
ⓒ2019 Information Processing Society of Japan

Automatic Test Pattern Generation for Functional Fault

YUHANG LIU†1 AMIR MASOUD GHAREHBAGHI†2
MASAHIRO FUJITA†3

Abstract: As fabricated circuitry becomes larger and denser, faults in devices can become much more complicated and traditional

stuck-at faults may miss important defects. In this paper, we discuss about general functional fault, which can change the primary

input-output relations of the circuit. Then we discuss about its automatic test pattern generation (ATPG) techniques. Although

number of functional faults can be much more than number of stuck-at faults for the same circuit, the required numbers of test

patterns to detect functional fault are not so much more than number of test patterns for stuck-at faults, which suggests practical

values of functional fault. Finally, we show two new approaches to simplify the fault model for the AND inverter graph (AIG)

representations of ISCAS89 circuits to cover all functional faults of two-inputs gate and analyze the improvements over the previ-

ous work.

1. Introduction

 Since more and more dense chips are produced, it is una-

voidable for faults to happen in the fabricated chips. Therefore,

we need to test whether the functionalities of the fabricated chips

are correct or not before shipping to customers. It is known that

testing has become much more difficult due to the sharp increase

in circuit complexity. However, even for a very simple circuit, it

is very hard to exhaustively test its functionality, as this task

would require exponential effort in terms of inputs and flipflops.

Although automatic test pattern generation (ATPG) technology

has been developed to quickly generate a compact test set for sin-

gle stuck-at faults in a chip, recently, it has been reported that

traditional single and multiple stuck-at fault model may not be

able to cover possible defects well [1], and a new fault model,

functional fault model is proposed which considers all possible

functions in a faulty circuit [2].

Functional fault model, as its name also implies, assumes the

logic function of a circuit in the circuit-under-test can change to

any other function. At the same time, non-observable faults from

primary outputs are considered as redundant faults because they

cannot change the behavior of the circuit. In the case that the cir-

cuit is a two-input gate, the most general functional model should

consider 16 functions, as shown in Figure 1. For example, if a

two-input XOR gate has functional fault, we consider it has at

most 15 faulty cases according to Figure 1, where the case 6 is

the correct function. As can be seen from truth tables, functional

fault model allows us to focus on all possible internal defects,

including the ones missed by stuck-at fault model.

 Authors of [2] proposed the first ATPG for functional fault.

Their experiments on some small faulty circuits results are

showed to test simultaneous functional faults up to 100, which

suggests practical values of functional fault model. However,

when it comes to lager circuits, the ATPG may not finish in ac-

ceptable time even targeting single functional faults.

Thus, we focused on the faulty cases and the fault model in-

jecting algorithm, proposed a new approach based on pseudo-ex-

haustive testing strategy to speed up the ATPG of functional fault.

Although the generated test sets still can be further compressed

 †1 Dept. of Electrical Engineering and Information Systems, The University of

Tokyo

due to the naive implementation, the experimental results illus-

trate that the proposed approach can makes the process much

faster than original one. Besides, we also extend our method by

combining with stuck-at test patterns, which can not only speed

up the ATPG process, but also compress the test patterns for sin-

gle functional faults of all circuits from ISCAS89 benchmark cir-

cuits. As far as we know, this is the first time where complete sets

of single functional faults are obtained for all ISCAS89 circuits.

Figure 1. All 16 possible cases of a two-input gate

The rest of the paper is organized as follows. Chapter 2 dis-

cusses the background about testing and fault models. Chapter 3

presents the related work about ATPG method for functional

faults and how the algorithm works and our new approach the

experimental results. Chapter 4 shows our experiment result of

new approach. Finally, Chapter 5 concludes the paper and dis-

cusses the further work.

2. Background

2.1 Structural methods for testing

As mentioned above, test problem is aggravated, if the interac-

tion with the physical world, analog and mixed-signal circuits are

included. While structural testing uses the structural information

and model to generate tests, which requires more effort, but can

reduce the complexity significantly. The elements of structural

testing are:

1. Model of the circuit structure (most often given as gate

level).

