
IPSJ Transactions on Mathematical Modeling and Its Applications Vol.12 No.2 1–11 (July 2019)

Regular Paper

Modeling and Evaluating Taxi Ride-sharing
for Event Trips

Taketo Yoshida1,a) Masaki Yano1 Kenichiro Horikawa2

Keita Sato2 ShotaMinami1 Maiko Shigeno1

Received: January 31, 2018, Revised: March 24, 2018,
Accepted: January 15, 2019

Abstract: While ride-sharing systems have received great interest and spread widely in recent years, taxi ride-sharing
is expected to be highly effective at ride-sharing. This research is an investigation into the possibility of taxi ride-
sharing for passengers having a common purpose, such as an event trip, in which passengers having the same reason
for taking a trip are handled. Although solutions to taxi ride-sharing problems are usually evaluated on the basis of the
distance traveled by taxis, our proposed model minimizes the total trip distance of all passengers without lengthening
the minimum total distance traveled by the taxi. This taxi ride-sharing problem is formulated as a mixed integer lin-
ear programming (MILP) problem. For this problem, an exact algorithm under the restriction of ride capacity and a
heuristic algorithm that solves general cases are proposed. Moreover, numerical experiments were done to assess the
performance of our heuristic algorithm and evaluate solutions in terms of distances of routes and fare that is paid.

Keywords: taxi ride sharing, mathematical modeling, mixed integer linear programming, matching algorithm, heuris-
tic algorithm

1. Introduction

Ride-sharing systems have received great interest and spread
widely in recent years because of their possibility to reduce travel
costs and to overcome problems with environmental pollution and
traffic congestion. It is said that the beginning of organized ride-
sharing systems was in WWII [6], [8]. During the last decade,
new tools such as smartphones and the global positioning system
(GPS) have likely been the cause of the success of ride-sharing
systems. Great attention is paid nowadays to ride-sharing services
such as those that arrange many drivers and passengers dynam-
ically, that is, that repeatedly rearrange drivers and passengers
when they send their information [2], [7], [11], [18]. There are
various types of ride-sharing as we can see in reviews [1], [8]. As
a practical matter, system must be designed and analyzed depend-
ing on the characteristics of the target ride-sharing service.

In Japan, ride-sharing businesses that use personal automobiles
are not allowed under the law. However, taxi ride-sharing systems
have been introduced in order to support the public transporta-
tion system in local communities. These transportation services
are called “community taxis.” Recently, smartphone applications
that support taxi ride-sharing systematically have been released
and are used in urban areas. Such applications provide sharing
services that can be regarded as an extension of the unorganized
ride-sharing that is done within personal relationships. Moreover,
trial experiments on taxi ride-sharing have been performed in sev-
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eral regions. For example, the Ministry of Land, Infrastructure,
Transport and Tourism has started the experiments in Tokyo from
January, 2018. There is nevertheless very little research done
through case studies on taxi ride-sharing in Japan from the aspect
of optimization models.

This research is an investigation into the possibility of taxi ride-
sharing under mutual consent of passengers having a common
purpose. We focus only on event trips, where passengers have
the same reason for taking a trip, for example, attending events
or going to stadiums. Since we assume each event has a start
time, each passenger must reach the destination just before this
time. Thus, we do not need to consider time window constraints
and do not need to deal with dynamical cases. In addition, hav-
ing a common destination makes the problem simple. This model
is equivalent to the problems discussed in Massobrio, Fagúndez
and Nesmachnow [20] and Ben-Smida et al. [4]. Their models
treat ride-sharing for passengers from the same origin to distinct
destinations.

Our taxi ride-sharing problem is to find an assignment of pas-
sengers to taxis and a tour of each taxi. Usually, solutions to
taxi ride-sharing problems are evaluated in terms of transporta-
tion costs and passenger satisfactions. Transportation costs are
calculated on the basis of the total distance traveled by taxis. Pas-
senger satisfaction is expressed in terms of short detours through
ride-sharing, compatibility between riding partners, and so on. It
is reported in [21] that event participants who shared a ride in
practice said that a large detour made to pick up other riders for
ride-sharing was unacceptable. Therefore, the objective of our
model is to minimize the total trip distance over all passengers
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instead of the distance traveled by taxis. This objective can ad-
dress the issue of both transportation distance and a detour. For
this model, we show an exact algorithm that uses matching meth-
ods under the condition that at most two passengers can share a
ride. In addition, we propose a heuristic algorithm for general
cases in which three or more passengers can share one taxi. Hav-
ing a common destination may be enable us to use a heuristic
algorithm based on geographical decomposition, which tends to
fail in general ride-sharing problems. Our heuristic algorithm is
based on clustering methods that uses cosine similarity.

