
IPSJ SIG Technical Report

Robust Activity Data Collection with On-Device
Recognition Using Long Short-Term Memory

Nattaya Mairittha1,a) Tittaya Mairittha1,b) Sozo Inoue1,c)

Abstract: This paper presents using a Long Short-Term Memory (LSTM)-based method for on-device deep
learning recognition to alleviate the labeling effort and ground truth data collection in activity recognition
systems using smartphone sensors. The novel idea behind this is that estimated activities are used as feed-
back for motivating users to collect accurate activity labels. To enable us to perform evaluations, we conduct
the experiments with two conditional methods and evaluate it with the dataset gathered. The results show
our proposed method has improvements in both data quality (i.e., the performance of classification several
machine learning models) and data quantity (i.e., the number of data collected) that reflect our method could
improve data collection for activity recognition systems.

Keywords: activity recognition; data collection; on-device deep learning recognition; smartphone sensors;
user feedback

1. Introduction

In the field of ubiquitous computing, researches on hu-

man activity recognition technology using mobile sensors

such as smartphones have been conducted [2]. Smartphone-

based activity recognition systems aimed at physical activi-

ties recognition such as walking or running, based on mobile

sensor data. The sensor data may be recorded directly on

the subject such as by carrying smartphones that have ac-

celerometers and gyroscopes [1]. Understanding what users

are doing in the physical world allows the smartphone app

to be smarter about how to interact with them. However, a

central challenge in smartphone-based activity recognition

is data annotation studies in order to assess the labels de-

scribing the current activity while this activity is still on-

going or recent to ensure that the dataset is labeled correctly.

Collecting accurate labels (annotation) comes with a hefty

price tag, in terms of human effort. Either to have the data

labeled by third-party observers or self-labeling both are

costly, time-consuming, tedious, and they have the risk of

missing some of the activity labels. For instance, while em-

ploying observers to annotate labels, it is correct segments

but costly [7]. By contrast, to get labels using self-labeling

and experience sampling, it is lower cost, but incorrect seg-

ments [14]. Another method such as offline labeling it also

takes a long time and privacy issues [8]. This is a general

problem for all supervised learning methods, which not only

1 Graduate School of Engineering, Kyushu Institute of Technol-
ogy, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka, 804-
8550, JAPAN

a) nattafahh@gmail.com
b) callmefons@gmail.com
c) sozo@brain.kyutech.ac.jp

require the presence of a big dataset but also require human

supervision to annotate the dataset. Therefore, the quality

and quantity of annotations can have a significant impact on

the performance of the activity recognition systems. Hence,

it is unavoidable to rely on the users and to keep them mo-

tivated to provide labels. To overcome the challenge of self-

labeling [14], we introduce the idea of utilizing on-device

deep learning recognition for optimizing activity data col-

lection. The rapid performance increase of low-power pro-

cessors and the huge demand of Internet of Things (IoT)

applications brought new ways for deploying machine/deep

learning models on edge devices. On-device machine learn-

ing by fusing the inertial sensors such as smartphones have

been explored [18, 6, 4]. These findings allow the activity

recognition system to be feasible to identify frequent be-

havioral patterns on edge devices; meanwhile, deep learning

revolution in the field of machine learning tends to result

in higher accuracy and performs exceptionally well on ma-

chine perception tasks on smaller devices with limited re-

sources [12, 20, 11]. TensorFlow Lite [13] designed to en-

able it easy to perform machine/deep learning recognition

on mobile, embedded, and IoT devices with low latency and

a small binary size, ”at the edge” of the network, instead

of sending data back and forth from a server. Thus, we

will exploit the power of on-device deep learning to provide

estimated activities on a smartphone in order to optimize

activity data collection.