 †2 VLSI Design and Education Center, The University of Tokyo

 †3 VLSI Design and Education Center, The University of Tokyo

196

DAシンポジウム
Design Automation Symposium

DAS2019
2019/8/30

ⓒ2019 Information Processing Society of Japan

2. Structural fault model such as stuck-at, transition, delay or

bridging faults. The most general fault model is the conditional

stuck-at fault model, which allows describing nearly all realistic

faulty behaviors [3].

3. Changes of the circuit structure by additional design-for-

test circuitry, which may introduce test modes during operation.

4. Structural test patterns, which detect a given percentage of

faults, i.e., reach the required fault coverage.

With these modifications and additions, test time and test vectors

do not increase any more exponentially by the circuits size but

just linearly.

2.2 Stuck-at fault

 The stuck-at fault model assumes one line or node in the digital

circuit is stuck at logic high or logic low. Even though stuck-at

faults do not accurately model real defects, high coverage of

stuck-at faults indicates high coverage of real defects. Several ex-

amples are given as follows:

⚫ A short between ground (stuck-at-0) or power (stuck-at-1)

and a signal line.

⚫ An open on a unidirectional signal line.

⚫ Any internal fault in the component driving its output that

it keeps a constant value.

Because the coverage of stuck-at faults at every line satisfies

many necessary conditions for coverage of real defects in all parts

of the circuit, it is the most commonly used structural fault model

and practically shown to be effective.

Figure 2. Example of a circuit with stuck-at-1 fault

 The basis of ATPG algorithms, D-algorithm [4], Path Ori-

ented Decision Making (PODEM) [5] and FAN [6] have been

proposed to detect stuck-at faults. In addition, sophisticated Sat-

isfiability (SAT) checking based ATPG technologies have been

developed recently.

2.3 ABC and AND-inverter graph.

ABC is a growing software system for synthesis and verifica-

tion of binary sequential logic circuits appearing in synchronous

hardware designs developed by Berkeley Verification and Syn-

thesis Research Center.[7] ABC bases on clause-based versus cir-

cuit-based SAT solver and binary decision diagram (BDD) pack-

ages to optimize industrial gate level designs even on a modern

personal computer. Recently, the testing functions are also added

into ABC, shown to be initially successful and powerful in ATPG

for multiple stuck-at fault [8] as well as functional fault.[2]

And-inverter graphs (AIGs) are networks of two-input AND

gates and inverters. In ABC, AIGs are used as the data structure

of choice for solving almost all problems in synthesis as well as

verification. A combinational AIG is a Boolean network com-

posed of two-input AND gates and inverters. To derive an AIG,

the sum of products of the nodes in a logic network are factored,

the AND and OR gates of the factored forms are converted into

two-input ANDs and inverters using DeMorgan’s rule, and these

nodes are added to the AIG manager in a topological order.

Figure 3. Two different AIGs for a Boolean function

ABC also allows AIGs to be efficiently duplicated, stored, and

passed between calling applications as a memory buffer or com-

pactly stored on disk in the AIGER format [9]. The characteristics

of ISCAS89 benchmark circuits in AIG format are shown in Table

1. In this paper, instead of the original circuits, their AIGs are

used to explain our approaches, which is much more effective and

easier to understand.

Table 1. Characteristics of ISCAS89 circuits in AIG

Name is the name of circuits from ISCAS89 benchmark, and

Name PI PO FF LV AND

s27 7 4 3 5 8

s208 18 9 8 9 72

s298 17 20 14 9 102

s344 24 26 15 13 105

s349 24 26 15 13 109

s382 24 27 21 12 137

s386 13 13 6 10 166

s400 24 27 21 13 145

s420 34 17 16 11 160

s444 24 27 21 12 151

s510 19 7 6 11 213

s526 24 27 21 9 201

s641 54 42 19 25 146

s713 54 42 19 25 160

s820 23 24 5 14 345

s832 23 24 5 14 355

s838 34 1 32 15 336

s953 45 52 29 12 347

s1196 14 14 18 19 477

s1238 14 14 18 22 532

s1423 17 5 74 55 462

s1488 8 19 6 15 663

s1494 8 19 6 15 673

s5378 35 49 164 17 1343

s9234 36 39 132 34 1947

s13207 31 121 214 34 2719

s15850 14 87 128 47 3560

s35932 35 320 1728 19 11948

s38417 28 106 1462 30 9219

s38584 12 278 1159 36 12394

197

DAシンポジウム
Design Automation Symposium

DAS2019
2019/8/30

ⓒ2019 Information Processing Society of Japan

PI/PO/FF/LV/AND are the numbers of primary inputs, primary

outputs, flipflops, levels and AIG nodes used to represent the cir-

cuits, respectively.

