
IPSJ SIG Technical Report

Accelerating Deep RNN Inference with multiple
FPGAs

Yuxi Sun1,a) Akram Ben Ahmed1 Hideharu Amano1

Abstract: In this paper, we propose an acceleration methodology for deep recurrent neural networks (RNNs)
implemented on a multi-FPGA platform called Flow-in-Cloud (FiC). RNNs have been proven effective for
modeling temporal sequences, such as human speech and written text. However, the implementation of RNNs
on traditional hardware is inefficient due to their long-range dependence and irregular computation patterns.
This inefficiency manifests itself in the proportional increase of run time with respect to the number of layers
of deep RNNs when running on traditional hardware platforms such as a CPUs. Previous works have mostly
focused on the optimization of a single RNN cell. In this work, we take advantage of the multi-FPGA system
to demonstrate that we can reduce the run time of deep RNNs from O(k) to O(1).

1. Introduction

Recurrent neural networks have been for a long time

the state-of-art for many sequence-based tasks, such as

speech recognition, machine translation, text generation,

etc. There exist several types of RNN cells, including simple

RNN [15], Long Short-Term Memory (LSTM) and Gated

Recurrent Unit (GRU). Simple RNN cells are capable of

modeling character-level languages [1] as well as recognizing

hand-written characters. The LSTM architecture outper-

forms simple RNNs in modeling long sequences, and over-

comes the vanishing gradient problem of simple RNNs.

In contrast to convolutional neural networks (CNNs),

whose architectures allow massive parallelism by reuse of

filter weights, RNNs are harder to be accelerated on hard-

ware due to their high complexity and temporal dependence.

Compared to the plethora of literature on accelerating CNNs

with FPGAS, relatively few FPGA-based approaches have

been proposed to accelerate RNNs. One prominent example

include ESE [2], an efficient hardware architecture dedicated

to LSTMs designed by H. Song et. al, which utilizes param-

eter pruning and quantization. Authors in [3] also proposed

an FPGA-based acceleration of LSTMs using compression

techniques and claimed to outperform ESE. In addition to

LSTMs, there is also another work that focuses on acceler-

ating GRUs [4].

However, all of the works mentioned above took only

single-layer RNNs into consideration, whereas deep RNN ar-

chitectures are becoming more widely adopted recently. For

example, H. Sak et. al. demonstrated that a multi-layer

LSTM RNN with projection layers outperforms its single-

1 Keio University
3-14-1 Hiyoshi, Yokohama,223-8522, Japan

a) hikari@am.ics.keio.ac.jp

layer counterpart when evaluated with the Google Voice

Search task [5].

Starting from the aforementioned facts, we propose in this

paper a multi-FPGA based approach for accelerating deep

RNNs which achieves single-layer speed for arbitrarily deep

RNN architectures. The system is composed of instances

of our custom designed FiC boards which are connected by

high-speed serial links. The data flows among the boards

via STDM (Static Time Division Multiplexing) switches [6].

To accelerate deep RNNs on the FiC system, each layer of

a RNN can be implemented on one FiC board, so that dif-

ferent layers are computed simultaneously.

2. Deep RNN Architectures

Unlike CNNs, deep RNNs can be constructed in a variety

of ways [7]. In this work, we only consider stacked RNNs and

bidirectional RNNs. We use LSTM to illustrate the deep ar-

chitectures of RNNs, which should apply also for other types

of RNN cells.

2.1 RNN Background

All recurrent neural networks have the form of a chain of

repeating modules, each depending on the output of its pre-

decessor. In simple RNNs, the repeating module is a single

layer composed of a hyperbolic tangent function (tanh):

ht = σh(Wxhxt +Whhht−1 + bh), (1)

where xt denotes the input sequence, and ht denotes the

hidden vector sequence. LSTM also has this chained struc-

ture, but with a more complicated repeating module:

