≈ t.
The score function of TransE is thus given by

fTE(h, r, t) = −∥h + r − t∥, (1)

where ∥ · ∥ stands for 2-norm, but 1-norm could also be used. As
the score function is not symmetric, i.e., fTE(h, r, t) , fTE(t, r, h)
unless r = 0, TransE is not good at processing symmetric rela-
tions.

Multiplicative models build score functions using bilinear
form. DistMult [21] is a classical model of this type. The score
function of DistMult is

fDM(h, r, t) = ⟨h, r, t⟩ =
d∑

k=1

hkrktk, h, r, t ∈ Rd. (2)

where hk, rk, and tk represent the ith component of h, r, and
t. DistMult cannot provide good representations for asymmet-
ric relations, as fDM(h, r, t) = fDM(t, r, h). Another multiplicative
model ComplEx [19] compensates this flaw by embedding enti-
ties and relations as vectors not in real space Rd but in complex
space Cd. The score function of ComplEx is defined as follows.

fCP(h, r, t) = Re(⟨h, r, t⟩)

= Re

 d∑
i=1

hiriti


= ⟨Re(h),Re(r),Re(t)⟩
+ ⟨Im(h),Re(r), Im(t)⟩
+ ⟨Re(h), Im(r), Im(t)⟩
− ⟨Im(h), Im(r),Re(t)⟩, h, r, t ∈ Cd. (3)

To represent a symmetric relation in ComplEx, Im(r) must be set
to 0 so that the last two terms on the right-hand side of Eq. (3)
vanish and thereby fCP(h, r, t) = fCP(t, r, h). Otherwise, it breaks
the symmetry, allowing the model to accurately represent both
symmetric and asymmetric relations.

2.2 Incorporating Type Constraints in Knowledge Graph
Completion Models

The knowledge graph embedding models above do not con-
sider type constraints of relations in their score function. How-
ever, types play an important role in prediction. For example,
an entity of type “location” is apparently more appropriate as the
tail for triplets with relation Born in. Hence, many methods have
been proposed for integrating type information into current KGC
models. The central idea is to consider types of entities that a re-
lation can take as its head and tail arguments, so that entities that
do not match the requested types will not be ranked at the top of
the prediction.

Krompaß et al. [10] integrate type information into RESCAL.
They refer to rdf:domain and rdf:range tags to filter out facts
that have entities mismatching the type constraints in the train-
ing set, and use filtered training examples to learn the entity and
relation embeddings so that only entities that match the type con-
straints will be assigned high scores in prediction.

Type-embodied Knowledge Representation Learning (TKRL)
proposed by Xie et al. [20] extend TransE with type encoding ma-
trices. The score function of TKRL is defined as fTKRL(h, r, t) =
∥M(head)

r h + r −M(tail)
r t∥, where h, r, t are the vector embeddings

of h, r, and t, respectively, and M(head)
r and M(tail)

r are the pro-
jection matrices for head and tail entities. These projection ma-
trices are defined in terms of n type matrices {M(k)}nk=1, as in:
M(head)

r =
∑n

k=1 α
(head)
r,i M(k)/

∑n
k=1 α

(head)
r,i . Here, if a type matches

the heads of relation r, α(head)
r,k = 1, otherwise α(head)

r,k = 0. M(tail)
r is

defined similarly.
Semantically Smooth Embedding (SSE) proposed by Guo et al.

[5] enforces the vector space to be semantically smooth. They as-
sume that: (1) entities belonging to the same type shall stay close
to each other in the vector space; (2) every entity shall be able to
be constructed by a linear combination of its “neighbors.” They
want to enforce the neighbors of an entity e to be entities with the
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same category as e in the vector space. They use two regularizers
R1 and R2 in the loss function to implement these assumptions.
The first regularizer R1 stands for assumption 1 and is defined as
follows:

R1 =
1
2

∑
i∈E

∑
j∈E

∥∥∥ei − e j

∥∥∥2 ω(1)
i j (4)

where E is the set of all entities, ei denotes the vector embedding
of entity i, and ω(1)

i j = 1 if entities i and j belong to the same type;

otherwiseω(1)
i j = 0. The second regularizer R2 reflects assumption

2, and is given by:

R2 =
∑
i∈E

∥∥∥∥∥∥∥∥ei −
∑

j∈N(i)

ω(2)
i j e j

∥∥∥∥∥∥∥∥
2

. (5)

In this equation,N(i) ⊂ E denotes the set of neighbor entities*1 of
entity i, and if entities i and j are in the same category, ω(2)

i j = 1,

otherwise ω(2)
i j = 0.