In this paper, we want to show if we give estimated ac-

tivities using on-device deep learning recognition through

notifications as feedback to users while they are requested

for labeling, we can improve data annotation tasks for ac-

tivity recognition systems. The novel idea works by the

1ⓒ 2019 Information Processing Society of Japan

Vol.2019-UBI-63 No.12
Vol.2019-ASD-15 No.12

2019/8/27



IPSJ SIG Technical Report

user will get estimated activities through notifications on a

smartphone as feedback that motivates for efficient activ-

ity data collection. Estimated activities are automatically

inferred by periodically reading short bursts of smartphone

sensor data and processing them using on-device deep learn-

ing with a Long short-term memory (LSTM) model [16]

without the model retrained. To evaluate this contribution,

we trained the model for on-device deep learning with the

open dataset [10], conducted the experiments with proposed

and traditional methods to collect the evaluated dataset,

validated the dataset collected using several machine/deep

learning algorithms, and showed that our proposed method

outperformed than the traditional method. In summary, the

contribution of this paper is that using on-device LSTM

model to recognize activities in order to provide es-

timated activities as feedback for efficient activity

data collection.

2. Methods

In this section, we provide a descriptive view of the pro-

posed on-device deep learning inference for efficient activity

data collection system. The architecture of this sys-

tem is depicted in Figure 1. The system is composed

of several technical building blocks including the following:

(1) to build an LSTM-based deep learning model used for

on-device inference, (2) to collect accelerometer sensor data

and activity labels efficiently, and (3) To provide estimated

activities as feedback through smartphone notifications for

efficient data collection. The architecture of this sys-

tem is depicted in Figure 1.

Figure 1 The system architecture of the proposed on-device
deep learning recognition for activity data collection

2.1 To build on-device recognition model

In this section, we propose how to build an LSTM model

used for on-device recognition. We employ the open dataset

provided by the Wireless Sensor Data Mining (WISDM)

Lab [10] to build an activity recognition model for on-device

deep learning recognition.

We use the WISDM dataset mentioned to build an activ-

ity recognition model. The reason why we first build the

model by employing an existing dataset, and we then utilize

it for our proposed on-device recognition method because we

concern the issue that our system cannot draw any inferences

for users since it has not yet gathered sufficient information.

This problem usually occurs in computer-based information

systems which involve a degree of automated data modeling.

It is a well-known and well-researched problem, so-called

the cold start problem [19]. The human activity recognition

dataset built from the recordings of 29 subjects perform-

ing regular activities while carrying a waist-mounted smart-

phone with embedded inertial sensors. This dataset contains

1,098,207 examples and 6 attributes, including, user, activ-

ity, timestamp, x-acceleration, y-acceleration, z-acceleration

without missing attribute, collected through controlled, lab-

oratory conditions. There are 6 activity types of movement

that we try to classify: Walking (38.6%), Jogging (31.2%),

Upstairs (11.2%), Downstairs (9.1%), Sitting (5.5%), Stand-

ing (4.4%). The dataset’s description is detailed in [10].

An LSTM takes many input vectors to process them and

output other vectors. In our case, the ”many to one” ar-

chitecture is used: we accept time series of feature vectors

(one vector per time step) to convert them to a probabil-

ity vector at the output for classification. The inputs are

raw signals obtained from multimodal-sensors, which is a

discrete sequence of equally spaced samples (x1, x2, ..., xT ),

where each data point xt is a vector of individual samples

observed by the sensors at time t. These samples are seg-

mented into windows of a maximum time index T and fed

into LSTM-based deep learning model. Each generated se-

quence contains 200 training with 3 input parameters (3-axis

accelerometer) per time steps. The model is trained for a

maximum of 50 epochs by 2 fully-connected and 2 LSTM

layers (stacked on each other) with 64 units each. We use

rectified linear units (ReLUs) for the hidden layers to in-

crease the robustness of the model as well as remove any

simple dependencies between the neurons preventing over

fitting, and use the dropout technique to avoid overfitting

in our model, where a rectified linear unit has output 0 if the

input is less than 0, and raw output otherwise. Also, we use

an optimization algorithm called Adam [5] to minimize the

cost function by backpropagating its gradient and updating

model parameter. The core hyper-parameters explored in

this model are listed in Table 1.

