
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

Scope-aware Code Completion
with Discriminative Modeling

Sheng Hu1,†1,a) Chuan Xiao1,†2,b) Yoshiharu Ishikawa1,c)

Received: December 9, 2018, Accepted: April 9, 2019

Abstract: Code completion is a traditional popular feature for API access in integrated development environments
(IDEs). It not only frees programmers from remembering specific details about an API but also saves keystrokes and
corrects typographical errors. Existing methods for code completion usually suggest APIs based on statistics in code
bases described by language models. However, they neglect the fact that the user’s input is also very useful for rank-
ing, as the underlying patterns can be used to improve the accuracy of predictions of intended APIs. In this paper,
we propose a novel method to improve the quality of code completion by incorporating the users’ acronym-like input
conventions and the APIs’ scope context into a discriminative model. The users’ input conventions are learned using a
logistic regression model by extracting features from collected training data. The weights in the discriminative model
are learned using a support vector machine (SVM). To improve the real-time efficiency of code completion, we employ
a trie to index and store the scope context information. An efficient top-k algorithm is developed. Experiments show
that our proposed method outperforms the baseline methods in terms of both effectiveness and efficiency.

Keywords: code completion, discriminative model, top-k ranking

1. Introduction

Code completion is a very useful feature for programmers,
especially beginners, when they input long API names in inte-
grated development environments (IDEs). It aims to help formu-
late accurate predictions for users’ intended input APIs to save
keystrokes and avoid typographical errors. This feature has be-
come popular in prevalent IDEs for the following three reasons:
First, according to the receiver object type, code completion can
provide meaningful API method calls appearing in this object’s
definition, hence avoiding low-level incorrect API invocations.
Second, if developers are not familiar with the APIs that should
be called in their current context, code completion is able to
present all possible completions in a pop-up window, providing
an overall view and documentation to help beginners to learn pro-
gramming patterns. Third, with code completion, developers are
encouraged to use longer and more descriptive method names to
improve code readability. We show an example of code comple-
tion in Example 1.

Example 1 Suppose a user wants to input an API name
“SwingUtilities”. He types the first few characters such
as “swin”, and then the system automatically suggests
“SwingUtilities” and “SwingWorker”.

We call the above problem setting code completion for prefix-

like input. It receives a prefix-like input and returns a candidate

1 Nagoya University, Nagoya, Aichi 464–8601 Japan
†1 Presently with Kyoto University
†2 Presently with Osaka University
a) hu@db.ss.is.nagoya-u.jp
b) chuanx@nagoya-u.jp
c) ishikawa@i.nagoya-u.ac.jp

API if the method name begins with the given prefix. Such set-
ting is adopted in Ref. [23]. However, there is a major drawback
of such a problem setting which makes it unpractical in some
cases: when the candidate API set becomes larger, completion
becomes less effective, especially when some prefixes are found
to be shared by many API names. E.g., more than a hundred
methods in JButton, a class of Java, begin with the prefix “get”.
To narrow down the candidate list, a user has to additionally type
a longer prefix which significantly compromises the benefit of
code completion.

To solve this problem, we need to find the intended API name
by requiring a short input from the user to reduce the typing ef-
forts. In this paper, we adopt an acronym-like input paradigm
instead of the prefix-like one. An illustrating example is shown
below.

Example 2 In Fig. 1, suppose the user types in characters
such as “swu”. Then the system adopting acronym-like matching
paradigm suggests “SwingUtilities”, “SetWrapGuidePainted”,
“ShowCurrentItem” and “ShowFullPath” *1.

Fig. 1 Code completion for acronym-like input.

*1 Our method supports completions for both package names such as
“SwingUtility” and API names such as “showFullPath”. Without los-
ing generality, we capitalize all the first characters of API names for the
ease of illustration.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

We call such a problem setting code completion for acronym-

like input. It receives an acronym-like input and returns a can-
didate API if the method name contains all the characters of the
input in a subsequence matching way *2.

Existing solutions to code completion focus on using neural
language models [4], [9], [13], [17], [22] or statistical language
models [3], [16], [18], [19] learned from a large code base by
modeling it into a natural language processing problem. How-
ever, they fail to utilize the user’s input to narrow down the candi-
date list by proper relevance ranking. We argue that the acronym-
like input from users will remarkably improve the completion ac-
curacy when the underlying input patterns are taken into consid-
eration. Intuitively, an acronym-like input from a user will be
definitely affected by some acronym patterns due to human typ-
ing behavior. Take an example in Fig. 1. A user’s input “swut”
has a higher probability to match “SwingUtilities” than to match
“ShowFullPath”, because the acronym for the latter is hardly to
be “swut” in common practice. In order to take advantage of
the underlying patterns of human typing behavior, a transforma-
tion model needs to be learned for the purpose of providing high-
quality candidates. In this work, we use a machine learning tech-
nique to learn the patterns to obtain a transformation model.

The scope context information [3], [16], [18], [19], which is
described as the co-occurrences of APIs in a scope, is also found
to be a helpful feature to improve the prediction accuracy. The
reason is that there are many fixed API pattern flows in a scope
for a specific utility. E.g., Fig. 2 shows a typical API invoking
pattern flow for graphics processing, while Fig. 3 shows another
case for video processing. Detecting such scope utility type can
obviously improve the prediction accuracy when a new API in-
voking statement is inserted into the current scope.

To integrate different features, we propose a discriminative
model which can assign different weights for each feature to
achieve more accurate performance. This discriminative model
consists of three features: 1) the API usage counts collected from
the training corpus to reflect the popularity of each API, 2) the
transformation probability that a user’s input is transformed into
the intended API, and 3) the scope context information repre-
sented by co-occurrence counts of APIs, for which a transforma-

Fig. 2 Scope for graphics utility.

Fig. 3 Scope for video utility.

*2 In our practical setting without losing generality, we assume that the first
characters of an input and an API candidate must be exactly matched.

tion model is learned by logistic regression. The above features
are combined linearly in the discriminative model for the over-
all prediction, and their weights are learned by a support vector
machine (SVM).