TKRL, SSE, and the approach from Nickel et al. [15] require
external resources indicating entity types.

Recently, Jain et al. [7] proposed TypeDM and TypeComplEx
that extend DistMult and ComplEx, respectively, to take type in-
formation into account. Differing from Krompaß et al.’s method,
TKRL, and SSE, Jain et al.’s models learn soft constraints on the
arguments of individual relations in a data-driven manner; i.e.,
from the knowledge graph given as training data alone, without
additional information on entity types and type constraints on re-
lation arguments. Along with normal entity embeddings of Dist-
Mult and ComplEx, an additional embedding ui ∈ Rd′ is asso-
ciated with each entity i as a representation of its type. Similar-
ity, two vectors v j,w j ∈ Rd′ are associated with each relation j,
which indicate the type requirement of relation j in head and tail,
respectively. With these additional vectors, the score functions
for TypeDM and TypeComplEx are defined as:

fTypeDM(h, r, t) = σ( fDM(h, r, t)) C(head)(h, r) C(tail)(t, r),
(6)

fTypeComplEx(h, r, t) = σ( fCP(h, r, t)) C(head)(h, r) C(tail)(t, r), (7)

with

C(head)(h, r) = σ(⟨uh, vr⟩),
C(tail)(t, r) = σ(⟨ut,wr⟩),

where σ(·) is the sigmoid function, and fDM and fComplEx are
the score functions of vanilla DistMult and ComplEx, given by
Eqs. (2) and (3), respectively. The factor C(head)(h, r) captures the
compatibility of the given entity h as the head entity of relation r,
and C(tail)(t, r) captures the compatibility of entity t as its tail.

The score function for TypeComplEx is defined similarly, ex-
cept that the score function fCP (Eq. (3)) of ComplEx is used in
place of fDM. The new embeddings ui, v j,w j ∈ Rd′ are trained
jointly with the embeddings of the original DistMult or Com-
plEx model, with the modified score function fTypeDM(h, r, t) or
fTypeComplEx(h, r, t) used in the training loss.

*1 See [5] for the precise definition of the neighbor entities.

3. Proposed Method
As we have seen in the previous section, TypeDM and Type-

ComplEx learn extra vectors representing types from training
data. However, the original embeddings of DistMult and Com-
plEx are also trained on the same training data, and similar enti-
ties are expected to have a similar vector embeddings. A question
thus arises whether such information on types, which is basically
a group of similar entities, are already present in the original em-
beddings. In this section, we propose a reranking method that
extracts type information from the original DistMult and Com-
plEx embeddings.

We made two assumptions for our method: (1) entities with
the same type have embeddings closed to each other in the vec-
tor space; (2) For a fact (h,r,t), the embedding r ⊙ t is close to
embeddings of all heads that related with r, and h ⊙ r is close to
embeddings of all tails related with r, where ⊙ is the elementwise
multiplication.

We do not need any resource containing type information or ex-
tra parameters representing entities types in our method. Instead,
we assign two factors to represent acceptable entity types in each
relation. Afterwards, we modify the score functions in DistMult
and ComplEx with these factors to incorporate type constraints.

The type constraints are represented in our method as vectors
c(head)

r and c(tail)
r , which are intended to provide the “prototypes”

of typical head and tail entities of a relation r.

c(head)
r =

1

|T (head)
r |

∑
h∈T (head)

r

eh, (8)

c(tail)
r =

1

|T (tail)
r |

∑
t∈T (tail)

r

et. (9)

Here, T (head)
r and T (tail)

r are multisets containing heads (or tails) in
the training set related to r. |T (head)

r | and |T (tail)
r | are the cardinality

of T (head)
r and T (tail)

r . et and eh are entity embeddings learned by
DistMult or ComplEx.

