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Fast Bayesian Restoration of Poisson Corrupted
Images with INLA
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Abstract: Photon-limited images are often seen in fields such as medical imaging. Although the num-
ber of collected photons on an image sensor statistically follows Poisson distribution, this type of noise is
intractable, unlike Gaussian noise. In this study, we propose a Bayesian restoration method of Poisson cor-
rupted image using Integrated Nested Laplace Approximation (INLA), which is a computational method to
evaluate marginalized posterior distributions of latent Gaussian models (LGMs). When the original image
can be regarded as ICAR (intrinsic conditional auto-regressive) model reasonably, our method performs much
faster than well-known ones such as loopy belief propagation-based method and Markov chain Monte Carlo
(MCMC) without decreasing the accuracy.

1. Introduction

Estimating the original image from a noisy observation is

one of the representative issues in the field of image pro-

cessing. So far, a lot of image denoising methods have been

proposed, but many of them such as Wiener filter require

the assumption of additive white Gaussian noise. However,

for example, in medical X-ray imaging systems, the num-

ber of detected photons stochastically fluctuates following

Poisson distribution[4].

From a Bayesian viewpoint, it is natural to adopt Pois-

son observation modeling explicitly, and then solve the in-

verse problem to deal with such images. In fact, some

Bayesian methods to restore Poisson corrupted images have

been already proposed. Le et al. introduced a variational

model with total-variation regularization[7]. Lefkimmiatis

et al. applied quadtree decomposition and then estimated

parameters using expectation-maximization (EM) algorithm

to handle Poisson noise[8]. Shouno derived the fixed point

equations of loopy belief propagation (LBP) by approximat-

ing Poisson distribution with binomial distribution[11]. Fur-

thermore, Tachella et al. compared the performances of mul-

tiple MCMC methods to restore Poisson corrupted images

[12].

EM, LBP, and MCMC methods are frequently used to

evaluate the posterior (or its point estimate) of each pixel.

In more general applications, Markov chain Monte Carlo

(MCMC) methods succeeded due to their usability and ac-

curacy. However, these iterative restoring methods take too

long computational time because X-ray images are usually

high resolution. On the other hand, recently, integrated
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nested laplace approximation (INLA) is proposed by Rue et

al. [9], then the validity has been reported mainly in the

fields of spatial statistics and epidemiology [10].

In this study, we try applying INLA to image restora-

tion of Poisson corrupted images. When the original image

seems to be reasonable to assume intrinsic CAR (ICAR)

model, which means almost of adjacent pixels do not vary

sharply, the proposed method rapidly obtained equal to the

result by an MCMC simulation.

2. Methodology

2.1 Latent Gaussian Models

A latent Gaussian Models (LGM) is a class of statisti-

cal models, which include many commonly used statisti-

cal models such as auto-regressive (AR) model, conditional

auto-regressive (CAR) model, and generalized linear mix-

ture (GLM) model.

Fig. 1 shows the outline of an LGM. In LGMs, latent

variables x = (x1,x2, . . . ,xn)
⊤ follow Gaussian Markov

random field (GMRF)

p(x) = N (x|µ(θlat),Σ
−1(θlat)), (1)

where θlat is a set of hyperparameters of latent GMRF. In

addition, mean vector µ and precision matrix Σ−1 are pa-

rameterized by θlat.

Observations y = (y1,y2, . . . ,yn)
⊤ should be condition-

ally independent and identically distributed on a parameter

set θobs

p(y) =

n∏
i=1

p(yi|x,θobs), (2)

and conditional distribution p(yi|x,θobs) must be belong

to exponential family. Hereafter, for simplicity, we will put

hyperparameter sets into θ,
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Fig. 1 An illustrated outline of a LGM. Highlighted nodes denote
observated variables. Latent variables compose GMRF
which is parameterized by θlat and observations should
be independent when latent variables x and hyperparam-
eters θobs are given.

θ = {θlat,θobs}. (3)

2.2 Integrated Nested Laplace Approximation

Integrated Nested Laplace Approximation (INLA) is a

fast and accurate method to approximate posterior distri-

butions of LGMs[9]. Especially when the number of hyper-

paramters is small (empirically |θ| ≲ 5[10]), INLA performs

very faster than Markov chain Monte Carlo (MCMC).

In LGMs, our aim is to get marginalized posteriors of hy-

perparameters

p(θ|y) ∝
p(θ)p(x|θ)p(y|x,θ)

p(x|θ,y) (4)

and latent variables

p(xi|y) =
∫

p(xi|y,θ)p(θ|y)dθ. (5)

In equation (4), each term in the numerator can be calcu-

lated by forward computation, but the denominator can not.

Hence, first we apply Laplace (or simplified Laplace, which

can fit with a skew normal distribution[1], [9]) approxima-

tion to the denominator

p̃(θ|y) ∝
p(θ)p(x|θ)p(y|x,θ)

p̃(x|θ,y) , (6)

where p̃(·) denotes an approximation of p(·).
For latent variables (5), applying numerical integration as

following:

( 1 ) Exploring the mode of log p̃(θ|y) using an optimization

algorithm (e.g., quasi-Newton method) with respect to

θ.

( 2 ) Arranging integration points in accordance with grid

or central composite design (CCD)[3] strategy (see

Fig. 2).

( 3 ) Calculating log p̃(θh|y) at arranged points, where h ∈
{1, . . . , H} is the index of each point.

( 4 ) Approximating equation (5) with weighted summation

on θh:

p(xi|y) ≈
H∑

h=1

p(xi|y,θh)p(θh|y)∆h, (7)

where ∆h is the weight of θh.

(a) grid (b) CCD

Fig. 2 Strategies for numerical integration of log p̃(θ|y) when
|θ| = 2. z = (z1, z2)⊤ is the linear transformation of θ. If
p̃(θ|y) is Gaussian, E[z] = 0 and Var[z] = I are satisfied.