The rest of this paper is organized as follows. In Section 2, re-
lated work on taxi ride-sharing is reviewed. In Section 3, our taxi
ride-sharing problem for event trips is described, and mixed inte-
ger linear programming (MILP) formulations are given. Section 4
gives algorithms for our taxi ride-sharing problem. Numerical ex-
periments evaluating our algorithms are shown in Section 5. Fi-
nally, in Section 6, we summarize our results and discuss future
work.

2. Related Work

Taxis provide a more flexible, comfortable, and faster trans-
portation service than buses, railway, subways and so on. How-
ever, the cost of taxi fares is higher. Moreover, taxis usually have
low occupancy rates, that is, they have many empty car seats, even
at times of peak traffic. Hence, taxi ride-sharing is expected to be
highly effective. Taxi ride-sharing problems have now become
one of the major topics in ride-sharing.

Taxi ride-sharing research is classified into two types. One
considers coordination between drivers and passengers. To of-
fer this service with smartphone applications, dynamical systems
have been developed. For this type of service, Agatz et al. [2] pro-
posed a method that iteratively solves the assignment problem.
Bicocchi and Mamei [5] presented a system for finding appropri-
ate ride-sharing partners automatically from mobile data. Ma et
al. [17] and Huang et al. [11] formulated real-time ride-sharing
problems and proposed heuristic algorithms that are efficient on a
large scale. Schreieck et al. [26] developed matching algorithms
for larger numbers of ride requests in real-time. Fu et al. [7] fo-
cused on matchings concerned with the cohesion of passengers
in terms of social relations in order to improve passenger comfort
and safety. As the commercial platforms for ride-sharing have
become popular, progress has been make on high performance
algorithms for matching in dynamic systems under many condi-
tions in terms of practicality.

The other type of ride-sharing researche considers construct-
ing a tour for each taxi by scheduling a pick up and drop off
sequence for assigned passengers. This scheduling problem is
regarded as a special case of dial-a-ride problems (see, for ex-
ample, one review paper [22]). For the problem, both static and
dynamic versions are considered. The typical objective function
is to minimize the total travel distance. However, many evalu-
ation criteria are considered. Lin et al. [16] adopted operation
costs and passenger satisfaction, such as extra riding and wait-
ing times. Hosni et al. [10] used benefits for drivers. Santi et
al. [24] evaluated the trade-off between benefits and passenger in-
convenience in ride-sharing. Santos and Xavier [25] introduced

a multi-objective function consisting of maximizing the number
of served passengers and minimizing the total cost of passengers.
Lee and Savelsbergh [12] formulated a ride-sharing problem that
compares the benefits and costs with ad-hoc drivers and dedi-
cated drivers. Ma et al. [19] analyzed the distribution of bene-
fits between passengers and drivers. As many evaluation criteria
have been discussed, it is important to adopt appropriate criteria
matched to the characteristics of ride-sharing situations.

To pursue efficiency in urban traffic, more complex mod-
els have been discussed, such as multi-modal sharing sys-
tems [14], [15], [18], [27] and multi-commodity sharing sys-
tems [13]. Meanwhile, one of the simplest but most significant
cases of taxi ride-sharing is for passengers from the same origin
heading to different destinations. For this problem, Massobrio et
al. [20] proposed a non-deterministic method so called the evo-
lutionary algorithm. Ben-Smida et al. [4] formulated the prob-
lem as a mixed integer linear programming (MILP) problem
and compared it with Massobrio, Fagúndez and Nesmachnow’s
method in numerical experiments. The model discussed in Tao
and Chen [28] also has one origin, but their model is dynamic
in accordance with passengers’ time windows. Recently, Qian
et al. [23] designed a taxi group-ride problem in which passen-
gers are grouped in a single ride. A similar idea is appeared
in ride-sharing having transportation hubs in a paper by Lin et
al. [15]. The taxi group-ride problem finds a group of passengers
whose trips are close to each other in spatial terms, similar to find-
ing groups of passengers having nearby destinations for sharing
a taxi from the same origin. As many taxi ride-sharing models
have been investigated, we should design a suitable model that
represents the characterization of the services we consider.