In addition to the prediction accuracy, we address the efficiency
challenges when computing the top-k completions using our dis-
criminative model. Specifically, we develop a candidate ranker
framework to firstly generate the most possible k candidates and
then use the ranker to re-rank the top-k results. We use a trie in-
dex to efficiently generate the possible candidates and then use
inverted lists located on the trie’s leaf nodes to store the scope
context information for fast co-occurrence lookups.

Experiments are conducted with a large-scale training dataset
collected from GitHub and a test set which covers 12 popular
Java projects. The results demonstrate the effectiveness of our
approach: it outperforms the baseline methods by up to 7.3% on
top-1 accuracy. The experiments on efficiency show that our ap-
proach is faster than the baseline methods by up to 31 times.

To the best of our knowledge, this is the first work that fo-
cuses on improving ranking performance on the problem of code
completion by utilizing the user’s input. We also note that
our method is orthogonal to the existing code suggestion meth-
ods [3], [16], [18], [19] because it can independently work as a
standalone module after language model-based code suggestions.

Our main contributions are summarized as follows.
• We propose a novel method for code completion using

acronym-like input.
• We propose a discriminative model that combines API

counts, transformation probability, and scope context infor-
mation for accurate code completion.

• We develop an efficient algorithm to compute top-k candi-
dates from a trie index.

• Extensive experiments show the performance of both effec-
tiveness and efficiency.

The rest of our paper is organized as follows: Section 2
presents the details of our discriminative model. Section 3 shows
the index structure and candidate ranker framework. Section 4
reports the experimental results. Section 5 surveys related work.
Section 6 concludes the paper.

2. A Ranker-based Model

In this section, we propose a discriminative model to rank
the API candidates. The basic idea of our model is to combine
three main features with a proper weighting for more accurate
predictions. To account for efficiency challenges, we adopt a
ranker-based model which consists of a candidate generator and
an SVM-based ranker. First, the candidate generator uses a tra-
ditional noisy channel model to roughly pick up the most possi-
ble top-k API completions. Then, a carefully tuned SVM-based
ranker will re-rank the top-k completions again and finally output
a re-ranked completion list. An overview is showed in Fig. 4. Our
process includes three steps:
(1) API names are indexed using a trie, with corresponding

scope context information collected from our large training
corpus. Each scope is assigned a unique scope ID and each
API has a list of scope IDs such that this API appears in these

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 4 Overview of the process.

scopes. Such lists of scope IDs are linked with the leaf nodes
of our trie index for fast access.

(2) An SVM is trained using three features, which are API usage
counts collected from our code base, transformation proba-
bility and scope co-occurrence counts. The transformation
probability describes how likely the input from the user is
the completion candidate and is trained by a logistic regres-
sion model.

(3) Search for API candidates from the trie by matching the
user’s input in a subsequence matching way. The previous
s lines of context from current code position are taken as the
scope context information. Then we use a traditional noisy
channel model to roughly rank and output a top-k list as the
candidate pool. Finally, we use the trained SVM to re-rank
the top-k list to obtain an ultimate result list.

We first introduce a traditional noisy channel model and then give
the definition of our discriminative model.

2.1 Noisy Channel Model
Noisy channel model is widely used in string transforma-

tion tasks, especially for spelling correction. Given an input
Q = q1 · · · q|Q|, we want to find the best transformed string
C = c1 · · · c|C| among all candidates that match the input:

C∗ = arg max
C

P(C|Q) (1)

By applying Bayes’ Rule and dropping the constant denominator,
we have

C∗ = arg max
C

P(Q|C)P(C) (2)

where the transformation model P(Q|C) models the transforma-
tion probability from C to Q, and the language model P(C) mod-
els how likely C is the intended input. One problem with the noisy
channel model is that there is no weighting for the two kinds
of probabilities, and because they are often estimated from di-
verse sources, suboptimal performance might be incurred with re-
gard to diversity of the sources [6], [7]. Moreover, noisy channel
model cannot utilize additional useful features (e.g., scope con-
text information), and this becomes a severe limitation in practice.

As our subsequence matching paradigm can be seen as a gen-
eralized case for string transformation, we can use noisy channel
model directly to model our problem.

Table 1 Transformation model features Sim.

ID Description
Sim1 number of consonant letter matches

Sim2 number of vowel letter matches

Sim3 number of capital letter matches

Sim4 number of letter skips

Sim5 number of skipping occurs

Sim6 percentage of letter matches

The language model P(C) can be trained by simply counting
the frequency of the API names in the code base, in line with
many previous works [3], [5], [10], [27].

The transformation probability P(Q|C) is learned using a logis-
tic regression model and the training details are the same with the
work [8]. The logistic regression model is shown below:

P(Q|C) = g(β0 + β1 · Sim1(Q,C) + · · · + β6 · Sim6(Q,C))

where g(z) =
1

1 + e−z

(3)

where βi represents the regression coefficients, Simi(Q,C) is the
similarity feature showed in Table 1 and g(z) is the logistic func-
tion.

2.2 Discriminative Model
A discriminative model may overcome the shortcomings of

noisy channel model by adding additional features and applying
proper weightings. A general discriminative formulation of the
problem is of the following form:

C∗ = arg max
C

[w · F(Q,C)] (4)

where F(Q,C) is a vector of features and w is the model parame-
ter which is a vector of weights. Compared with the noisy channel
model, this discriminative formulation is more general. We can
deem the noisy channel model as a special case of the discrimina-
tive form where only two features, the language model estimates
and the transformation probability are used and uniform weight-
ings are applied. In this work, the weightings w are derived by
training an SVM showed in Section 2.4.