For validating the trained model against test data, we ap-

portion the data into training and test sets, with an 80-20

split. After each epoch of training, we evaluate the perfor-

mance of the model on the validation set. We select the

epoch that showed the best validation-set performance and

apply the corresponding model to the test-set. As a re-

sult, we opt the final epoch that the accuracy and weighted

F1-score both are reached over 97% (0.975 and 0.972, re-

spectively) and loss is hovered at around 0.2. Note that

2ⓒ 2019 Information Processing Society of Japan

Vol.2019-UBI-63 No.12
Vol.2019-ASD-15 No.12

2019/8/27



IPSJ SIG Technical Report

Table 1 Some core parameter definitions for the training

Parameter Value
LSTM layer 2 fully-connected
epochs 50
hidden layer units 64
output classes 6
input features per timestep 3 (accx, accy , accz)
timesteps per series 200
learning rate 0.0025
batch size 1024

the class distribution of the WISDM dataset has the sample

imbalances among activity classes which can affect machine

learning [9]. We could not collect more data that could bal-

ance our classes; however, we show the weighted F1-score for

additional performance metric that is preferable if there is a

class imbalance problem, not just only accuracy [17]. Since

the smartphone is attached on the waist and each series to

classify has just a 200 sample window, those predictions are

extremely accurate. If we have a look at the confusion ma-

trix of the model’s predictions in Figure 2, we can see that

our model performs real good. Although we can see some

notable exceptions that there are difficulties in making the

difference between Walking, Upstairs and Downstairs, the

model is almost always able to identify the movement type

on a smartphone correctly. The visual insight of the results

are presented in Figure 2.

Figure 2 Training session’s progress over iterations

Figure 3 Training session’s progress over iterations

2.2 To collect sensor data and activity labels

We request participants to carry a waist-mounted Android

smartphone (Wiko Tommy3 Plus (Android 8.1)) with em-

bedded inertial sensors, install the mobile app on smart-

phones to select and record their daily life activities from

the list of predefined labels. Information about the demog-

raphy of participants and the duration of the experiment are

reported in Section 3. The mobile app is extended from our

work [15] called ”FahLog”, as shown in Figure. 4, when a

user selects the activity, the labels for each activity class will

be put into the right column as shown in Figure. 4-(d). Then

the user has to record it by pushing the button to start and

stop recording while they are carrying out the activity by fol-

lowing the steps as shown in Figure. 4-(d)(c)(b). Each time

the user taps an activity label box, it will transition to before

start (▶) → doing activity (⊙) → finish (✓) so a user can

record the start and end of the activity. Since another activ-

ity may be performed while performing one activity, multiple

activity labels can be started and ended in parallel. The ac-

tivity labels can then be uploaded to the server when it is

connected to the network. Otherwise, data will be stored on

the smartphone until there is internet access. Moreover, we

capture sensors and activity labels through smartphones to

recognize activities using smartphone sensors continuously.

Hence, we set the sampling rate of the app for the ‘standard’

settings of Android programming API, which is the slowest

settings where they are sampled 200 milliseconds when they

are not busy, then we take 1 minute time windows for cal-

culating time windows, it is enough sampling rate for such

data collection.

Figure 4 FahLog: A mobile app for collecting sensor data and
activity labels

2.3 To provide estimated activities as feedback

We interpret the results that retrieve from model recogni-

tion. We use a list of probabilities that the model returned.

We then meaningfully map them to relevant categories (ac-

tivity classes) and present it on mobile notification to the

user. Figure 5 presents an example of the results that are

displayed on a notification. Note that to prevent excessive

interruptibility and to optimize resources, we stop activity

reporting if the device has been still for a while, and use low

power sensors to resume reporting when it detects changes in

the user’s activity (e.g., changing from walking to running)

3ⓒ 2019 Information Processing Society of Japan

Vol.2019-UBI-63 No.12
Vol.2019-ASD-15 No.12

2019/8/27



IPSJ SIG Technical Report

with mean recognition time of 2846.0 ms. Also, when we

put the deep learning model on the device and use a battery

monitor application for Android smartphones to monitor the

battery level, it increases energy consumption on its smart-

phone by 5% on average compared with the traditional man-

ner without the on-device model. Therefore, showing that

it works fast and does not waste a lot of energy.