Our score function is

frerank(h, r, t) = fbase(h, r, t)

+ αr Re
(
⟨h, c(head)

r ⟩H
)

+ βr Re
(
⟨t, c(tail)

r ⟩H
)

+ γr Re
(
⟨r ⊙ t, c(head)

r ⟩H
)

+ ϵr Re
(
⟨r ⊙ h, c(tail)

r ⟩H
)
, (10)

where fbase(h, r, t) is the score function from the base model,
specifically, DistMult (Eq. (2)) or ComplEx (Eq. (3)), h, r, t are
the embeddings of h, r, and t in the base model, respectively, σ(·)
is the sigmoid function, and αr, βr, γr, ϵr ≥ 0 are four scalar hy-
perparameters introduced for relation r.

In Eq. (10), four extra terms are added to the score functions
of the base model. If an entity is dissimilar to (i.e., having small
inner product with) the prototype provided by the centroids (i.e.,
c(head)

r or c(tail)
r ) or its transformation by relation r, its score is dis-

counted by these terms since the inner products in the additional
terms can be remain low, resulting in a low re-ranked position in
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the prediction given by frerank. On the other hand, entities match-
ing type constraints will be re-ranked higher than they were as
long as they do not have an extremely low score from base mod-
els.

A major difference from Jain et al.’s is that our model uses
the embeddings of the base models to infer type constraints; i.e.,
in Eq. (10), h, t, r are vectors of the base model (DistMult or
ComplEx), and c(head)

r and c(tail)
r are also computed from the entity

vectors of the base models. By contrast, Jain et al.’s need to train
additional type embeddings and constraint vectors.

4. Experiment
We conducted an empirical evaluation of the proposed method

on the standard datasets for KBC.

4.1 Datasets
Three standard datasets were used in our experiment:

FB15K237 [18], WN18RR [3], and YAGO3-10 [13]*2.
FB15K237 is a subset of Freebase. Most relations in FB15K237
are very specific, e.g., “influenced by”, “jurisdiction of office”,
“honored for”, etc. A large part of FB15K237 is about movies,
sports, awards, and actors.

WN18RR is a subset of WordNet. It has 11 generic relations
(“hypernym of”, “hyponym of”, “synonym of”, etc.).

YAGO3-10 is a subset of YAGO. Most facts in YAGO3-10 are
attributes of people, such as nationality, gender, and profession.

We followed the split of training, validation, and test data as
distributed in their respective datasets. Table 4 shows the statis-
tics of each dataset.

4.2 Compared Methods
We tested two proposed models given by Eq. (10); RerankDM,

which is obtained when DistMult is used as the base model in
Eq. (10), and RerankComplEx where ComplEx is the base model.

These models were compared with their base models, DistMult
and ComplEx. They are also compared with TypeDM and Type-
ComplEx [7]; see Sec. 2.2.

4.3 Experiment Setup

Performance Metrics. We used Hits@N with N = 1 and Mean
Reciprocal Rank (MRR) as performance metrics. Both metrics
are calculated in a “filtered” manner: Given the prediction (i.e.,
list of all entities sorted by the score in descending order) for a
query (h, r, ?) with ground truth t∗, entities t , t∗ in prediction
such that (h, r, t) ∈ G will be removed from the prediction, where
G is the knowledge graph*3. For triplets (h, r, t) in test set S, the
model computes the rank of h with r and t for metrics related to
heads, and similarly, rank of t with h and r for metrics related to
tails. Let rank(e) be the rank of entity e in the filtered prediction.
MRR and Hits@N are then computed for this model as follows.

*2 We use the datasets FB15K237 and WN18RR provided by OpenKE
at https://github.com/thunlp/OpenKE/tree/master/benchmarks. YAGO3-
10 is downloaded from https://github.com/TimDettmers/ConvE and pre-
processed with scripts from OpenKE.

*3 For tuning hyperparameters, we only removed (h, r, t) with t , t∗ in train-
ing and validation set.