2.3 Scope-awareness
Scope context information has been proved to be very help-

ful in code suggestions, as it can describe which API methods
are often invoked before the intended API method is called. We
add the scope context variable in our discriminative model as the
scope co-occurrence counts. It describes how often the candidate
API appears with its previous API names in the same scope by
collecting the statistics of the large training corpus. After adding
in this feature, our discriminative model can be extended as:

C∗ = arg max
C

[w0 + w1 · Flang(Q,C)

+ w2 · Ftrans(Q,C)

+ w3 · Fscope(Q,C)]

(5)

where Q is the input, C is the candidate, Flang(Q,C) represents
the unigram language model probability, which is calculated by
a normalized usage counts, Ftrans(Q,C) represents the transfor-
mation probability from C to Q and Fscope(Q,C) represents the
scope co-occurrence counts of C and Q.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Table 2 Example candidates for input “swu”.

Candidates Flang Ftrans Fscope

SwingUtilities 0.6 0.7 0.5
SetWrapGuidePainted 0.2 0.2 0.1
ShowCurrentItem 0.2 0.1 0.1
ShowFullPath 0.1 0.1 0.1

2.4 An SVM-based Ranker
As only one candidate API is relevant to code completion (such

setting was also adopted by many previous studies [9], [16], [17]),
which is different from the traditional document retrieval prob-
lem, we only need to consider the possibility of an API as “hit”
or “not hit”. This can be essentially handled by a classification
model such as a support vector machine. The one with higher
possibility to be classified as “hit” will be ranked higher, and vice
versa. We do not employ RankSVM [12] because usually detailed
human-judged ranking data such as clickthrough data or log is
not available. Our training SVM examples are generated from
the noisy channel model, whose detailed rankings do not really
matter. Hence they cannot be used as pair-wise training data in
RankSVM.

The settings of our SVM are similar with Ref. [26]. The fea-
ture vectors are passed to a support vector machine employing a
simple radial basis function (RBF) kernel with γ = 1 after all fea-
ture values are normalized between [0, 1]. We employed Joachim
SVMlight [11], [26] implementation.

Our SVM model is trained on a training set comprising
〈 API-candidate, feature-vector, class 〉 triples. The
class has two values: +1 and −1. +1 will be assigned if
API-candidate is the intended API, otherwise −1 will be as-
signed. To describe how likely a candidate API is a “hit”, the
trained SVM will output a value between −1 and +1 for each
candidate it generates. Then we can use these values to rank these
candidates. This works because the value output by the SVM rep-
resents the distance to the maximum-margin hyperplane [26].

Table 2 gives an example to illustrate the features of candi-
dates for an input “swu” from the user. The scope context infor-
mation is extracted from Fig. 2 and Fig. 3. Note that each feature
is a normalized value between [0, 1]. Suppose a user types an in-
put “swu”, then all the matched candidates are listed in Table 2
according to the subsequence matching paradigm. For example,
“SwingUtilities” has an Flang which is its usage counts in the code
base, an Ftrans which is P(swu|SwingUtilities) value computed
from the transformation model and an Fscope which is the scope
co-occurrence value with its previous context “DrawRect” and
“GetGraphics” showed in Fig. 1. These feature vectors are then
passed into our trained SVM to give a final ranking list.

3. Searching Algorithm

In this section, we show the detailed algorithm and index im-
plementation of the three steps showed in Section 2. There is a
straightforward way to generate candidates: traverse the trie for
all possible matching strings and then calculate all the probabil-
ities for them and sort them in descending order. However, the
number of all matching candidates might be prohibitive. Thus
we adopt a ranker-based method which consists of a candidate
generator and an SVM-based ranker. The candidate generator

Table 3 Example dataset S .

ID String Popularity
API1 DrawRect 0.6
API2 GetGraphics 0.8
API3 SetAudioSource 0.2
API4 SetCamera 0.1
API5 SetColor 0.6
API6 SetVideoSource 0.1
API7 SetWrapGuidePainted 0.2
API8 ShowCurrentItem 0.2
API9 ShowFullPath 0.1
API10 SwingUtilities 0.6

Fig. 5 A trie with scope inverted lists.

is responsible for only picking up the most possible top-k candi-
dates and then SVM-based ranker will carefully rank these results
for higher accuracy. Moreover, in the generator step, early termi-
nation techniques and a threshold-based algorithm are applied to
efficiently compute top-k candidates.

3.1 Candidate Generator of a Trie
The basic index structure of the candidate generator is a trie

built on top of all the API names. Trie is a tree structure where
each path from the root to a leaf node corresponds to a API name.
Given an input, we can find its corresponding node, and traverse
all its leaf nodes to obtain the corresponding API candidates. An
example API set with popularities (normalized usage counts) is
given in Table 3 and the corresponding trie is showed in Fig. 5.
The API “SwingUtilities” has a trie node 106. On each leaf node,
we store the API usage counts in it and link it with an inverted

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

list of the ordered scope IDs. We call such an inverted list a scope

inverted list. With the ordered scope inverted list, we can look
for co-occurrences by simply doing a list intersection operation
efficiently.

Our search strategy is based on two assumptions: First, the
first characters of an input and an API candidate must be ex-
actly matched. E.g., it is very unlikely that a user will input
“sw” to look for “BashWrite”. Second, the user will not skip
too many keywords in an acronym-like input. Such an assump-
tion is made after the observation of the collected acronyms from
Amazon Mechanical Turk. Thus, we only match the nodes whose
distances to the current one are within next two keywords in the
trie. E.g., “snt” can match ShowCurrentItem but cannot match
SetWrapGuidePainted, because in the trie, the next two key-
words for S are CurrentItem and WrapGuide. Thus the key-
word Painted cannot be matched.