3. Related work and Approach

3.1 First ATPG algorithm for functional fault

The first ATPG algorithm for functional fault is proposed in [2].

As the number of possible faulty cases are large, we introduce

look up table to represent all of them by changing the fanout of

the look up table, which can be controlled by four variables. We

use a small circuit as an example to analyze here:

Figure 4. Example of functional faults in the XOR gate

In the circuit, the target gate we supposed functional faults oc-

cur is the XOR gate. In the faulty circuit, we replace the target

gate with look up table, switching the value of Boolean variables

p, q, r, s and combining them as the fanout of look up table. For

example, to inject a fault which describes a faulty two-inputs

EOR gate behaves as a two-inputs AND gate, we create a look-

up table and let p, q, r, s equal to 0, 0, 0 and 1 so that the param-

eters decide the logic function of the target gate.

After fault injection, the test pattern can be generated by check-

ing the equivalence of two circuits when applying same inputs,

which can be solved as a SAT problem. The ATPG algorithm de-

rives iteration to get test pattern, which is also used for multiple

stuck-at faults. The detailed step is shown as follows:

1. Generate a faulty look up table with a set of variables p, q,

r, s as x1.

2. Find input vector v1 as test pattern which let entire circuit

becomes logically different by solving the following SAT prob-

lem with SAT solver:

∃v. f (v, x1) ≠ SPEC(v)

where f (v, x1) is the faulty logic function while SPEC(v) is the

correct logic function.

3. Generate another faulty look up table by changing the

value of p, q, r, s as x2. Ensure x2 is a new functional fault by

guaranteeing:

f (v1, x2) = SPEC(v1)

which means the new faulty logic function cannot be detected by

formal test pattern.

4. Keep doing this until there is no more new test pattern gen-

erated, which means the following SAT problem has no solution:

∃v. f (v, xn) ≠ SPEC(v)

when we guarantee:

f (v1, xn) = SPEC(v1)

f (v2, xn) = SPEC(v2)

⋮

⋮

f (vn-1, xn) = SPEC(vn-1)

 5. Get all xi as functional fault list and all vi as corresponding

test patterns.

 As discussed above, we can introduce a mechanism by which

various fault models can be represented as logic formulae or func-

tions. As generalization for general circuits having varieties of

gates is straightforward, in this paper, we assume the target circuit

is represented as AIG. In general, for each AND gate, we describe

how its logic function at its output with respect to its inputs

changes under a given four-input multiplexer shown as Figure 5.

Its output is connected to c, which is regarded as the fanout of the

target gate, and its four inputs are connected to variables p, q, r,

s. The multiplexer is controlled by the values of a and b, which

are regarded as two fanins of the target gate. When we run ATPG

for functional faults, p, q, r, s can be assigned from 0, 0, 0, 0

(case0) to 1, 1, 1, 1 (case 15) to test all possible faulty cases. The

detailed process is discussed as follows:

⚫ Set p = q = r = s = 0, c will be 0 regardless to the values of

a and b, which realizes stuck-at-0 fault at output. (case 8)

⚫ Set p = q = r = 0, s = 1, c will show the values as an AND

gate’s output. (non-faulty, case 0)

⚫ Set p = q = 0, r = s = 1, c will show the same values as a,

which realizes stuck-at-1 fault at input b. (case 12)

⋮

⋮

⚫ Set p = q = r = s = 1, c will be 1 regardless to the values of

a and b, which realizes stuck-at-1 fault at output. (case 15)

Figure 5. Multiplexer to inject functional faults [2]

 To describe the problem programmable, we use a Boolean for-

mula as follows to represent targeting AND gate:

c = a ? (b ? p : q) : (b ? r : s) … (1)

 Formula (1) is exactly the method how functional faults gener-

ated in [2]. We must note that this is an example with 4 extra var-

iables (p, q, r, s) to inject a single functional fault, which means

only one gate into the entire circuit is getting faulty. The extra

variables will be connected as primary inputs of the circuit, and

ATPG for multiple functional fault need to consider plural gates

get faulty at the same time. Thus, injecting functional faults into

plural gates make the time of each iteration increase dramatically.