ⓒ 2019 Information Processing Society of Japan 1

Vol.2019-ARC-237 No.32
2019/7/26



IPSJ SIG Technical Report

ft = σg(Wfxt + Ufht−1 + bf ) (2)

it = σg(Wixt + Uiht−1 + bi) (3)

ot = σg(Woxt + Uoht−1 + bo) (4)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (5)

ht = ot ◦ σh(ct) (6)

ft, it and ot represent the outputs at a certain time step of

the forget, input and output gates, respectively. These three

gates have the same gating function σg. LSTMs keep two

types of states: hidden state ht and cell state ct. The hidden

state is typical of RNNs, and simple RNN and GRU also use

hidden states to keep previous information. The cell state is

the key to LSTMs. The LSTM regulates what information

should be added or removed to the cell state by using the

three gates. It can also allow an uninhibited flow of infor-

mation through the states [8]. LSTM with recurrent pro-

jection layer (LSTMP) is a variation of the standard LSTM

proposed by Google, which is also known as Google LSTM

[5]. LSTMP has demonstrated success in large-scale acoustic

modeling tasks while saving a lot of parameters comparing

to the standard LSTM. LSTMP differs from the standard

LSTM in that the hidden state vectors ht are multiplied

with a projection matrix Wp of dimension np × nc, where

np is the number of units in the projection layer, which is

usually smaller than nc.

ht = ot ◦ σh(ct) ◦Wp (7)

A standard LSTM cell has 4×nc×nc+4×ni×nc+4× bc

parameters, while an LSTMP cell has 4×nc×np+4×ni×
nc+np×nc+4× bc. For inner layers in a deep RNN archi-

tecture, where ni equals nc and np for LSTM and LSTMP

cells respectively, LSTMP is able to reduce the number of

parameters by a factor of
np

nc
.

Stacked RNNs

When stacking RNNs, the hidden states ht from the lower

RNN cell are input into the RNN cell above. Fig. 1 demon-

strates how one LSTM cell can be stacked on top of another.

Stacking LSTMs has been proven effective for acoustic mod-

eling [5]. The inputs to a deep RNN go through multiple

non-linear layers, so that at each layer, the information is

processed by the network unrolled in time. Authors in [9]

stated that deep layers in RNNs allow the network to learn

at different time scales over the input.

Bidirectional RNNs

Bidirectional RNN (BRNN) is another RNN architecture

that has the ability to learn from not only the past input

sequence, but also future input. It accomplishes this with

a second layer where the input sequence is reversed, which

results in the reversed flow through the hidden states

3. The FiC platform

Recently, FPGAs have been receiving a lot of attention

thanks to their power efficiency and flexibility. Since en-

ergy efficiency is one of the most important issues in recent

cloud computing, a lot of research using FPGAs in the cloud

Fig. 1: A Stacked LSTM RNN

have been conducted [10], and commercial systems including

Amazon’s F1 instance have become available. However, the

performance improvement that can be gained by using FP-

GAs is limited by the on-board resources of a single FPGA.

To deal with this problem, we have been developing a multi-

FPGA system called Flow-in-Cloud (FiC). FiC is consisting

of a number of middle-scale economical FPGAs intercon-

nected with high communication bandwidth network.

3.1 The prototype FiC system

The prototype FiC system, depicted in Fig. 2, is con-

sisted of a number of FPGA-based boards connected with

each other, and an I/O board with high speed serial links. A

Xilinx Kintex Ultrascale (XCKU095) FPGA running at 100

MHz is mounted on each board, and GTH serial links each

of which provides 8.5Gbps are used for interconnection.

The entire system is connected with a single host com-

puter through an I/O board using Xilinx KCU1500. The

I/O board is connected to PCIe gen3 of the host computer

and 8 serial links to some FiC-SW boards. The data for the

computation are transferred through the I/O board and dis-

tributed to multiple boards in FiC. Large amounts of data

can be stored in on-board 16GB of DDR4-SDRAM mod-

ules. The on-board Raspberry Pi 3 with Linux based OS is

in charge of controlling and configuring the FPGA. The to-

tal system is designed considering cost and energy efficiency

by excluding expensive components.

Fig. 2: Block diagram of FiC board

ⓒ 2019 Information Processing Society of Japan 2

Vol.2019-ARC-237 No.32
2019/7/26



IPSJ SIG Technical Report

Fig. 3: The structure of a FiC data packet.