3. Our Model

3.1 ICAR Models

To use INLA, we should choose a latent structure care-

fully. This is because the computaional performance of

INLA strongly depends on the number of hyperparameters

of the LGM.

ICAR model is one of the commonly used representations

of spatial interaction[2]. In ICAR model, xi has interaction

with xj (j ∈ Ci), where Ci indicates the set of indices of

nearest neighbor nodes of xi (for simplicity, each variable

is assumed to be a scalar value). Here it assumed that xi

follows

p(xi) = N

xi

∣∣∣∣∣∣ 1

|Ci|
∑
j∈Ci

xj ,
σ2

|Ci|

 , (8)

where σ2 is the hyperparameter indicates variance between

nodes. This model means some assumptions on x:

• Each node hardly differs from adjacent ones.

• The similarity between adjacent nodes is controlled by

the fixed effect σ2.

• As |Ci| is increasing, the variance of xi decreases.

At a glance, this model seems not to be inappropriate. How-

ever, the precision matrix of x does not satisfy the condi-

tion of positive definiteness, then ICAR models become im-

proper. Therefore, we regularize them to guarantee its com-

putational stability by adding extra hyperparameter d > 0:

p(xi) = N

xi

∣∣∣∣∣∣ 1

|Ci|+ d

∑
j∈Ci

xj ,
σ2

|Ci|+ d

 . (9)

3.2 Observation Model

In photon-limited images, the number of observated pho-

tons yi fluctuates as following Poisson distribution with the

true value xi. Hence, we use

p(yi) = Poisson(yi|xi) (10)

as the observation model straightforwardly, and yi is as-

sumed to be independent from other observations with given

x. Therefore, the joint distribution of y becomes

p(y) =

n∏
i=1

Poisson(yi|xi). (11)
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(a) Lena (b) Boat (c) Cameraman

Fig. 3 The original images to evaluate parameter estimating
methods for denoising Poisson corrupted images. Each
image has been cropped into 128x128.

Table 1 Comparison of parameter estimating methods with
PSNR, SSIM, and CPU time.

Image Method PSNR SSIM Time(s)

Lena
INLA 22.24 0.966 226.8

MCMC 24.97 0.968 2083.5
LBP 21.77 0.928 18794.7

Boat
INLA 21.76 0.947 209.5

MCMC 24.03 0.960 1585.3
LBP 21.50 0.915 18891.5

Cameraman
INLA 10.88 0.916 113.5

MCMC 21.82 0.956 1360.7
LBP 19.61 0.923 18809.8

3.3 Hyperpriors

In our model described above, we have two hyperparam-

eters σ2 and d. As their hyperpriors, we use uninformative

prior on [0,∞).

4. Experiments

In this study, we compared denoising simulation results

with INLA, MCMC (Hamiltonian Monte Carlo with No U-

Turn Sampler[5], [6]), and LBP using the described model

in Section 3. We simulated MCMC for 2000 steps and set

first 1000 steps as burn-in. As the original images, we use

“Lena”, “Boat”, and “Cameraman” for the evaluation (in

Fig. 3). The each image is cropped into n = 128× 128(px).

To compute point estimates of x, we used expected a posteri-

ori (EAP) estimation in INLA and MCMC. Table 1 shows

the comparison of results of INLA, MCMC, and LBP. In Ta-

ble 1, we can find that INLA is very faster than other algo-

rithms with little decreasing PSNR and SSIM from MCMC,

expect for “Cameraman”. LBP is too slow because it re-

quires spectral decomposition of an n × n matrix in its al-

gorithm. Fig. 4 is the denoised images. Qualitatively, the

images restored by INLA look clearer and unhazier than by

other methods on a whole. On the other hand, we could

not estimate the original “Cameraman” appropriately using

INLA (Fig.4(c)). Specifically, the result of INLA is appar-

ently different from others in its brightness. Then, to give

additional consideration, we present histograms of intensi-

ties in Fig. 5. Seeing Fig.5(b), we can find that brighter pix-

els have been hardly restored in “Cameraman”. In “Lena”,

the shape of true histogram is slightly flat. In contrast,

the true histogram of “Cameraman” has two sharp peaks.

Therefore, it is conceivable that the error of INLA mainly

caused by this illness. In this case, INLA might fail to esti-

mate the hyperparameters due to the illness of the original

image, then also failed to get appropriate posteriors with

respect to the latent variables.

5. Conclusion

In this study, we proposed and evaluated a denoising

methods for Poisson corrupted images based on INLA. INLA

requires an assumption of GMRF to latent variables. Hence,

its accuracy decreases when the assumption is inappropri-

ate. Whereas when the assumption is suitable for the orig-

inal image, we can reduce much time compared to other

Bayesian computational algorithms, such as LBP or MCMC

with enough accuracy.

As a future work, we can also consider to use other mod-

els for latent models. For example, to apply segmentation

to noisy image firstly, and then evaluate posteriors of each

segmentation independently. In addition, we should adopt

our method to real X-ray imaging data, and then evaluate

its effectivity.
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original corrupted INLA MCMC LBP

(a) Lena

original corrupted INLA MCMC LBP

(b) Boat

original corrupted INLA MCMC LBP

(c) Cameraman

Fig. 4 Poisson corrupted images and denoised ones using INLA, MCMC, and LBP. (a),
(b), and (c) shows the results of “Lena”, “Boat”, and “Cameraman” respectively.

(a) Lena (b) Cameraman

Fig. 5 The histograms of intensities of (a) “Lena” and (b) “Cameraman”. Upper plot
shows the estimated intensities by MCMC, and then middle and lower ones show
INLA’s and original’s respectively.
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