Figure 5 Steps to show a estimated activity as feedback to a user

3. Experimental evaluation

In this section, we will evaluate the proposed method us-

ing a standard activity recognition chain [1] by comparing

its performance with the traditional method, as shown in

Table 2. We design and conduct the experiments, describe

the dataset collected, preprocess the data collected, build

the recognition model, and evaluate it.

3.1 Experimental setup

The participants were required to carry a waist-mounted

Android smartphone, install the FahLog app on the phones,

to select and record their activities from the list of predefined

labels (depicted in Figure 4), get notifications, and submit

data to our server. Each participant performs the experi-

ments for 6 days. Table 2 shows the detail of the proposed

method and traditional. We propose that if we give esti-

mated activities using on-device deep learning recognition

as feedback to users through smartphone notifications, they

can improve activity data collection. Therefore, to com-

pare our proposed method with the traditional method, we

created notifications on smartphones that displays 2 differ-

ent versions. Each version only differs in the user interface

where the proposed method will show estimated activities

using on-device deep learning recognition when the device

detects changes in the user ’s activity. On the other hand,

the traditional method will show messages ”What are you

doing?”, without estimated activities once every 15 minutes.

We also request the users click the push notifications sent

to assure that the users have seen the notifications. Each

participant will receive both 2 conditions, each of which will

show 3 days. We randomly display the conditions for each

participant to ensure that they are not affected by the day of

experiments for each term. The participants were instructed

with detailed instructions on how to do all process step by

step using the same protocol provided. During data collec-

tion, the dataset was collected in the ”wild” because the

subjects provided data from their daily lives.

Table 2 Experimental design

Method Conditional detail
Proposed Receive notifications of estimated activities using

on-device deep learning recognition
Traditional Receive notifications with messages ”What are

you doing?” without estimated activities.

3.2 Data description

The dataset was collected between June 2019, from 6 sub-

jects within an age bracket of 25-30 years, performing 1

of 6 regular activities (as shown in the left column of Ta-

ble 3) while carrying a waist-mounted Android smartphone

that recorded the movement data (accelerometers in smart-

phones). Note that we requested them to carry a smart-

phone in the same position as the WISDM dataset used to

train the on-device recognition model. As a result, we gath-

ered 713 activity labels from all participants.

Table 3 The number of activity labels collected

Activity class # labels
Walking 247
Jogging 1
Sitting 249
Standing 153
Downstairs 36
Upstairs 27
Total 713

3.3 Activity recognition using smartphone sen-

sors

Since we propose a standard activity recognition chain

and a supervised learning approach for evaluations, we first

preprocess the dataset collected and then evaluate it.

3.3.1 Data preprocessing

We put together the dataset by including 3-axis ac-

celerometer sensor data and the activity labels on the smart-

phones without clock and time synchronization because the

sensor and the labeling system are both in the same device.

We used sliding windows of 1 minute with no overlapping.

For each axis, average, standard deviation, maximum value

and minimum value were extracted as features. Before data

proceeding, we excluded missing values. As a result, we ob-

tained multivariate data of 9,129 samples with 12 variables

for feature vectors. Figure 10 shows the activity labels dis-

tribution of the data samples in our dataset. It is worth

4ⓒ 2019 Information Processing Society of Japan

Vol.2019-UBI-63 No.12
Vol.2019-ASD-15 No.12

2019/8/27



IPSJ SIG Technical Report

noting that the distribution is highly skewed, where some

classes appear more frequently than others. Since imbal-

anced dataset can negatively influence the generalization

and reliability of supervised learning algorithms, we em-

ployed the SMOTE algorithm: Synthetic Minority Over-

sampling Technique as presented in [3] (an oversampling

technique that creates new synthetic data samples in the

minority classes, varying the features values of the existing

data points based on their k nearest neighbors in the feature

space) in order to balance our dataset. By upsampling the

size of training and testing datasets separately.