3.2 The FPGA Interconnection

The FiC boards are connected using STDM switches [6].

Currently, each switch has three ports, one of which is for

incoming data from the HLS module, and the other two are

for outgoing data packets to other FiC boards. The ports are

connected with links (Firefly cables). One serial link is com-

posed of four lanes. As previously mentioned, each lane has

a bandwidth of 8.5 Gbps, so the total bandwidth is 34 Gbps

when all of the four lanes are used for inter-switch communi-

cation. One incoming and one outgoing link is connected to

the Xilinx Aurora IP (Intellectual Property), which commu-

nicates with the switch logic via the AXI4-Stream interface.

The data packets that go through the switch must follow

the format shown in Fig. 3. When generating the data pack-

ets, the HLS module can specify when the packets should

be sent by programming the Local Slot field. A consis-

tency check between the Local Slot value and the routing

table setting is performed in the hardware. The UDID (User-

defined ID) and Data fields can be used for application data.

The highest bit is a valid bit and is set by the switch logic.

3.3 Partial Reconfiguration

The FPGA on a FiC board is divided into two areas: the

static area consisting of the Xilinx Aurora IP and the STDM

switch, and the dynamic area consisting of the HLS module.

The application resides in the dynamic area, i.e. the HLS

module.

The static and dynamic areas share the resources of a sin-

gle FPGA, so that a switch with a larger number of ports

will result in reduced resources for the application in the

dynamic area.

4. Implementation

We implemented various deep RNN architectures on the

FiC system by dividing each layer to a FiC board. The RNN

cells are implemented using the Vivado HLS tool. The syn-

thesized RNN cells are exported as IPs and integrated into

the rest of the FPGA design using Vivado IP Integrator.

4.1 HLS implementation of RNN Cells

We implemented simple RNN cells and LSTM cells using

arbitrary-precision fixed-point numbers [11]. In this paper,

we only discuss the results of the fixed-point LSTM imple-

mentation. Compared to CNNs, RNNs have relatively few

parameters, so that the parameters of a not-so-large RNN

can be stored directly on the FPGA.

There are 8 matrix-vector multiplications in a single

LSTM cell, as previously explained in Section 2.1. On an

FPGA, these can be computed simultaneously using 8 in-

stances of matrix-vector multiplication modules. Inside the

multiplication function, the top level-loop is pipelined

In a typical LSTM-RNN, sigmoid and tanh functions are

commonly used for activation functions. These computa-

tionally expensive nonlinear functions can be quantized and

implemented as a look-up table, as represented in Fig. 4. in

this fashion, computing the activations only takes one clock

cycle.

Fig. 4: Quantized tanh activation function

For a deep LSTM with an input vector size of 16 (which

can be the number of acoustic features in the case of

speech recognition) and 128 hidden states. The post-

implementation utilization reported by Vivado is shown in

1. The DSP48E resources are underutilized due to Vivado

HLS’ constraint that computation of under 10 bits can be

implemented as FF and LUT only.

Table 1: Post-implementation Resource Utilization of an LSTM
cell with projection

BRAM 36K DSP48E FF LUT
Avail. 1680 768 1075200 537600
Used 1010 8 68348 323753
Utili. 60% 1% 8% 60%

4.2 Data Switching

The computation pattern of a two-layer stacked RNN is

shown in Fig. 5. Each xt in the input sequence is a vector

of size 16. In Fig. 5, A and B stand for the RNN cells, which

are in our case LSTMs.

The first layer starts computing first. As soon as the first

vector of hidden states h0 is ready, it goes to the next FiC

board via the switch. At the same time, h0 is used with x1

to compute the next hidden state vector h1. This results in

a nearly simultaneous computation of h′
t−1 and ht, except

for the overhead of data packet processing in the switch.

The initial overhead of computing h0 can be covered if the

inference of continuous input is pipelined.

An arbitrary amount of layers can be stacked by increasing

the number of FiC boards used, and the total computation

time will stay almost constant. The data switching patterns

of a four-layer RNN is illustrated in Fig. 6.