The algorithm is illustrated in Algorithm 1. It takes as input the
user’s input, the scope context and the trie. The first characters of
user input and candidate API are exactly matched (Line 5). Then
it begins to traverse the trie to match each character of the input
for each node’s descendant nodes iteratively (Lines 1–10). This
ensures it searches for all the API names in a subsequence match-
ing way. Line 8 makes sure that the distance between the current
node and next matching node will not be too long. We set the dis-
tance threshold τ as the distance to the end of next two keywords
w.r.t the specific API names. After fetching all the matched API
candidates, it intersects each of the candidates with the context
API(s) to calculate co-occurrences, respectively (Lines 11–15).
Especially when the scope context s consists of multiple lines of
APIs, we take the union of the scope-lists for all APIs in context s

without removing repeated scope IDs as s.scope-list. Finally, all
the generated candidates will be sent to SVM for further ranking
(Line 16).

Algorithm 1: Generator-Trie (q, s, T)
Input : q is the user input, s is the scope context, T is a trie

built on S .
Output : { APIi }, such that APIi ∈ S and q is a subsequence of

APIi.
1 A← { the root of T } ; /* node set */

2 foreach character q[i] do
3 A′ ← ∅;
4 foreach n ∈ A do
5 if q[i] is the first character in q AND n has a child n’

through q[i] then
6 A′ ← A′ ∪ { n′ } ; /* first character */

7 continue;

8 if n has any descendant n′ through character q[i]
within a distance threshold τ then

9 A′ ← A′ ∪ { n′ };
10 A← A′;

11 R← ∅;
12 foreach n ∈ A do
13 R← R ∪ API candidates stored in the subtree rooted at n;

14 foreach API ∈ R do
15 API.co-occurrence← API.scope-list Intersects

s.scope-list;

16 return SVM-Ranking(R);

Take an example in Fig. 1, for an input “swu” and its scope
context “DrawRect”. One node that matches “swu” is node 98.
One node that matches “DrawRect” is node 9. Node 9 is already a
leaf node and node 98 has an only descendant leaf node 106. Both
nodes have scope inverted lists of 〈 sp1 〉 and 〈 sp1 〉, respectively.
After intersecting these two lists, we obtain the co-occurrence
scope and the co-occurence count for “swu” and “DrawRect” is
〈 sp1 〉 and 1, respectively.

3.2 Efficient Ranking Algorithm
We observe that with the increase of the scope context lines, the

co-occurrence computation will need prohibitive intersection op-
erations for the scope inverted lists of all the possible candidates.
This cost can be unbearable for a real-time code completion sys-
tem. To solve this issue, we first select the most possible candi-
dates by using a noisy channel model showed in Section 2. Recall
that this model needs to compute a product of P(C)·P(Q|C). P(C)
is stored at each leaf node in the trie. Hence we can material-
ize the maximum P(C) at each intermediate node for a threshold
algorithm (TA). P(Q|C) is computed on-the-fly using a logistic
function showed in Section 2. Note that as the logistic function is
a monotonically increasing function, we can also obtain a maxi-
mum upper value of P(Q|C) by only computing the longest prefix
matched with the input. Moreover, as the input length of users
mainly lies in the range of [1, 6] (see Table 5), we do not consider
off-line probability pre-computation methods, which practically
do not improve the overall runtime by much but will result in
large memory consumption.

In detail, when a user issues an input q, we send the q and pre-
vious scope context line(s) s to the search algorithm. We first
search for s to obtain the scope inverted lists of the API results.
Then we search q according to a subsequence matching manner in
the trie. For each matched path in the trie, we compute the trans-
formation probability by the logistic function in Eq. (3). Then we
can use P(C) · P(Q|C) to compute a upper bound score UB. By
using the UB, we can compute the rough top-k candidates effi-
ciently by using a priority queue for early termination. After that,
intersection operations are only done between scope context and
top-k candidates. Feature vectors will be sent to our SVM for a
final ranking.

The detailed algorithm is showed in Algorithm 2. To apply
the pruning techniques, we simply use it to replace Lines 11–16

Algorithm 2: TopK-Pruning (q, A, k)

1 R← ∅ ; /* a priority queue of size k */
2 foreach n ∈ A do
3 if n.UB ≤ R[k].score then
4 continue;

5 foreach API as n’s descendant leaf do
6 if |R| < k or score(API, q) > R[k].score then
7 R.insert(API);

8 foreach API ∈ R do
9 API.co-occurrence← API.scope-list Intersects

s.scope-list;

10 return SVM-Ranking(R);

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

in Algorithm 1. A priority queue is initialized for early termi-
nation (Line 1). Then for each node, it iterates through the cor-
responding API candidates of each node (Line 5), compute the
P(API) · P(q|API) as an overall score by score(API, q) (Line 6).
If the number of candidates in the priority queue is less than k

or the candidate’s score is greater than the k-th temporary API,
we insert this API candidate into the queue (Lines 6–7). If the
node’s upper bound UB is less than the score of k-th temporary
API, we skip this node for pruning (Lines 3–4). Eventually, we
only need to do the intersection operations between k API can-
didates and the scope context, then send the k candidates to our
SVM for further ranking (Lines 8–10).

The time complexity is O(k|s| + N log k), reducing from the
naı̈ve one’s O(O|s| + O logO), where k is the candidate pool size,
|s| is the context size, i.e., the number of context lines, N is the
number of candidates scanned until the process terminated and O
is the number of unique API names.

We show an example for the top-2 ranking process according
to Table 2. Given the scope context “DrawRect” and an input
“swu”, we first search for “swu” in the trie and find node 61, 76,
87, 98. The maximum usage counts for them are 0.6, 0.2, 0.2, 0.1.
The transformation probability is computed as P(swu|SwingU) =
0.7, P(swu|S etWrapGu) = 0.2, P(swu|S howCu) = 0.1 and
P(swu|S howFu) = 0.1. Finally the noisy channel model proba-
bility is computed as UBSwingU = 0.6× 0.7 = 0.42, UBSetWrapGu =

0.2 × 0.2 = 0.04, UBShowCu = 0.2 × 0.1 = 0.02, UBShowFu =

0.1×0.1 = 0.01. We only keep the top-2 API names, “SwingUtil-
ities” and “SetWrapGuidePainted” remain. The intersections be-
tween scope inverted lists are done for both API names to com-
pute co-occurrences. After that, both API names are sent to our
SVM for the final ranking.