In our research, we construct models for taxi ride-sharing prob-
lems with a focus on event trips. Corresponding to the result of a
questionnaire survey [21], we focus not on only the total distance
traveled by taxis, which directly affect the fare cost, but also on
routes for passengers as the evaluation criteria.

3. Model Description and Formulation

Assume that there are n participants who go by taxi ride-
sharing to an event for the purpose of meeting people having a
common lifestyle and similar tastes, like parents circles for child
care. In this case we do not need to consider preferences toward
ride-sharing partners. That is to say, participants are matched
only by spatial constraints.

Let N be a set of n participants. Participant i(∈ N) is charac-
terized by the pick up location pi and the number of passengers
who go together with i, including i, fi. For example, if participant
i goes with his/her partner, fi becomes 2. We call passengers go-
ing together with participant i “fellow passengers.” The common
destination where an event is held is denoted by pg and a dummy
starting place is denoted by po. The distance di j from location pi

to location p j is known. For convenience, Ñ = N ∪ {o, g} and
fo = fg = 0 and do j = 0 for any j ∈ Ñ. The ride capacity of
each vehicle is F. Usually, F is set to 3 or 4 for taxis. A taxi ride-
sharing problem for an event trip involves dividing participants
into groups, to each of which a taxi is assigned, and deciding the
visiting order for picking up participants in each group. In other
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words, it involves finding a set of tours that taxies travel along
from po to pg. The pick up location of each participant should
belong to one of these tours.

First, we consider the problem of minimizing the total distance
traveled by taxis. This taxi ride-sharing problem, called TRSP T,
is formulated as a MILP formulation. The following formulation
(1)–(8) is slightly different from that adopted in [4].

minimize
∑

i, j∈Ñ

di j xi j (1)

∀ j ∈ Nsubject to
∑

i∈Ñ
i� j

xi j = 1 (2)

∀i ∈ N
∑

j∈Ñ
j�i

xi j = 1 (3)

∑
i∈N

xio =
∑
j∈N

xg j = 0 (4)

∀i, j ∈ Ñui − u j + Fxi j ≤ F − fi (5)

∀i, j ∈ Ñxi j ∈ {0, 1} (6)

∀i ∈ Nui ≥ 0 (7)

uo = 0, (8)

where xi j is a Boolean variable that equals 1 if a taxi picks up par-
ticipant j just after participant i, and ui is a nonnegative variable
called a “potential.” Objective function (1) minimizes the total
distance traveled by taxis except for routes to visit the location
of participants who ride first for each tour. Constraints (2)–(4)
guarantee that several tours are constructed in which each par-
ticipant is visited exactly once for any of them. Constraint (5)
is a variant of the Miller-Tucker-Zemlin constraint for traveling
salesman problems (TSP). The constraint eliminates subtours.
That is to say, this ensures that all tours start from the dummy
starting point po and finish at the common destination pg. In ad-
dition, this constraint also ensures that ui indicates the number of
passengers in a taxi when it arrives at pi, because inequality (5)
becomes ui + fi ≤ u j if xi j = 1, that is, a taxi goes to p j just after
pi. Moreover, the inequality (5) for i = g and j = o, together
with xgo = 0 and uo = 0, becomes ug ≤ F, which implies that
this constraint guarantees that the number of passengers sharing
a taxi is not greater than ride capacity F.

It is important that taxi tours are evaluated in terms of the to-
tal distance traveled because the taxi fare depends on its mileage.
However, some tours are not accepted by participants. From a
questionnaire survey [21], one of the complaints of participants
was roundabout routes that were long, especially those that in-
volve driving in a direction different from the destination. When
we adopt tours minimizing the total distance traveled by taxis,
there may be a long detour for participants. For example, we con-
sider the locations shown in Fig. 1. The distance between loca-
tions, shown in Table 1, corresponds approximately to the Euclid
distance and is symmetric. We assume that one person will catch
a taxi at each location, i.e, fi = 1 for all i, and that F = 2. The
minimum total distance traveled by taxis is 60, where two tours,
p1-p2-pg and p3-p4-pg, are adopted. However, a long detour is

Fig. 1 Example of locations for 4 participants and common destination.