3.3.2 Evaluation method

In this section, we present the effectiveness of the proposed

method when we give estimated activities using on-device

deep learning through smartphone notifications. The exper-

iment was designed to test the performance of our classifier

for a user-dependent scenario. In this case, the classifiers

were trained and tested for each individual with her/his

own data, and average accuracy and was computed. We

show that several machine algorithms and LSTM-based deep

learning algorithm have improvements in the classification

performance. We also present the proposed method has im-

provements in the number of data collected compared to the

traditional method. To evaluate the proposed method using

a technique of supervised learning algorithm for multiclass

classification. We trained each participant separately using

one deep learning classifier and several standard machine

learning classifiers, including LSTM in the same way of the

on-device model trained, Logistic Regression (LR), Linear

discriminant analysis (LDA), k-nearest neighbors (KNN),

Decision tree (CART), Naive Bayes (NB), Support-vector

machine (SVM), and Random Forest (RF).

To test the model’s ability we used stratified k-fold cross-

validation. The folds are made by preserving the percentage

of samples for each class to ensure each fold is a good rep-

resentative of the whole. To account for label imbalance,

the model performance was presented using the weighted

average of precision, recall, F1-score of each class for the

multiclass task. So the average is weighted by the support,

which is the number of samples with a given label.

4. Results

Following the evaluation approach discussed above, we re-

port our results of the validation together with a discussion

of such results. We show the proposed method has improve-

ments in data quality (the classification performance) com-

pare to the traditional method. The average classification

performance of all models results are shown in Figure 6. We

also present the proposed method has improvements in data

quantity (the number of data collected) compare to the tra-

ditional method. Figure 10 shows the number of collected

activity labels for both methods.

4.1 Quality of collected activity data

Figure 6 shows F1-score, precision, and recall perfor-

mance results of all machine learning models were im-

proved with our proposed method compared to the tradi-

tional method. The F1-score was improved from 0.6240 to

0.7620 (+0.138) The precision was improved from 0.6440

to 0.7802 (+0.136) The recall of improved from 0.6366 to

0.7677 (+0.131)

Figure 6 The average classification performance of all models for
each method

Figure 7 shows F1-score performance results of all ma-

chine learning models were improved with our proposed

method compared to the traditional method. The F1-score

of CART was improved from 0.657 to 0.770 (+0.113)

The F1-score of KNN was improved from 0.667 to 0.801

(+0.134). The F1-score of LDA was improved from 0.604

to 0.766 (+0.162). The F1-score of LR was improved from

0.623 to 0.778 (+0.155). The F1-score of LSTM was im-

proved from 0.657 to 0.783 (+0.126). The F1-score of NB

was improved from 0.472 to 0.606 (+0.134). The F1-score

of RF was improved from 0.694 to 0.815 (+0.121). The F1-

score of SVM was improved from 0.623 to 0.775 (+0.152).

Figure 7 The F1-score performance results of several machine
learning models

Figure 8 shows precision performance results of all ma-

chine learning models were improved with our proposed

method compared to the traditional method. The preci-

sion of CART was improved from 0.679 to 0.805 (+0.126).

The precision of KNN was improved from 0.665 to 0.793

(+0.128). The precision of LDA was improved from 0.611

to 0.762 (+0.151). The precision of LR was improved from

0.616 to 0.759 (+0.143). The precision of LSTM was im-

proved from 0.675 to 0.803 (+0.128). The precision of NB

was improved from 0.593 to 0.757 (+0.164). The preci-

sion of RF was improved from 0.698 to 0.813 (+0.114).

5ⓒ 2019 Information Processing Society of Japan

Vol.2019-UBI-63 No.12
Vol.2019-ASD-15 No.12

2019/8/27



IPSJ SIG Technical Report

The precision of SVM was improved from 0.619 to 0.738

(+0.119).

Figure 8 The precision performance results of several machine
learning models

Figure 9 shows recall performance results of all machine

learning models were improved with our proposed method

compared to the traditional method. The recall of CART

was improved from 0.648 to 0.746 (+0.098). The re-

call of KNN was improved from 0.681 to 0.814 (+0.133).