4. Experiments

We conducted extensive experiments to evaluate both effec-
tiveness and efficiency of our proposed method against baseline
methods. In this section, we report the experimental results and
analyses.

4.1 Experiment Setup
Two datasets are collected for model training and testing tasks.
• Java Corpus *3 is a large-scale code base collected from

all Java projects on GitHub. We sampled the large corpus
into the 1,000 projects Java Corpus to more clearly show
the impact of training set size, in line with the previous
works [15], [16]. We use this dataset as a training set in our
evaluations. We use the API usage counts and scope context
extracted from this code base.

• Java Test is a dataset used in Ref. [14] collected from 12
popular Java projects. We use this dataset as a test set for
evaluations.

Table 4 shows the statistics of the two datasets, where LOCs is
the line of codes, Files is the number of files and Total Projects is
the number of projects included.

We only use APIs in Java Development Kit (JDK) as the dic-

*3 http://groups.inf.ed.ac.uk/cup/javaGithub/

Table 4 Dataset statistics.

Dataset LOCs Files Total Projects
Java Corpus 10,753,168 86,158 1,000
Java Test 2,788,955 11,371 12

Table 5 Input length distribution.

length of input 1 2 3 4 5 6
average length of

candidate API names
5.3 7.4 9.0 12.0 14.0 16.1

of API names 17 62 259 354 139 52

tionary to build the trie index. In total 17,116 APIs appearing in
JDK 8 are collected to build the trie.

We use the code base of Java Corpus as our corpus and use
Eclipse’s Java parser to parse the code for scope extractions.
We tried different scope granularity such as class scope, method
scope and block scope. Finally we choose to use class scope
for the best balance between efficiency and accuracy. API usage
counts are also extracted from Java Corpus.

To train the logistic regression model, we extract 5,000 API
names, 4,000 from Java Corpus and 1,000 from Java Test.
Then we use these API names to collect 5,000 acronym-like
〈input, API〉 pairs. The acronym-like input is collected from vol-
unteers in Amazon Mechanical Turk, by telling them to intu-
itively give an input when they see an original API name. Our
transformation model is trained on the complete training set us-
ing logistic regression model showed in Section 2 and well tuned
by enough iterations.

Although the acronym-like input collected from Amazon Me-
chanical Turk has lengths ranging from 1 to 8, most of the input
does not need to be fully typed to obtain its corresponding top-1
completions. E.g., the acronym-like input for “SwingUtility” we
collected is “swut”, but “SwingUtility” will be ranked as top-1 in
our approach when “swu” is typed.

To quantitatively demonstrate that the completion is useful, we
show in Table 5 the statistics about the input length distribu-
tion for how many characters are needed when the corresponding
API completion is ranked as top-1 in our approach. In this table,
length of input means the necessary characters for its completion
to be ranked as top-1, average length of candidate API names
means the average length of such API names. # of API names
means how many API names, out of the 1,000 collected ones,
will be ranked as top-1 for the given length of input. E.g., the
first column means that a total of 17 API names will be ranked as
top-1 when the first letter is input, and their average length is 5.3.
It can be seen that the length of input is significantly shorter than
the average length of API names.

To train the SVM model, for each API name in the training set,
we find an appropriate scope in Java Corpus for the API to fit in
and extract its previous API names located in the scope context.
Similarly, for each API in the test set, we also find an appro-
priate scope in Java Test and extract its previous API names as
context for prediction purpose. Then we generate the candidates’
feature vectors as 〈 candidate, input, context 〉, where candidate

represents the candidate API name, input is the user input and
context is the scope context API(s).

The following algorithms are compared.
• APIREC is a statistical model based approach in Ref. [15].

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

We carefully implement the method and use our own test set
Java Test for evaluations.

• POP is the popularity-based sorting method used in
Ref. [10].

• NCM is the noisy channel model method described in Sec-
tion 2.

• SDM is our proposed scope-aware ranker-based method with
discriminative modeling.

Note that APIREC does not utilize any input API name but pro-
vide suggestions when the user presses the “.” button. In NCM

and SDM, the candidate pool size is set to 50. That is, in SDM, the
top-50 results are first selected and then passed to our SVM for
further re-ranking. We have tried different values for the candi-
date pool size and 50 is proved to have a considerable processing
time and does not lose any accuracy.

In addition, we extract the nearest one line prior to the current
calling method as the scope context information in default for bet-
ter performance unless explicitly stated otherwise. The reason is
explained in Section 4.2.

The experiments were carried out on a PC with an Intel i5
2.6 GHz Processor and 8 GB RAM, running Ubuntu 14.04.3. The
algorithms were implemented in C++ and in a main memory
fashion.

4.2 Evaluation of Effectiveness
We adopt the same evaluation metrics used in existing stud-

ies [9], [16], [17]. We evaluate: (1) top-k accuracy, which indi-
cates the fraction of times the correct API appears in the top-k
candidates, where k ∈ 1, 3, 5, 10. (2) Mean Reciprocal Ranking
(MRR), which is calculated as the average reciprocal of the cor-
rect API’s rank in the top-k candidates. MRR can give an overall
evaluation of the model. The closer to 1 the MRR value, the better
the ranking accuracy.

We first evaluate the top-k accuracy with the baseline methods.
Table 6 shows the results. The last column shows the comparison
of MRR. As seen, SDM achieves higher accuracy than any other
baseline method. Without utilizing the user’s input, APIREC can
only reply on predictions by statistical models, thus causing low
accuracy compared with the other methods. At top-1 accuracy,
SDM has the largest improvements of 7.3%, 6.5%, 58.7%, over
POP, NCM and APIREC, respectively. Along with the increase
of k, the advantage becomes not that obvious because the correct
API will be more easily included in a larger top-k list. Nonethe-
less, SDM still outperforms POP, NCM and APIREC on all the
values of k. NCM is better than naı̈ve POP approach, which sug-
gests that the input from user is useful to predict the intended
API names. However, the observed improvements over POP are
very limited due to the lack of weights applied in NCM. We also
observe that, SDM achieves the highest MRR of 0.928, meaning
that on average in 10 cases, it can almost correctly rank the API

Table 6 Accuracy comparison.