Bidirectional RNNs are also suitable to be accelerated

with FiC, since the forward and backward layers can run

independently on two different FiC boards To build a deep

bidirectional RNN such as the one described in [12], the for-

ward and backward layers can be stacked in a similar way as

Fig. 5. For classification tasks, the fully-connected layer can

ⓒ 2019 Information Processing Society of Japan 3

Vol.2019-ARC-237 No.32
2019/7/26



IPSJ SIG Technical Report

Fig. 5: Stacked RNN implemented on multiple FiC boards. The
hidden states ht are routed from one FiC board to another via the
switch.

Fig. 6: An overview of data path of a 4-layer RNN. The black ar-
rows represent the possible connections between boards, and the
green ones are the connections where the data (hidden states of the
RNN) flows through.

be placed on another FiC board, which receives the forward

and backward states from two other boards.

4.3 Quantization

The input data, parameters and activations of the RNN

models are quantized to 8 bit numbers. To quantize an

LSTM cell, quantization operations have to be inserted after

every numeric operation in the LSTM computation graph.

These quantization operations are provided by the quanti-

zation module [13] of Tensorflow, and can be expressed as

following:

fake quant with min max vars quantizes the input ten-

sor to a specified range and bit length, and stores the results

in floating point. It is retrainable, so that if a drop in accu-

racy is observed after applying quantization, the quantized

model can be retrained to achieve desired accuracy. The

quantization operation corresponds to the following equa-

tion:

qk(x) =
round(clamp(x,min,max) ∗ (2k))

2k
,

which quantizes the inputs x to the range [−2k−1,−2k−1).

We applied this quantization techniques to two datasets:

MNIST handwritten digit dataset and TensorFlow Speech

Command dataset [14], and found out that 8-bit implemen-

tation results in neglectable drop in accuracy, as shown in

Table 2. For the TensorFlow Speech Command dataset, mel-

frequency cepstral coefficients (MFCCs) are used to extract

speech features from the raw audio data.

Table 2: Original and 8-bit Quantized Accuracy Comparison for
Two Datasets

MNIST TF Speech Command
Accuracy
(%)

1xLSTM 1xLSTM 4xLSTM 1xLSTMP 2xLSTMP

original 97.9 92.7 94.09 93.1 94.2
8-bit
fake
quant.

97.5 92.9 94.03 92.8 94.0

8-bit
fixed-
point

97.3 92.7 - - 94.0

Fig. 7: Speed of 8-bit LSTM Inference on different platforms.

5. Evaluation

We compare the FiC implementation of deep RNNs

against an Intel i7-7500U CPU (laptop) and a NVIDIA

GeForce 940 MX GPU. The CPU and GPU performance is

measured using the Keras framework with the TensorFlow

backend. For measuring the speed of LSTM on GPU, the

highly optimized CudnnLSTM implementation is used. The

FiC performance is measured on the real FiC system pro-

totype. The time to run an inference can be read directly

from the waveform in the Vivado Hardware Manager, and

the results are shown in Fig. 7.

We evaluated the performance of four stacked LSTM ar-

chitectures of different depths, using 8-bit quantized model.

On a CPU, the runtime of an inference increases proportion-

ally with the number of layers. The GPU does a better job

at scaling-up than CPU, but a significant increase in run-

time can still be observed for 3-layer and 4-layer LSTMs. In

contrast, on the FiC system, computation of different layers

can be parallelized on separate FiC boards; thus, the latency

is almost not affected by the number of layers. For the FiC

implementation, the latency increases slightly with the in-

crease of layers. This is largely due to the transmission la-

tency between switches, plus the overhead of the conversion

between the 16-bit data and the packet data, as previously

demonstrated in Fig. 3.

Table 3 compares FiC against CPU in terms of GOPS

and GOPS/Watt performance. The GOPS performance of

CPU only scales up slightly when the RNN gets deeper. In

contrast, FiC demonstrates superior scalability because of

the increase of hardware resources. The power performance

(GOPS/W) of the FiC system is evaluated by measuring the

voltage and current on the socket (Fig. 8). While running

ⓒ 2019 Information Processing Society of Japan 4

Vol.2019-ARC-237 No.32
2019/7/26



IPSJ SIG Technical Report

a 4-layer LSTM RNN, the four FPGAs on the FiC boards

consumes around 16 W in total. This power performance is

comparable to that of a modern laptop. It is important to

mention that the power consumption of the Raspberry Pi

is also taken into consideration when measuring the entire

FiC system power.