Table 1 Distance matrix for Fig. 1.

p2 p3 p4 pg
p1 19 24 25 30
p2 18 23 28
p3 5 10
p4 8

imposed on participant 1. In this case, two other tours, p1-p4-pg
and p2-p3-pg, are superior for every participant. To avoid long
detours, we modify TRSP T by adding a constraint that restricts
the increase in the trip distance for each participant i from the
distance dig that participant i takes to the destination directly *1.
When dynamic situations are considered, such a maximum de-
tour constraint is introduced in many cases [3], [26]. However, in
our model, a solution that satisfies a maximum detour constraint
usually requires more taxis than the original TRSP T. Thus, the
problem has parameters with respect to restricting increments in
trip distance and increments in the number of taxis, which implies
that we need to adjust such parameters in order to balance these
restrictions. To not use such parameters, we now introduce an-
other objective function for evaluating a set of tours. To evaluate
extra trips taken by participants, we use the total trip distance of
all participants. In the two tours p1-p4-pg and p2-p3-pg shown in
the above example, trip distances for participants 1, 2, 3, and 4
are d14 + d4g = 33, d23 + d3g = 28, d3g = 10, and d4g = 8, respec-
tively. Thus, the total trip distance of all participants is given by
33 + 28 + 10 + 8 = 79. For the tours which is an optimal solution
of TRSP T, the total trip distance of all participants is given by
47 + 28 + 13 + 8 = 96. If our objective were to minimize the
total trip distance of all participants, the former tours would be
adopted, even though this is not optimal for TRSP T. Note that if
the objective function (1) were changed to minimize the total trip
distance of all participants under the constraints (2)–(8), no par-
ticipants would ride with other participants in an optimal solution.
That is to say, each participant would ride in a taxi alone. That
would be meaningless. Thus, we set our objective to minimiz-
ing the total trip distance of all participants, without making the
length of the minimum total distance traveled by taxis too long.

We now consider a taxi ride-sharing problem that minimizes
the total trip distance of all participants, without counting their
fellow passengers, under the condition that they ride separately
in exactly k taxis. The problem is referred to as TRSP P. To
simplify our discussion, we assume that each participant has no
fellow passengers, i.e., fi = 1 for all i ∈ N from now on. The
problem is formulated as follows.

*1 Strictly speaking, we need additional variables to represent the trip dis-
tance for each participant when we add such an additional constraint.
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minimize
∑

i, j∈Ñ

di jyi j (9)

∀ j ∈ Nsubject to
∑

i∈Ñ
i� j

xi j = 1 (10)

∀i ∈ N
∑

j∈Ñ
i� j

xi j = 1 (11)

∑
i∈N

xio =
∑
j∈N

xg j = 0 (12)

∑
j∈N

xo j =
∑
i∈N

xig = k (13)

∀i, j ∈ Ñvi − v j + (F + 2)xi j ≤ F + 1 (14)

∀i, j ∈ Ñyi j ≥ vi + xi j − 1 − F(1 − xi j) (15)

∀i, j ∈ Ñxi j ∈ {0, 1} (16)

∀i ∈ Nvi ≥ 1 (17)

vo = 0 (18)

∀i, j ∈ Ñ,yi j ≥ 0 (19)

where yi j stands for the number of participants riding a taxi when
the taxi drives from location pi to location p j directly, and vi rep-
resents the number of participants in a taxi when it departs from
location pi. Constraint (14), which is a variant of Constraint (5),
eliminates subtours and ensures that vi is the number of partici-
pants in a taxi. In addition, when xig = 1, the constraint becomes
vi ≤ vg − 1, which, together with vg ≤ F + 1 obtained by this con-
straint for i = g and j = o, indicates that vi ≤ F. Constraint (15)
represents yi j as the number of participants between locations pi

and p j. It becomes yi j ≥ vi, if xi j = 1, and yi j ≥ vi − F − 1
which is trivially satisfied, otherwise. If we need to consider fel-
low passengers, all it takes is to add constraints (5), (7) and (8)
to this MILP formulation (9)–(19). Note that tours obtained by
this formulation depend on the number of taxi vehicles k shared
by participants. In our problem, we employ the optimal number
of taxis in TRSP T as k.