Model top-1 top-3 top-5 top-10 MRR
APIREC 29.6 43.4 58.2 70.2 0.407
POP 81.0 95.7 97.7 98.7 0.884
NCM 81.8 96.2 97.7 98.7 0.891
SDM 88.3 97.3 98.6 99.0 0.928

on top of its list among 9 cases. The relative improvements on
MRR is 3.3% and 1.9% over POP and NCM, respectively. These
experimental results verified the significant improvements on ac-
curacy of our proposed scope-aware discriminative model. We
also observe that SDM has higher accuracy than APIREC on the
column top-10, indicating that some rare API names which would
hardly appear in statistical models can be retrieved in SDM by
more strictly input matching.

Figure 6 shows an overall comparison for top-k accuracy by
varying k from 1 to 30. The top-20 and top-30 accuracy for
APIREC is 74.2% and 76.4%, respectively. Hence we do not
show APIREC anymore because the conclusions are almost the
same as Table 6. We can observe that SDM outperforms other
two baseline methods at any k ∈ [1, 30]. The gap becomes close
in [20, 30] because for a large k, even the baseline method can in-
clude the correct candidate easily. Another valuable observation
is that when k = 30, SDM is still higher than POP and NCM. This
suggests that there are some API names especially with low fre-
quency in the code base can never be retrieved by POP or NCM.
As our SDM can consider the scope context and apply a proper
weighting on it, these rare API names can be easily retrieved in
our model.

Varying Context Line Size. Scope context size may have
large impacts on the accuracy of our model. Here, we explain
the scope context size as the number of lines prior to the current
calling method within the same scope. The co-occurrence counts
between each context line and current API candidate are summed
as the feature co-occurrence counts. Table 7 shows the results
by varying the scope context size from 1 to 5. Interestingly, we
can observe that with the increase of the context size, the accuracy
slightly drops, the same as the MRR. We examined the test exam-
ples and found that summing up co-occurrence counts of multiple
previous lines might over-weigh the co-occurrence feature in our
model thus leading to inaccurate predictions. This fact reminds
us that excessive context information might be not beneficial to
accuracy but lead to deteriorative performances. There might be a
way to take use of the multiple lines of context information more

Fig. 6 Top-k accuracy of different approaches.

Table 7 Accuracy with different context size.

Context Size top-1 top-3 top-5 top-10 MRR
1 88.3 97.3 98.6 99.0 0.928
2 85.5 97.3 98.6 99.0 0.913
3 85.5 97.1 98.6 99.0 0.912
4 85.5 97.1 98.4 99.0 0.912
5 85.5 97.1 98.4 99.0 0.912

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Table 8 Accuracy of different training set size.

Dataset top-1 top-3 top-5 top-10 MRR
Train100 83.5 96.1 97.6 98.7 0.898
Train300 85.7 96.4 98.1 98.7 0.911
Train1000 88.3 97.3 98.6 99.0 0.928

Fig. 7 Processing time comparison.

properly but such techniques are beyond the scope of this paper.
Varying Training Set Size. We also want to analyze the im-

pacts on accuracy by varying the size of our training set. For our
large-scale dataset Java Corpus, we randomly sample the 1,000
projects into two subsets, one with 300 projects and one with 100
projects, denoted by Train300 and Train100. Then we evaluate
the accuracy by varying these three training sets. We show the
results in Table 8. We can obviously see that Train1000 always
outperforms Train100 and Train300. The largest improvements
occur at top-1, are 4.8% and 2.6% over Train100 and Train300,
respectively. Train300 is always better than Train100. This veri-
fied our intuition that a larger training set will contribute to better
prediction accuracy.

4.3 Evaluation of Efficiency
A practical code completion system must be efficient enough

to work in real-time to avoid interrupting a developer’s flow of
coding. Thus, for efficiency, we evaluate the overall process-
ing times in Fig. 7. If not otherwise noted, the scope context
size and training set will be set to 1 and Train1000 in default.
In Fig. 7, we vary the input length and plot the average runtime
of the code completion system as SDM. We also plot the results
of the straightforward method mentioned in Section 3, denoted
by SDM-NoNCM, meaning without the noisy channel model but
sending all the matched API candidates to our SVM for ranking.
For SDM, a larger k will cause better accuracy but longer pro-
cessing time. By trying different k values, we choose k = 50
since it has the same accuracy with SDM-NoNCM but also runs
efficiently. We can directly observe that SDM is much faster than
SDM-NoNCM, because SDM uses a noisy channel model to drop
hopeless candidates with extremely low probabilities to avoid
prohibitive additional computations. The maximum speedup is
31 times, at length of 1. SDM-NoNCM is very slow due to the
numerous matched API candidates which are needed to be passed
to SVM given a short input while our SDM only keeps the most
possible k API candidates for re-ranking. SDM is around 1 ms for
all the lengths, and thus can be applied to Web settings, such as
online IDEs. The times begin to decrease when we use a longer
input because longer input is more selective thus less candidates

Fig. 8 Processing time with different context size.

Fig. 9 Processing time with different training set size.

are processed for both SDM and SDM-NoNCM.
Varying Context Line Size. The processing times by varying

scope context line size are compared. Figure 8 shows the results
by varying the context size from 1 to 5. As seen, a large context
size might incur considerable overhead that causes sensible sys-
tem delays. Context-5 is almost 3–4 times slower than Context-

1. This suggests that if multiple lines of context information are
used, further optimization on processing might be required.