In the next part, we will show two new ATPG approaches for

198

DAシンポジウム
Design Automation Symposium

DAS2019
2019/8/30

ⓒ2019 Information Processing Society of Japan

multiple and single functional faults which can reduce the com-

plexity of the original algorithm by reducing the number of vari-

ables. We name them fault cases collapsing and fault case combi-

nation.

3.2 Fault case collapsing with pseudo-exhaustive testing

method

 For all 15 faulty cases of a two-input gate, there is no need to

test one by one. We can use the pseudo-exhaustive testing method

which is proved correct by [10]. The advantages of this strategy

are as follows:

⚫ Test inputs are calculated at test application time.

⚫ Test computation time depends only on the set of inputs

and outputs.

⚫ Each sub-circuit can be tested exhaustively.

In this paper we apply such strategy, which we show a small

circuit to explain:

Figure. 6. Pseudo-exhaustive testing method [11]

If we want to test the function is correct or not of the highlight

AND gate in the circuit, the simplest method is to test response

of all the 4 pairs of possible fanins and propagate the faulty fan-

outs to primary. The primary inputs which satisfy this condition

will be test pattern of functional fault for this AND gate automat-

ically. When we come back to all the 15 look-up tables represent-

ing faulty cases. It is clear that 15 faulty cases collapse into 4,

which is also shown by the following Figure. 6.

Take a two-input AND gate as an example, case 0 is the correct

function and the faulty cases 1-7 can be collapsed to case 8, the

faulty cases 11, 13 and 15 can be collapsed to case 9, the faulty

cases 14 can be collapsed to case 12, finally we add faulty case

10, the faulty cases will be sufficient. Thus, we pick up the col-

lapsed cases into a pseudo-exhaustive model and modify the

ATPG algorithm as well as cardinality constraints of variables to

apply the similar iteration mentioned in chapter 3.1. We also use

a programmable formula to explain this model:

c = ((~p | ~q) & ((a | p) & (b | q))) | (r & (~a & ~b)) … (2)

 Formula (2) clearly based on function instead of randomly

switching the variables, and we reduced the number of variables

from 4 (p, q, r, s) to 3 (p, q, r) for each gate, which is discussed

as follows:

⚫ Set p = q = r = 0, the logic function of formula (2) will be

determined as follows, which realizes an AND gate (non-

faulty, case 0):

c = a & b

⚫ Set p = q = 0, r = 1, the logic function of formula (2) will

be determined as follows, which realizes an XNOR gate

(case 9):

c = (a & b) | (~a & ~b) = ~(a ^ b)

⋮

⋮

⚫ Set p = 0, q = 1, r = 0, the logic function of formula (2) will

be determined as follows, which realizes stuck-at-1 fault at

input b. (case 12):

c = a

⋮

⋮

⚫ Set p = 1, q = 0, r = 0, the logic function of formula (2)

will be determined as b, which realizes stuck-at-1 fault at

input a. (case 10):

c = b

⋮

⋮

⚫ Set p = 1, q = 1 r = 0, the logic function of formula (2)

will be determined as follows, which realizes stuck-at-0

fault at output. (case 8):

c = 0

⋮

⋮

 Please note that although there are some redundant faulty cases

in this model, this model structure is the simplest one which can

fulfill the faulty cases coverage. To verify our theory is correct

and the pseudo-exhaustive model is as effective as the original

model, we did a series of contrastive experiments on each circuit

from ISCAS89. The detail ATPG approach are as follows:

1. Generate the single pseudo-exhaustive functional fault list

SPEFFL based on pseudo-exhaustive fault model, and their cor-

responding test patterns set V.

2. Generate the single original functional fault list SOFFL,

and test all of them by input set V to see if the new test patterns

are sufficient:

(2-1) Generate the SOFFL of all single original functional

faults.