Hits@N (Head) =
1
|S|
∣∣∣∣{(h, r, t) ∈ S | rank(h) ≤ N}

∣∣∣∣ ,
Hits@N (Tail) =

1
|S|
∣∣∣∣{(h, r, t) ∈ S | rank(t) ≤ N}

∣∣∣∣ ,
Hits@N (Avg) =

1
2
(
Hits@N (Head) + Hits@N (Tail)

)
,

MRR (Head) =
1
|S|
∑

(h,r,t)∈S

1
rank(h)

,

MRR (Tail) =
1
|S|
∑

(h,r,t)∈S

1
rank(t)

,

MRR (Avg) =
1
2
(
MRR (Head) +MRR (Tail)

)
.

We used Hits@1(Avg) as the main metric to pick hyperparame-
ters and train the models, as it balances the Hits@1 (head) and
Hits@1 (Tail).

Loss Function. We used logistic loss and negative sampling to
learn embeddings of our base models (DistMult and ComplEx):

Llogistic =
∑

(h,r,t)∈T
log(1 + exp(− fbase(h, r, t))) (11)

+
∑

(h′ ,r,t′)∈T ′
log(1 + exp( fbase(h′, r, t′))), (12)

where T is the training set, and T ′ contains corrupted facts
(h′, r, t′), produced by corrupting a fact (h, r, t) ∈ T with either
its head h or tail t replaced by a random entity (h′ or t′) uniformly
sampled from E so that (h′, r, t′) < T . fbase is the score function
of DistMult (Eq. (2)) or ComplEx (Eq. (3)). We set the number
of negative examples to be 20, as our benchmarks [7] performed
best with this setting according to results obtained by grid search.

For our benchmarks TypeDM and TypeComplEx, we followed
the way of training in [7]. The loss function was log-likelihood
loss:

Llog-likelihood = −
∑

(h,r,t)∈T

(
log Pr(t | h, r) + log Pr(h | r, t)) , (13)

where

Pr(t | h, r) =
exp(θ f (h, r, t))∑
t′ exp(θ f (h, r, t′))

, (14)

Pr(h | r, t) = exp(θ f (h, r, t))∑
h′ exp(θ f (h′, r, t))

. (15)

In Eqs. (14) and (15), f (h, r, t) is the score function of TypeDM
or TypeComplEx defined in Eq. (6).

For all models, we used ℓ2 regularizer of embeddings.

R =
∑
i∈E
∥ei∥2 +

∑
j∈R
∥r j∥2. (16)

Parameter Setting and Optimization We set the dimension
of embeddings in base models to be 200. As for benchmarks, the
dimension of type embeddings (ui, v j,w j) in TypeDM and Type-
ComplEx was 19, and 180 for entity and relation embeddings, as
Jain et al. did in [7]. The embeddings in DistMult and TypeDM
were initialized by uniform Xavier initializer [4], and embeddings
in ComplEx and TypeComplEx were initialized by Gaussian dis-
tribution with mean 0 and standard deviation 0.05.
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Table 1 Statistics of FB15K237, WN18RR, and YAGO3-10.

# triplets

# entities # relations training validation test avg per relation (training)

FB15K237 14,541 237 272,115 17,535 20,466 1,148
WN18RR 40,943 11 86,835 3,034 3,134 7,894
YAGO3-10 123,182 37 1,079,040 5,000 5,000 29,163

We used Adam [8] as the optimizer. The number of training
epochs was 1,000 with early stopping; the performance was eval-
uated every 50 epochs and the one with the best Hits@1 (avg)
on the validation set was picked. We used grid search to set
the batch size and learning rate. The scope of batch size was
{4096, 8192, 16384, 32768, 65536}. The range for learning rate
and the weight of ℓ2 regularizer was {1×10−5, 5×10−5, 1×10−4, 5×
10−4, 1 × 10−3, 5 × 10−3}.

For DistMult, the norm of entity embeddings was normalized
to 1 at the end of every epoch. We applied gradient clipping for
ComplEx and TypeComplEx; gradients with norm larger than 1
were normalized to norm 1.