Varying Training Set Size. The processing times by varying
training set size are evaluated. For our large-scale dataset Java
Corpus, we show the results in Fig. 9. The evaluated training set
is the same with that in Table 8. Train1000 is the slowest, 1.8 and
1.5 times slower than Train100 and Train300, at the length of 1
while its corpus size is 10 and 3.3 times larger than Train100 and
Train300. Intuitively, the larger the training corpus, the slower
the processing time. This is mainly because larger training cor-
pus will contain more scope context information such that the
scope inverted list will become longer and slower for lookup op-
erations. Nonetheless, the growth rate on processing time is much
lower than the corpus size, and thus a larger corpus might be al-
ways preferable for better accuracy performance.

5. Related Work

Code Completion. With the birth of text editors, the research
on code completion has received much attention in the past sev-
eral decades. In one early study, Willis et al. [28] proposed an
approach to expand some abbreviations into a sentence to save
input efforts. In the domain of programming IDEs, Little and
Miller [14] proposed to translate a small number of unordered
keywords provided by the user into a valid expression in order
to reduce the need to remember syntax and API names in Java.
After this work, Han et al. [8] used a hidden Markov Model learn-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

ing from a code corpus to expand ordered abbreviated keywords
into a valid code expression. Their work was followed by Pini
et al. [21] to additionally deal with the keyword missing problem.
They used Support Vector Machine (SVM) to create classifiers
to judge whether a keyword is an abbreviation or not. A recent
study by Sandnes [24] developed a system to predict word input
by only using a simple longest common subsequence algorithm
for practical use.

Code Suggestion. The code suggestion problem is to try us-
ing statistical language models [3] (LMs) to predict the next code
line without any input from users. We refer readers to two lat-
est studies [1], [2] about source code naturalness. Nguyen et
al. [19] proposed to use a semantic model to capture the patterns
of source code, by incorporating a local semantic n-gram model
with a global n-gram topic model. Graph-based LMs are pro-
posed in Refs. [18] and [16] to capture graph-based patterns from
source code. After that, Savchenko and Vokkov [25] also propose
a probabilistic model with n-gram models to calculate a sorted
list of all possible functions. Scope and context information has
been proved to greatly improve the accuracy for predictions in
these studies [3], [16], [18], [19]. Recent trends feature a boom
by applying the Deep Learning Network (DNN) instead of LMs.
However, while many studies [4], [13], [17], [22] have been de-
veloped to accommodate DNN in their code suggestion systems,
a study [9] from Hellendoorn and Devanbu showed that carefully
adapting n-gram models for source code can yield better perfor-
mance than deep-learning models.

String Transformation. The string transformation problem
is to map a source string s into another desirable form t. This
problem has been extensively studied in the natural language pro-
cessing community. A specific case for this problem is spelling
correction. Okazaki et al. [20] proposed to use substring substitu-
tion rules as features in their discriminative models to generate
transformed string candidates. Duan et al. [6] proposed a dis-
criminative model based on latent structural SVM to model the
alignment of words in the spelling correction process.

6. Conclusion

In this paper, we have studied the problem of code completion
using a scope-aware ranker-based discriminative ranking model.
We use an acronym-like input setting to avoid the fatal drawback
of existing code completion systems. To improve the accuracy,
we utilize API usage counts, transformation probability and scope
context information as the features to pass to our trained SVM
as a discriminative model. To solve the efficiency challenge, we
adopt a ranker-based model to use noisy channel model as a fil-
ter to eliminate hopeless candidates. We have examined our ap-
proach with a training corpus and a test set. The experimental
results have shown that our proposed method outperforms the ex-
isting methods in terms of both effectiveness and efficiency.

Acknowledgments This work was partly supported by JSPS
KAKENHI Grant Number JP16H01722 and JP19K11979.

References

[1] Allamanis, M., Barr, E.T., Bird, C. and Sutton, C.A.: Learn-
ing natural coding conventions, FSE-22, pp.281–293 (online), DOI:

10.1145/2635868.2635883 (2014).
[2] Allamanis, M., Barr, E.T., Devanbu, P.T. and Sutton, C.A.: A Survey

of Machine Learning for Big Code and Naturalness, ACM Comput.
Surv., Vol.51, No.4, pp.81:1–81:37 (online), DOI: 10.1145/3212695
(2018).

[3] Asaduzzaman, M., Roy, C.K., Schneider, K.A. and Hou, D.: CSCC:
Simple, Efficient, Context Sensitive Code Completion, ICSME 2014,
pp.71–80 (online), DOI: 10.1109/ICSME.2014.29 (2014).

[4] Bhoopchand, A., Rocktäschel, T., Barr, E.T. and Riedel, S.:
Learning Python Code Suggestion with a Sparse Pointer Net-
work, CoRR, Vol.abs/1611.08307 (2016) (online), available from
〈http://arxiv.org/abs/1611.08307〉.

[5] Duan, H. and Hsu, B.P.: Online spelling correction for query
completion, WWW 2011, pp.117–126 (online), DOI: 10.1145/
1963405.1963425 (2011).

[6] Duan, H., Li, Y., Zhai, C. and Roth, D.: A Discriminative
Model for Query Spelling Correction with Latent Structural SVM,
EMNLP-CoNLL 2012, pp.1511–1521 (2012) (online), available from
〈http://www.aclweb.org/anthology/D12-1138〉.

[7] Gao, J., Li, X., Micol, D., Quirk, C. and Sun, X.: A Large
Scale Ranker-Based System for Search Query Spelling Correc-
tion, COLING 2010, pp.358–366 (2010) (online), available from
〈http://aclweb.org/anthology/C10-1041〉.

[8] Han, S., Wallace, D.R. and Miller, R.C.: Code completion of multiple
keywords from abbreviated input, ASE, Vol.18, No.3-4, pp.363–398
(online), DOI: 10.1007/s10515-011-0083-2 (2011).

[9] Hellendoorn, V.J. and Devanbu, P.T.: Are deep neural networks the
best choice for modeling source code?, ESEC/FSE 2017, pp.763–773
(online), DOI: 10.1145/3106237.3106290 (2017).