4. Algorithms

We first consider algorithms for the taxi ride-sharing problem
under the condition that at most two participants can share a ve-
hicle, that is, F = 2. When the event that participants go to by
ride-sharing is a parent circle for child care, participants take their
children along. In such a case, at most two participants and their
children can share a vehicle, where the pairing possibility of par-
ticipants is determined in accordance with the number of children.
Since the problem is to find appropriate pairs of participants, it
can be induced in a matching problem on a general graph. Let
G = (N, E) be a graph, where the vertex set corresponds to the
set of participants N, and edge set E is composed of edges repre-
senting possible pairs of two participants. Note that, for a feasible
solution x of TRSP T under the condition that at most two partic-
ipants can share a vehicle, {(i, j) ∈ N × N | xi j = 1} is a matching
in G. A matching M of G corresponds to solution xM , which
gives the following. xM

oi = xM
ig = 1 if node i is not incident to

any edge in M; xM
oi = xM

i j = xM
jg = 1 or xM

o j = xM
ji = xM

ig = 1 if
(i, j) ∈ M; xM

i j = 0 for remaining pairs of i and j in Ñ. Since edge
(i, j) in matching M is associated with two tours through i and j,

we assign the one with the minimum distance to it. For TRSP T,
the weight of edge (i, j) ∈ E is given by the distance saved due to
pairing of participants i and j, that is,

dig + d jg −min{di j + d jg, d ji + dig}.
Since do j = 0 for any j ∈ Ñ, the weight of matching M can be
transformed to the weight of the corresponding feasible solution
xM of M.
∑

(i, j)∈M

(
dig + d jg −min{di j + d jg, d ji + dig}

)

=
∑
i∈N

dig −
∑
i�M

dig −
∑

(i, j)∈M

min{di j + d jg, d ji + dig}

=
∑
i∈N

dig −
∑
i�M

∑

j∈Ñ

di j x
M
i j

−
∑

(i, j)∈M

(
(di jx

M
i j + d jgx

M
jg) + (d jix

M
ji + digx

M
ig )
)

=
∑
i∈N

dig −
∑

i, j∈Ñ

di j x
M
i j

where, for convenience, we denote by i � M such that vertex i

is not incident to any edge in M. Therefore a maximum weight
matching in G corresponds to an optimal solution for TRSP T.

In regard to TRSP P, we consider a graph Ĝ = (N ∪ N̂, E ∪ Ê),
where N̂ is a set of 2k − n dummy vertices and Ê = {(i, j) | i ∈
N, j ∈ N̂}. A perfect matching in Ĝ corresponds to a solution to
ride sharing using exactly k taxis. Edge (i, j) ∈ Ê is contained in
a perfect matching, if and only if participant i rides alone. Edge
(i, j) ∈ E is contained in a perfect matching, if and only if partici-
pants i and j share the same taxi, where the taxi tour chosen is the
one with the minimum total trip distance. Since 2k − n dummy
vertices are added, there are 2k − n participants who ride alone.
Thus, the remaining n − (2k − n) = 2(n − k) participants share
taxis in pairs. Then, the number of vehicles needed for sharing
is (2k − n) + 2(n−k)

2 = k. We give a weight of edge (i, j) ∈ E by
calculating the total tour distance of passengers i and j, that is,

min{di j + 2d jg, d ji + 2dig},
and a weight of edge (i, j) ∈ Ê by using the trip distance when
participant i rides in a taxi alone, that is, dig. Then the weight of a
perfect matching is equivalent to the total trip distance of all par-
ticipants corresponding to the ride-sharing solution. Thus, a mini-
mum weight perfect matching corresponds to an optimal solution
for TRSP P. From the above, under the condition that at most
two participants can share a vehicle, both TRSP T and TRSP P
can be solved in polynomial time by matching algorithms.

We now turn to general cases of taxi ride-sharing problems,
that is, three or more participants can share one vehicle. Since
taxi ride-sharing problems are NP-hard for general cases [4], we
developed a heuristic algorithm. Since TRSP T is used to find
a suitable number of taxis, our target problem is TRSP P. Our
heuristic algorithm finds a suitable number of taxis as well as the
tour of each taxi that is assigned a cluster of participants, which
is obtained by geographical decomposition centering on a com-
mon destination like a classical heuristic algorithm of the sweep
method for vehicle routing problems (VRPs) [9]. Let S be a co-
sine similarity matrix derived from the relative degrees of latitude
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and longitude of each location pi for i ∈ N from the destination
pg. Namely, by denoting the latitude and longitude of pi as lati
and longi, the (i, j)-element si j of S is given by

(lati−latg)(lat j−latg)+(longi−longg)(long j−longg)√
(lati−latg)2+(longi−longg)2

√
(lat j−latg)2+(long j−longg)2

.