After training, embeddings from DistMult and ComplEx were
used for computing c(head)

r and c(tail)
r by Eq. (8) and Eq. (9). Hyper-

parameters αr, βr, γr, ϵr in Eq. (10) were tuned on the validation
set by grid search.

4.4 Results
The performances on FB15K237, WN18RR, and YAGO3-

10 are shown in Tables 2, 3, and 4, respectively. The pro-
posed RerankDM and RerankComplEx models improved perfor-
mance upon their respective base models (DistMult and Com-
plEx). They also achieved competitive results compared wtih
their counterparts on all three datasets. In particular, RerankCom-
plEx outperfomed other approaches on WN18RR and YAGO30-
10.

4.5 Discussion
The proposed methods showed the best performance on

WN18RR and YAGO30-10, but not FB15K237. This is because
in FB15K237, some entities e related to r are always close to
centroids c(head)

r or c(tail)
r in the vector space, so that ⟨e, c(head)

r ⟩ or
⟨e, c(tail)

r ⟩ are high. Moreover, the score fbase in base model for
those entities are not low enough to allow our method to distin-
guish the golden truth.

For instance, in the relation “influenced by” for entities with
type “comedians”, some famous comedians, like “Louis C.K.”,
“George Carlin”, and “Sarah Silverman” have high score in the
score function fbase of base models and with high scores regarding
type constraint factors c(head)

r , and c(tail)
r . That is, not only the score

from type factors ⟨eLouis C.K., c(tail)
influenced by⟩ is large, but also the

score from our base models fbase(h, influenced by,Louis C.K.) is
not very low no matter who the comedian h is, resulting in low
rank for ground truth in the prediction, and lead to unsatisfying
performance.

This phenomenon is caused by two aspects, one from statistical
perspective, to be specific, hubs in high dimensional space [17],
and the other one from the perspective of situations in real world.
The analysis and solution for the statistical aspect are out of the

scope in this report, so we will only concern the second aspect:
in real world, these comedians are so popular that many facts are
about them, and their frequency in the set of training examples
related to “influenced by” Tinfluenced by are therefore higher than
others, and for the relation “influenced by”, an entity suitable for
heads is often appropriate for tails as well.

For instance, there might be facts in Tinfluenced by whose
head is always a popular entity A with various tails:
(A, influenced by, Bi) for i = 1, 2, 3, ...,m and Bi can appear
as heads in other training examples (Bi, influenced by,C j) for
i = 1, 2, 3, ...,m. As a result, embeddings of these popular
entities affect other unpopular entities in geometric distribution
so that embeddings of unpopular entities approach towards
their embeddings, leading to c(head)

r and c(head)
r too close to the

embeddings of popular entities. To tackle this problem, we tried
downsampling in calculating c(tail)

r and c(head)
r : instead of using

all triplets in T (head)
r and T (tail)

r , we only use most representative
entities. The representative entities are determined by their
frequency. The results on FB15K237 with downsampling are in
Table 5. In downsampling method, we used only entities with
top 5 frequencies instead of all entities in T (head)

r and T (tail)
r to

compute c(head)
r and c(tail)

r .
From results in Table 5, downsampling alleviates the problem,

but the performance is still not the best on FB15K237, compared
with TypeDM and TypeComplEx. This indicates that the sam-
pling method in the computation of c(tail)

r and c(head)
r matters. Sam-

pling method considering the frequency, such as Determinantial
Point Process (DPP) [11], may help improve the performance*4.

On the other hand, TypeDM and TypeComplEx did not en-
counter such issue, because type embeddings in these two mod-
els are independent from embeddings of entities and relations.
Therefore, the frequency of entity does not affect these two mod-
els severely. However, they also have more parameters (one type
embeddings for entities, and two type embeddings for relations)
than our method.