The recall of LDA was improved from 0.626 to 0.780

(+0.154). The recall of LR was improved from 0.657 to

0.806 (+0.149). The recall of LSTM was improved from

0.657 to 0.779 (+0.121). The recall of NB was improved

from 0.459 to 0.556 (+0.097). The recall of RF was im-

proved from 0.696 to 0.821 (+0.137). The recall of SVM

was improved from 0.677 to 0.833 (+0.156).

Figure 9 The recall performance results of several machine
learning models

Table 4 shows all users improve average F1-score, average

precision, and average recall performances of all machine

learning models with our proposed method compared to the

traditional method.

4.2 Quantity of collected activity data

Figure 10 shows the number of collected activity labels

was increased with our proposed method. The number of

activity labels was increased from 311 to 402 (+91) com-

pared to traditional method. Table 5 shows the number of

labels of each activity class by comparing the proposed and

traditional. While some activity classes have more labels

with the proposed method, only one class has fewer labels

with the proposed method. The number of walking labels

Table 4 The average classification performance of all models for
each user

User Method F1-score Recall Precision
98 proposed 0.7778 0.7756 0.7973
98 traditional 0.7127 0.7139 0.7391
98 Improvement +0.0651 +0.0616 +0.0582
99 proposed 0.7009 0.7119 0.7156
99 traditional 0.4442 0.4830 0.4605
99 Improvement +0.2567 +0.2289 +0.2551
101 proposed 0.8700 0.8774 0.8727
101 traditional 0.6449 0.6619 0.6701
101 Improvement +0.225 +0.215 +0.203
103 proposed 0.7693 0.7663 0.7950
103 traditional 0.6490 0.6685 0.6584
103 Improvement +0.120 +0.098 +0.137
104 proposed 0.7881 0.7954 0.8120
104 traditional 0.6333 0.6223 0.6705
104 Improvement +0.155 +0.173 +0.142
105 proposed 0.6658 0.6794 0.6888
105 traditional 0.6600 0.6702 0.6654
105 Improvement +0.006 +0.01 +0.023

Figure 10 The number of activity labels for each method

was increased from 112 to 135 (+23). The number of up-

stairs labels was increased from 13 to 14 (+1). The num-

ber of standing labels was increased from 68 to 85 (+17).

The number of sitting labels was increased from 101 to 148

(+47). The number of downstairs labels was increased from

16 to 20 (+4). The number of jogging labels was decreased

from 1 to 0 (-1).

Table 5 The number of activity labels of each activity class for
each method

Activity class Proposed Traditional Improvement
Walking 135 112 +23
Upstairs 14 13 +1
Standing 85 68 +17
Sitting 148 101 +47
Downstairs 20 16 +4
Jogging 0 1 -1
Total 402 311 +91

5. Discussion and Future directions

By evaluating with the dataset and comparing with the

traditional method, the results reflect that our proposed

method has improvements in data quality for all machine

learning models evaluated and data quantity that indicate

improvements in activity data collection. What we have

found most interesting is that all users improve quality of

activity data collection with the proposed method, as shown

6ⓒ 2019 Information Processing Society of Japan

Vol.2019-UBI-63 No.12
Vol.2019-ASD-15 No.12

2019/8/27



IPSJ SIG Technical Report

in Table 4. While this study enabled us to improve activity

data collection effectively, there are some limitations that we

would like to point out and reference in the future. While

RF achieves the highest F1-score at 81.5%, LDA has the

most improvements by 16.2%. RF achieves highest the pre-

cision at 81.3%, NB has the most improvements by 16.4%.

SVM achieves highest the recall at 83.3% and also has the

most improvements by 15.6%. While this study enabled us

to improve activity data collection effectively, there are some

limitations that we would like to point out and reference in

the future.

First, while we notified information about estimated ac-

tivity when the user is currently doing the activity, it might

be necessary to design both our mobile app and our recog-

nition model to identify when a user starts or stops a par-

ticular activity, such as walking, biking, or driving (e.g.,

detect when users start and end an activity). For activity

recognition systems, it is crucial to collect correct segments

data. In other words, we need a labeled sequence of activi-

ties (i.e., the start and finish times of the events). Hence, if

the app can be used to detect changes in the user’s activity,

we can also deliver this information as feedback to the user

for better activity data collection. Researchers may consider

this idea for other purposes, for example, an app subscribes

to a transition in activities of interest and notifies the user

only when needed (e.g., the app notifies driving when a user

starts driving and mute until the user stops driving).