(2-2) Input every vi in V to detect a single original functional

fault xi in SOFFL.

(2-3) If xi can be detected at step (2), delete it from SOFFL.

Else remain it and repeat from step (2) (Test a single original

functional fault).

(2-4) See if the SOFFL is empty. If so, the sufficiency of the

test patterns set V is verified. If not, the SAT problem will have

new solutions, which will be added into V.

 3. Redo ATPG for multiple functional fault with pseudo-ex-

haustive approach and original approach with the same circuit

separately. Record the runtime and dump the test patterns set. An-

alyze the speed and size of test patterns set from two approaches.

3.3 Fault case combination with Stuck-at fault test patterns

 Notice that for single functional fault, it is not necessary to

generate all faulty cases (case 8,9,10,12) at once. We can run

ATPG for only one case at a time and add the test patterns into

next turn. This method is the iteration of test pattern between

cases, conversely using the method to verify sufficiency

199

DAシンポジウム
Design Automation Symposium

DAS2019
2019/8/30

ⓒ2019 Information Processing Society of Japan

mentioned above.

What’s more, case 8 exactly represents stuck-at-0 at output,

while case 9 and case 12 represent stuck-at-1 at input. Those tra-

ditional fault test patterns have already been precisely generated

and highly compressed by many commercial ATPG tools. We got

the complete stuck-at fault test patterns of ISCAS89 from the re-

search group working on it [14]. This fact allows us to start from

stuck-at fault test patterns directly to skip 3 cases and concentrate

on case 9 (AND gate to XNOR gate) instead of running ATPG 3

times.

 We also use a programmable formula to explain this model:

c = (p & (~a & ~b)) | (a & b) … (3)

 The formula (3), injecting only one faulty case, is much sim-

pler than the formula (1) and (2). It has only two cases, controlled

by one variable:

⚫ Set p = 0, the logic function of formula (3) will be deter-

mined as follows, which realizes an AND gate (non-faulty,

case 0):

c = a & b

⚫ Set p = 1, the logic function of formula (3) will be deter-

mined as follows, which realizes an XNOR gate (case 9):

c = (a & b) | (~a & ~b) = ~(a ^ b)

The detailed ATPG approach are as follows:

1. Get the test patterns for all single stuck-at faults as input

set V.

2. Generate the single functional fault (case 8) list SFFL8,

and test all of them by input set V to see if the new test patterns

are complete:

(2-1) Generate the SFFL8 of all single functional fault (case 8).

(2-2) Input every vi in V to detect a single functional fault (case

8) xi in SFFL8.

(2-3) If xi can be detected at step (2), delete it from SFFL8.

Else remain it and repeat from step (2) (Test a single functional

fault (case 8)).

(2-4) See if the SFFL8 is empty. If so, the test patterns V is

sufficient. If not, the SAT problem will have new solutions, which

will be added into V. Record the runtime and dump the test pat-

terns set.

3. Redo ATPG for single functional fault with original ap-

proach with the same circuit. Record the runtime and dump the

test patterns set. Analyze the speed and size of test patterns set

from two approaches.

4. Results

 We have implemented the algorithm for gate level ATPG for

functional fault with the computer having Linux kernel 2.6.32 64-

bit, Dual Xeon E5-2699 v4 2.20GHz, and 512GB memory. For

easiness of implementation, we use circuit manipulation tools,

ABC and its AIG package. The SAT solver we used is MiniSat

[12].

4.1 ATPG based on fault case collapsing

We selected all circuits from ISCAS89 benchmark, targeting

single functional fault to verify if the test pattern generated by

pseudo-exhaustive approach are complete and targeting multiple

functional fault to confirm the improvement. Thus, for single

functional fault, we only recorded untested fault remain. We run

ATPG 5 times for each circuit in the experiments and take the

median of data, including size of test patterns and runtime from

each approach as the results, which are shown as follows:

Table 2. ATPG results based on fault case collapsing

In Table 2, there are several cells filled with “/”, which means

no result within 150,000 second (time-out). The circuits larger

than s1423 got no result either.