5. Conclusion and Future Work
We proposed a method for inferring type constraints of rela-

tions on the task of knowledge graph completion, or, the link pre-
diction. Our method works in purely data-driven manner. It does
not need any additional resources except facts in the knowledge
graph, i.e., those already provided as training data. We represent
type constraints by the centroid of embeddings of entities rele-
vant to a specific relation, and modify the score functions of base
models to incorporate these soft constraints. As a post-processing
approach, our method does not need training for extra parame-
ters. It has only four hyperparameters for each relation. These

*4 Although the result is not listed in this report, naive DPP did not help
with our methods.
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Table 2 Hits@1 and MRR of our models, base models, and benchmarks on FB15K237.

DistMult TypeDM RerankDM ComplEx TypeComplEx RerankComplEx

Hits@1 (Head) 0.1177 0.1382 0.1228 0.1100 0.1222 0.1107
Hits@1 (Tail) 0.2736 0.3077 0.3057 0.2741 0.2724 0.2910
Hits@1 (Avg) 0.1956 0.2230 0.2142 0.1920 0.1973 0.2008
MRR (Head) 0.1967 0.2283 0.2007 0.1700 0.1952 0.1700
MRR (Tail) 0.3706 0.4101 0.3966 0.3549 0.3682 0.3692
MRR (Avg) 0.2837 0.3192 0.2987 0.2624 0.2817 0.2696

Table 3 Hits@1 and MRR of our models, base models, and benchmarks on WN18RR.

DistMult TypeDM RerankDM ComplEx TypeComplEx RerankComplEx

Hits@1 (Head) 0.3692 0.3666 0.3969 0.3950 0.3698 0.4075
Hits@1 (Tail) 0.4263 0.4218 0.4292 0.4228 0.4075 0.4314
Hits@1 (Avg) 0.3977 0.3942 0.4131 0.4089 0.3886 0.4194
MRR (Head) 0.4063 0.3945 0.4107 0.4176 0.3869 0.4332
MRR (Tail) 0.4613 0.4600 0.4624 0.4475 0.4343 0.4517
MRR (Avg) 0.4338 0.4273 0.4365 0.4325 0.4106 0.4425

Table 4 Hits@1 and MRR of our models, base models, and benchmarks on YAGO3-10.

DistMult TypeDM RerankDM ComplEx TypeComplEx RerankComplEx

Hits@1 (Head) 0.1414 0.1564 0.1390 0.2732 0.2364 0.2794
Hits@1 (Tail) 0.4298 0.4438 0.4329 0.4630 0.5168 0.5372
Hits@1 (Avg) 0.2842 0.3001 0.2859 0.3681 0.3766 0.4083
MRR (Head) 0.2441 0.2573 0.2451 0.3702 0.3361 0.3766
MRR (Tail) 0.5267 0.5224 0.5323 0.5325 0.5840 0.6074
MRR (Avg) 0.3854 0.3898 0.3887 0.4514 0.4600 0.4920

Table 5 Result on FB15K237 with/without downsampling. Results marked with “(D)” use downsam-
pling, while results with “(A)” do not.

RerankDM (A) RerankDM (D) RerankComplEx (A) RerankComplEx (D)

Hits@1 (Head) 0.1228 0.1256 0.1107 0.1127
Hits@1 (Tail) 0.3057 0.3096 0.2910 0.2902
Hits@1 (Avg) 0.2142 0.2176 0.2008 0.2015
MRR (Head) 0.2007 0.2032 0.1700 0.1707
MRR (Tail) 0.3966 0.3994 0.3692 0.3689
MRR (Avg) 0.2987 0.3013 0.2696 0.2698

hyperparameters can be tuned on the validation set of a knowl-
edge graph. Because the number of relations are in general more
than the number of entities in knowledge graphs, our method is
not as memory hungry as others.

This work can be extended in two ways. Firstly, as Table 5
shows, the method of sampling entities in training example to
compute type constraint factors has a severe influence on our
method. Method with only top 5 representative entities gave a
better result than method with all entities sampled in training set.
In the reported result, representative entities are merely sampled
by its frequency. This process can be improved by Determinan-
tal Point Process (DPP), which is a stochastic process that select
representative elements from a set.

Secondly, the type constraint factors in our approach can be
trained rather than computed. In future, we plan to design a
proper regularizer helping factors in every relation converge to
a appropriate location in training.
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