Second, we used the WISDM dataset to train our deep

learning model. Hence, the smartphone’s position is lim-

ited for activity data collection in our experiment as we

have to put the smartphone in the same position. If the

smartphone’s position and/or orientation is discrepant from

theirs, the on-device recognition will not be correct. Conse-

quently, considering to collect training dataset by ourselves

will be vital. Also, we can collect more data to make the

samples balance among activity classes. Furthermore, while

we applied 3-axis accelerometer for training the recognition

model and inferring on a smartphone device, other smart-

phone sensors would be useful for more accurate recognition.

For example, adding gyroscope can help indicate orientation.

Third, we run the trained model on a device without

retraining. When designing activity recognition (machine

learning) systems, it is crucial to understand how our data

is going to change over time. A well-architected system

should take this into account, and a plan should be put

in place for keeping our models updated. There are several

ways to retain the model, for example, manual retraining by

training and deploying your models with fresh data using

the same process you used to build your models in the first

place or continuous learning by using an automated system

to evaluate and retrain your models continuously (e.g., host-

ing a model on the cloud). However, retraining the model to

maintain machine learning systems would be challenging for

research questions in future work, for example, how do you

ensure our predictions continue to be accurate? how do

you keep your models up-to-date with new training data?

Fourth, as our proposed method can be applied for several

algorithms, but the main on-device recognition model that

drove our work – that LSTM-based deep learning model. If

a training model were evaluating using other deep learning

methods, such as CNN, then there would be value in ex-

panding – why LSTM? What are the challenges that are

different from other methods? Which method is best?

Finally, we plan to evaluate the method with long-term

data collection and more diverse samples, find data insights

as well as find out the correlations between accuracy, the

number of activity labels and classes to show whether and

how strongly pairs of variables are related. For example,

do notifications affect the number of activity labels or do

notifications affect the number of activity classes? Answer-

ing these questions, it would also be helpful to understand

user motivations and support activity data collection fur-

ther. Likewise, we have seen that although the number of

activity labels is increased with our method, not all activity

classes (see in Table 5). Therefore, analyzing the data col-

lected more deeply will be useful to understand correlation

and causation.

6. Conclusion

We have proposed on-device deep learning recognition us-

ing LSTM for providing estimated activities as feedback for

activity data collection in smartphone-based activity recog-

nition. By evaluating with 713 activity labels and mobile

sensor data collected, the results indicate that our proposed

method has improvements in F1-score, precision, and recall

for all machine learning classifiers compared to the tradi-

tional method. Moreover, the proposed method has an in-

crement in the number of activity labels compared to the tra-

ditional method. There are several challenging areas that we

see as ripe for next steps, for instance, exploiting on-device

deep learning recognition for detecting changes in the user’
s activity, collecting own training data for on-recognition

recognition model, adding more sensor types for training

activity recognition models, retraining an on-device model,

showing and comparing with other deep learning methods

as well as collecting more data and analyzing it deeply. We

will leave this for future work.

References

[1] Ling Bao and Stephen S Intille. Activity recognition

from user-annotated acceleration data. In Interna-

tional conference on pervasive computing, pages 1–17.

Springer, 2004.

[2] Andreas Bulling, Ulf Blanke, and Bernt Schiele. A tu-

torial on human activity recognition using body-worn

inertial sensors. ACM Computing Surveys (CSUR),

46(3):33, 2014.

[3] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,

and W Philip Kegelmeyer. Smote: synthetic minority

over-sampling technique. Journal of artificial intelli-

gence research, 16:321–357, 2002.