As can be seen from the results of single functional fault, there

is no untested faults remained, which suggests the sufficiency of

our approach. For the circuits which finished ATPG, we can see

a definite improvement of runtime up to 40 times. The reduce of

test patterns is not obvious, which suggests there are a lot of re-

dundant test patterns generated. Thus, it is better to incorporate

the test patterns compaction techniques for our SAT formulation,

such as the ones shown in [13], which we plan to work in the

future.

For some large circuit whose size is over than 9000, even tar-

geting single functional fault, we cannot finish ATPG and get test

patterns. When it comes to multiple functional faults, this prob-

lem becomes more serious. Both approaches cannot finish ATPG

and get test patterns even from small scale circuits which have

only hundreds of gates. The reason why it happened can be con-

sider that the cardinality constraints mentioned are still not effi-

cient enough. Including the optimization of the other step of

ATPG algorithm, it is part of our future works.

4.2 ATPG based on fault case combination

 We prepared the test patterns for all circuits from ISCAS89

benchmark, targeting single functional fault to confirm the im-

provement. We run ATPG 5 times for each circuit in the experi-

ments and take the median of data, including size of test patterns

and runtime from each approach as the results, which are shown

as follows.

 In Table 3, there are several cells filled with “/”, which

means iteration cannot finish and ATPG gets no result within

150000 seconds. Please also note that the combined time includ-

ing the time for pre-reading stuck-at test patterns. Due to the

s27 15 0 15 14 0.03 0.01

s208 64 0 192 195 10902.74 4473.56

s298 71 0 101 100 29.67 4.04

s344 43 0 68 66 16.49 2.97

s349 50 0 87 64 23.31 3.40

s382 82 0 107 101 18.24 2.92

s386 75 0 238 90 30.08 2.46

s400 70 0 105 90 21.46 2.46

s420 135 0

s444 76 0 108 82 30.28 3.28

s510 119 0

s526 108 0 202 176 522.97 72.77

s641 170 0 271 223 9756.60 128.84

s713 170 0 257 233 3451.70 83.49

s820 221 0

s832 197 0

s838 250 0

s953 161 0

s1196 274 0

s1238 312 0

s1423 150 0 186 166 133817.01 81086.59

Name
Test

pattterns

 Original

test patterns

Pre-read

stuck-at test

patterns

Combined

test patterns

Original

time(s)

Combined

time(s)

200

DAシンポジウム
Design Automation Symposium

DAS2019
2019/8/30

ⓒ2019 Information Processing Society of Japan

discussion above, that the additional test patterns showed un-

tested faults escaped from stuck-at testing.

Table 3. ATPG results based on fault case combination

As can be seen from the results, our approach shows a definite

improvement of runtime up to 160 times. Especially, for the larg-

est 3 circuits, although the original approach cannot finish ATPG

and get test patterns, our approach finished in acceptable time. As

far as we know, this is the first time where complete sets of single

functional faults are obtained for all ISCAS89 circuits. The rea-

son of it may be cardinality constraints for only one faulty case

become very streamlined because the variables of entire circuit

reduce sharply. Compared to the test patterns generated by origi-

nal approach, ours are more compressed due to the complete

stuck-at test patterns we pre-read. The runtime and test patterns

improvement get higher when the size of circuit get larger. The

mathematical analysis to them is also an important future topic.

5. Concluding Remarks

 In this paper we introduced a general functional fault model,

which can represent all possible logic faults within the target sub-

circuits. We have also introduced its ATPG algorithm and showed

two new approaches to improve runtime and size of test patterns

for both multiple and single faults occurred in gate level bench-

mark circuits compared to existing method.

 We took advantages of pseudo-exhaustive testing method to

collapse the faulty cases from 15 to 4, then combine it with com-

plete stuck-at test patterns. Experimental results show our new

approaches can be very efficient. For future work, we will con-

centrate on ATPG algorithm optimization, test patterns

compression.

Reference
1) Samiha Mourad, Yervant Zorian: Principles of Testing Electronic Sys-

tems. John Wiley & Sons, 2000.

2) Masahiro Fujita; Takeshi Matsumoto; Satoshi Jo: FOF: Functionally

Observable Fault and its ATPG Techniques. 2013 IFIP/IEEE 21st Inter-

national Conference on Very Large Scale Integration (VLSI-SoC).