Table 3: Performance comparison between CPU and FiC

1-layer 2-layer 3-layer 4-layer
CPU (GOPS) 1.046 1.226 1.252 1.269
FiC (GOPS) 0.778 2.190 3.202 3.884

CPU (GOPS/W) 0.074 0.088 0.089 0.091
FiC (GOPS/W) 0.195 0.274 0.267 0.243

For CPU the number of floating-point operations is counted,
and for FiC fixed-point operations. The CPU power is mea-
sured using Intel Power Gadget.

6. Conclusion and Future Work

In this paper, we presented a method to accelerate deep

RNNs with a multi-FPGA system called FiC. By taking ad-

vantage of the parallelism provided by multiple FPGAs and

the time dependence of RNNs, the latency of a deep RNN

can be reduced to that of a single-layer RNN. This is a con-

siderable speed-up in comparison to CPUs or GPUs, where

the latency of deep RNNs increases proportionally with the

number of layers. The FiC system shows good scalability

in terms of GOPS performance, and is superior to CPUs in

terms of power consumption.

Our future work will focus on two different aspects: the

optimization of the HLS implementation of RNN cells (such

as LSTMs) and the reduction of communication overhead

among HLS modules and switches.

Acknowledgments This paper is based on results ob-

tained from a project commissioned by the New Energy In-

dustrial Technology Development Organization (NEDO).

Fig. 8: Power measurement while FiC boards are running

References

[1] A. Karpathy: The Unreasonable Effectiveness of Recurrent
Neural Networks, http://karpathy.github.io/2015/05/21/
rnn-effectiveness/ (2019.02.08).

[2] Song Han et al: ESE: efficient speech recognition engine with
compressed LSTM on FPGA

[3] Sh. Wang, Z. Li, C. Ding, B. Yuan, Y. Wang, Q. Qiu, and
Y. Liang: C-LSTM: enabling efficient LSTM using struc-
tured compression techniques on FPGAs

[4] Ch. Gao, D. Neil, E. Ceolini, Sh.-Ch. Liu, and T. Delbruck:

Deltarnn: A power-efficient recurrent neural network accel-
erator, FPGA ’18, pages 21–30. ACM, 2018.

[5] Hasim Sak, Andrew W. Senior, and Françoise Beaufays:
Long short-term memory based recurrent neural network ar-
chitectures for large vocabulary speech recognition

[6] Kazusa Musha, Tomohiro Kudoh, and Hideharu Amano.
Deep learning on high performance FPGA switching boards:
Flow-in-Cloud, Applied Reconfigurable Computing, 2018.

[7] Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, and
Yoshua Bengio: How to construct deep recurrent neural net-
works,

[8] Christopher Olah: Understanding LSTM Networks, http:
//colah.github.io/posts/2015-08-Understanding-LSTMs/
(2019.02.08).

[9] Michiel Hermans and Benjamin Schrauwen: Training and
analysing deep recurrent neural networks, Advances in
Neural Information Processing Systems 26, pages 190–198
(2013).

[10] Andrew Putnam et al: A reconfigurable fabric for acceler-
ating large-scale datacenter services, ISCA ’14, pages 13–24,
2014.

[11] Xilinx: Vivado Design Suite User Guide High-Level Synthe-
sis.

[12] Alex Graves, Navdeep Jaitly, and Abdel rahman Mohamed:
Hybrid speech recognition with deep bidirectional lstm, In
IEEE Workshop on Automatic Speech Recognition and Un-
derstanding (ASRU), 2013.

[13] TensorFlow 1.13, https://www.tensorflow.org/api_docs/
python/tf/quantization/quantize

[14] Speech commands: A public dataset for single-word speech
recognition Pete Warden

[15] Jeffrey L. Elman: Finding structure in time, COGNITIVE
SCIENCE (1990).

ⓒ 2019 Information Processing Society of Japan 5

Vol.2019-ARC-237 No.32
2019/7/26