7ⓒ 2019 Information Processing Society of Japan

Vol.2019-UBI-63 No.12
Vol.2019-ASD-15 No.12

2019/8/27



IPSJ SIG Technical Report

[4] Paul Föckler, Thomas Zeidler, Benjamin Brombach,

Erich Bruns, and Oliver Bimber. Phoneguide: mu-

seum guidance supported by on-device object recogni-

tion on mobile phones. In Proceedings of the 4th in-

ternational conference on Mobile and ubiquitous mul-

timedia, pages 3–10. ACM, 2005.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Deep learning. MIT press, 2016.

[6] Tao Guan, Yunfeng He, Juan Gao, Jianzhong Yang,

and Junqing Yu. On-device mobile visual location

recognition by integrating vision and inertial sensors.

IEEE transactions on multimedia, 15(7):1688–1699,

2013.

[7] Sozo Inoue, Naonori Ueda, Yasunobu Nohara, and

Naoki Nakashima. Mobile activity recognition for a

whole day: recognizing real nursing activities with big

dataset. In Proceedings of the 2015 ACM Interna-

tional Joint Conference on Pervasive and Ubiquitous

Computing, pages 1269–1280. ACM, 2015.

[8] Shian-Ru Ke, Hoang Thuc, Yong-Jin Lee, Jenq-Neng

Hwang, Jang-Hee Yoo, and Kyoung-Ho Choi. A review

on video-based human activity recognition. Comput-

ers, 2(2):88–131, 2013.

[9] Bartosz Krawczyk. Learning from imbalanced data:

open challenges and future directions. Progress in Ar-

tificial Intelligence, 5(4):221–232, 2016.

[10] Jennifer R Kwapisz, Gary M Weiss, and Samuel A

Moore. Activity recognition using cell phone ac-

celerometers. ACM SigKDD Explorations Newsletter,

12(2):74–82, 2011.

[11] Joe Lemley, Shabab Bazrafkan, and Peter Corco-

ran. Deep learning for consumer devices and services:

Pushing the limits for machine learning, artificial intel-

ligence, and computer vision. IEEE Consumer Elec-

tronics Magazine, 6(2):48–56, 2017.

[12] He Li, Kaoru Ota, and Mianxiong Dong. Learning iot

in edge: Deep learning for the internet of things with

edge computing. IEEE Network, 32(1):96–101, 2018.

[13] TensorFlow Lite. Accessed: Feb. 28, 2019.

[14] Nattaya Mairittha and Sozo Inoue. Gamification for

high-quality dataset in mobile activity recognition.

In International Conference on Mobile Computing,

Applications, and Services, pages 216–222. Springer,

2018.

[15] Nattaya Mairittha, Tittaya Mairittha, and Sozo Inoue.

A mobile app for nursing activity recognition. In Pro-

ceedings of the 2018 ACM International Joint Con-

ference and 2018 International Symposium on Perva-

sive and Ubiquitous Computing and Wearable Com-

puters, pages 400–403. ACM, 2018.

[16] Francisco Ordóñez and Daniel Roggen. Deep con-

volutional and lstm recurrent neural networks for

multimodal wearable activity recognition. Sensors,

16(1):115, 2016.

[17] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-

fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,

Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-

cent Dubourg, et al. Scikit-learn: Machine learning

in python. Journal of machine learning research,

12(Oct):2825–2830, 2011.

[18] Reza Rawassizadeh, Elaheh Momeni, Chelsea Dob-

bins, Joobin Gharibshah, and Michael Pazzani. Scal-

able daily human behavioral pattern mining from

multivariate temporal data. IEEE Transactions on

Knowledge and Data Engineering, 28(11):3098–3112,

2016.

[19] Andrew I Schein, Alexandrin Popescul, Lyle H Un-

gar, and David M Pennock. Methods and metrics

for cold-start recommendations. In Proceedings of the

25th annual international ACM SIGIR conference on

Research and development in information retrieval,

pages 253–260. ACM, 2002.

[20] Jürgen Schmidhuber. Deep learning in neural net-

works: An overview. Neural networks, 61:85–117,

2015.

8ⓒ 2019 Information Processing Society of Japan

Vol.2019-UBI-63 No.12
Vol.2019-ASD-15 No.12

2019/8/27