3) S. Holst, S. and Wunderlich, H.-J.: “Adaptive Debug and Diagnosis

Without Fault Dictionaries”, Journal of Electronic Testing: Theory and

Applications (JETTA), Vol. 25(4-5), 2009, pp. 259-268.

4) J. P. Roth, A. Calculus et al., “Diagnosis of automata failures,” IBM

Journal of Research and Development. Citeseer, 1960.

5) P. Goel, “An implicit enumeration algorithm to generate tests for com-

binational logic circuits,” IEEE transactions on Computers, no. 3, 1981,

pp. 215-222.

6) H. Fujiwara and T. Shimono, “On the acceleration of test generation

algorithms,” IEEE Transactions on Computers, no. 12, 1983, pp. 1137-

1144.

7) Robert K. Brayton, Alan Mishchenko: ABC: An Academic Industrial-

Strength Verification Tool, 22nd International Conference on Computer

Aided Verification (CAV 2010), 2010, pp.24–40.

8) Peikun Wang, Amir Masoud Gharehbagh, Masahiro Fujita: An Incre-

mental Automatic Test Pattern Generation Method for Multiple Stuck-at

Faults. 2019 IEEE 37th VLSI Test Symposium (VTS), 2019.

9) AIGER Homepage http://fmv.jku.at/aiger/

10) Jon G. Jr. Udell, Edward J. McCluskey: Pseudo-exhaustive test and

segmentation: formal definitions and extended fault coverage results. The

Nineteenth International Symposium on Fault-Tolerant Computing. Di-

gest of Papers, 1989.

11) VLSI Testing Homepage of Professor James Chien-Mo Li, National

Taiwan University http://cc.ee.ntu.edu.tw/~cmli/VLSItesting/

12) N. Een, A. Biere.Effective Preprocessing in SAT through Variable

and ClauseElimination. InProc. of Theory and Applications of Satisfia-

bility Testing,8thInternationalConference (SAT’2005), volume 3569 of

LNCS, 2000.

13) Coudert, O., Berthet, C., Madre, J.C.: Verification of sequential ma-

chines based on symbolic execution. In: Sifakis, J. (ed.) CAV 1989.

LNCS, vol. 407. Springer, Heidelberg, 1990.

14) A. Czutro, S. M. Reddy, I. Polian, and B. Becker, “Sat-based test

patterngeneration with improved dynamic compaction,” VLSI Design

and 2014 13th International Conference on Embedded Systems, 2014

27thInternational Conference on. IEEE, 2014, pp. 56-61.

s27 12 5 9 0.02 0.02

s208 61 20 32 0.32 0.03

s298 85 28 38 1.09 0.02

s344 65 14 23 0.60 0.02

s349 63 15 24 0.56 0.02

s382 88 27 52 1.39 0.04

s386 134 64 89 5.52 0.08

s400 75 50 61 1.05 0.06

s420 133 70 99 4.83 0.23

s444 77 25 41 1.31 0.04

s510 120 58 78 12.26 0.11

s526 114 49 74 6.48 0.07

s641 168 25 64 3.85 0.06

s713 167 24 69 5.72 0.06

s820 206 99 151 70.76 1.08

s832 219 101 158 77.54 1.00

s838 267 142 211 74.74 3.11

s953 172 80 111 72.14 0.36

s1196 273 117 186 330.03 2.69

s1238 287 130 192 563.38 4.67

s1423 157 25 70 63.42 0.57

s1488 274 108 159 381.51 2.16

s1494 263 110 158 317.11 3.25

s5378 596 102 460 2613.9 76.96

s9234 648 134 360 12120.32 133.19

s13207 1149 250 349 21738.69 267.26

s15850 940 116 298 41149.65 260.23

s35932 30 41 430.39

s38417 120 550 4833.89

s38584 174 594 4296.73

Pre-read

stuck-at test

patterns

Combined

test patterns

Original

time(s)

Combined

time(s)
Name

 Original

test patterns

201

DAシンポジウム
Design Automation Symposium

DAS2019
2019/8/30