[10] Hou, D. and Pletcher, D.M.: An evaluation of the strategies of
sorting, filtering, and grouping API methods for Code Completion,
ICSM 2011, pp.233–242 (online), DOI: 10.1109/ICSM.2011.6080790
(2011).

[11] Joachims, T.: Making large-Scale SVM Learning Practical, Advances
in Kernel Methods - Support Vector Learning, Schölkopf, B., Burges,
C. and Smola, A. (Eds.), MIT Press, Cambridge, MA, chapter 11,
pp.169–184 (1999).

[12] Joachims, T.: Optimizing search engines using clickthrough data,
ACM SIGKDD 2002, pp.133–142 (online), DOI: 10.1145/775047.
775067 (2002).

[13] Li, J., Wang, Y., Lyu, M.R. and King, I.: Code Completion with Neural
Attention and Pointer Networks, IJCAI 2018, pp.4159–4165 (online),
DOI: 10.24963/ijcai.2018/578 (2018).

[14] Little, G. and Miller, R.C.: Keyword programming in Java, ASE,
Vol.16, No.1, pp.37–71 (online), DOI: 10.1007/s10515-008-0041-9
(2009).

[15] Nguyen, A.T., Hilton, M., Codoban, M., Nguyen, H.A., Mast, L.,
Rademacher, E., Nguyen, T.N. and Dig, D.: API code recommen-
dation using statistical learning from fine-grained changes, FSE 2016,
pp.511–522 (online), DOI: 10.1145/2950290.2950333 (2016).

[16] Nguyen, A.T. and Nguyen, T.N.: Graph-Based Statistical Lan-
guage Model for Code, ICSE 2015, pp.858–868 (online), DOI:
10.1109/ICSE.2015.336 (2015).

[17] Nguyen, A.T., Nguyen, T.D., Phan, H.D. and Nguyen, T.N.: A deep
neural network language model with contexts for source code, SANER
2018, pp.323–334 (online), DOI: 10.1109/SANER.2018.8330220
(2018).

[18] Nguyen, A.T., Nguyen, T.T., Nguyen, H.A., Tamrawi, A., Nguyen,
H.V., Al-Kofahi, J.M. and Nguyen, T.N.: Graph-based pattern-
oriented, context-sensitive source code completion, ICSE 2012,
pp.69–79 (online), DOI: 10.1109/ICSE.2012.6227205 (2012).

[19] Nguyen, T.T., Nguyen, A.T., Nguyen, H.A. and Nguyen, T.N.: A
statistical semantic language model for source code, ESEC/FSE ’13,
pp.532–542 (online), DOI: 10.1145/2491411.2491458 (2013).

[20] Okazaki, N., Tsuruoka, Y., Ananiadou, S. and Tsujii, J.: A Dis-
criminative Candidate Generator for String Transformations, EMNLP
2008, pp.447–456 (online), available from 〈http://www.aclweb.org/
anthology/D08-1047〉 (2008).

[21] Pini, S., Han, S. and Wallace, D.R.: Text entry for mobile de-
vices using ad-hoc abbreviation, AVI 2010, pp.181–188 (online), DOI:
10.1145/1842993.1843026 (2010).

[22] Raychev, V., Vechev, M.T. and Yahav, E.: Code completion with
statistical language models, PLDI ’14, pp.419–428 (online), DOI:
10.1145/2594291.2594321 (2014).

[23] Robbes, R. and Lanza, M.: How Program History Can Im-
prove Code Completion, ASE 2008, pp.317–326 (online), DOI:
10.1109/ASE.2008.42 (2008).

[24] Sandnes, F.E.: Reflective Text Entry: A Simple Low Effort Predictive
Input Method Based on Flexible Abbreviations, DSAI 2015, pp.105–
112 (online), DOI: 10.1016/j.procs.2015.09.254 (2015).

[25] Savchenko, V. and Volkov, A.: Statistical Approach to Increase Source

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Code Completion Accuracy, PSI 2017, pp.352–363 (online), DOI:
10.1007/978-3-319-74313-4 25 (2017).

[26] Schaback, J. and Li, F.: Multi-level feature extraction for spelling cor-
rection, IJCAI-2007 Workshop on Analytics for Noisy Unstructured
Text Data, pp.79–86 (2007).

[27] Wang, Z., Xu, G., Li, H. and Zhang, M.: A Probabilistic Approach to
String Transformation, TKDE, Vol.26, No.5, pp.1063–1075 (online),
DOI: 10.1109/TKDE.2013.11 (2014).

[28] Willis, T., Pain, H., Trewin, S. and Clark, S.: Informing Flexible Ab-
breviation Expansion for Users with Motor Disabilities, ICCHP 2002,
pp.251–258 (online), DOI: 10.1007/3-540-45491-8 52 (2002).

Sheng Hu is a research associate at the
Graduate School of Informatics, Kyoto
University and a Ph.D. candidate at the
Graduate School of Information Science,
Nagoya University. He received his B.E.
degree from North China Electric Power
University in 2013. His research inter-
ests include textual databases and spatio-

temporal databases.

Chuan Xiao is an associate professor at
the Graduate School of Information Sci-
ence and Technology, Osaka University
and a guest associate professor in Nagoya
University. He received his B.E. degree
from Northeastern University, China in
2005, and Ph.D. degree from The Univer-
sity of New South Wales in 2010. His re-

search interests include data clearning, data integration, textual
databases, and graph databases. He is a member of DBSJ.

Yoshiharu Ishikawa is a professor at the
Graduate School of Informatics, Nagoya
University. He received B.S., M.E.,
and Dr. Eng. degrees from University
of Tsukuba in 1989, 1991, and 1995,
respectively His research interests in-
clude spatio-temporal databases, mobile
databases, sensor databases, data mining,

information retrieval, and e-science. He is a member of ACM,
DBSJ, IEEE, IEICE, IPSJ, and JSAI.

c© 2019 Information Processing Society of Japan