Then, we partition the set of participants N into X1, X2, . . . , Xk′

i.e.,
⋃k′

l=1 Xl = N and Xl ∩ Xl′ = ∅ for all1 ≤ l < l′ ≤ k′, by using
an appropriate clustering algorithm for S . Clustering algorithms,
however, do not consider the ride capacities of taxis F. Thus, we
apply a clustering algorithm iteratively until the ride capacity is
satisfied. A detailed description of our algorithm is given in Al-
gorithm 1. Here, two threshold parameters, θ and α, are used.
Recall that, for convenience, we assume that fi = 1 for all i ∈ N

in this algorithm.
For the partition X = {X1, X2, . . . , Xk′ } of N obtained by Algo-

rithm 1, each tour of a taxi that is assigned to Xl (l = 1, . . . , k′) is
found by calculating the distance of every visiting sequence for
participants in Xl when F is not that large. When F is too large
to enumerate all visiting sequences for participants in a taxi, we
employ an appropriate method for traveling salesman problems
(TSPs). The total distance traveled by taxis in this solution tends
to become long because the obtained partition X does not con-
sider the constraints on the number of taxis and the number of
partitions is usually large. Thus, we modify the obtained par-

Algorithm 1 iterative clustering
[initialization] h := 2,X := ∅ and Nr := N;

repeat

obtain a partition X1, X2, . . . , Xh of Nr by using a clustering algorithm

for S ;

if |Xl | > F for all l = 1, . . . , h then

h← h + 1;

else

for all Xl (l = 1, . . . , h) such that |Xl | ≤ F do

if |Xl | ≤ α or si j ≥ θ for any i, j ∈ Xl then

add Xl to X and update Nr ← Nr \ Xi;

end if

end for

h← 2;

end if

until |Nr| ≤ h

output X;

Algorithm 2
find partition X of N by using the iterative clustering algorithm (Algorithm

1);

construct a tour of a taxi to which each X ∈ X is assigned;

repeat

find a maximum weight matching in GX and combine pairs of clusters

corresponding to the matching;

update a tour of a taxi to which each combined cluster is assigned;

until there are no appropriate combinations of clusters

Table 2 Typical taxi fares in Totsuka, Kashiwa and Sendai.

Kashiwa Totsuka Sendai
base fare 730 yen 730 yen 680 yen

maximum distance by the base fare 2.0 km 2.0 km 1.7 km
added fare 90 yen per 290 m 90 yen par 293 m 80 yen per 238 m

titions by combining clusters. We again adopt matching algo-
rithms. Let GX = (X, EX) be a graph with vertex set X and edge
set EX = {(Xl, Xl′ ) ∈ X×X | |Xl|+ |Xl′ | ≤ F, si j ≥ η, i ∈ Xl, j ∈ Xl′ },
where η is a threshold parameter less than θ. A weight of edge
(Xl, Xl′ ) ∈ EX is given by the distance saved due to merging a pair
of clusters Xl and Xl′ , that is,

M − dist(Xl ∪ Xl′ ),

where dist(X) stands for the minimum trip distance of all partic-
ipants in X, and M is a large constant number so that as many
edges as possible are chosen in matching. Then, we find a maxi-
mum weight matching in GX and combine a pair of clusters Xl and
Xl′ if edge (Xl, Xl′ ) is contained in the maximum weight match-
ing. According to necessity, we repeatedly find maximum weight
matchings and combine clusters. Summarizing the above, our
heuristic algorithm is described in Algorithm 2.

5. Numerical Experiments

We performed numerical experiments in order to investigate
the performance of our heuristic algorithm and to evaluate the
solution to TRSP P in terms of both transportation distance and
detours for each participant. In addition, the fares of each partic-
ipant was also compared.

5.1 Experimental Setup
Our instances were based on three city areas: Kashiwa, Tot-

suka, and Sendai. The taxi fare differs slightly among these areas.
Typical fares for these city areas are shown in Table 2. We gen-
erated a location pi for each participant on the basis of facilities
for primary education, such as elementary schools and private tu-
tors, extracted from Google Maps by setting a 10-kilometer radius
arond the main station of each city. We constructed an instance
with n participants by choosing n from 25 facilities extracted in
advance. The main station was set as the common destination.
The distance between locations was obtained by using the Google
Map API.

We implemented the algorithms discussed in Section 4 with
Python 3.5.2. For our iterative clustering algorithm (Algorithm
1), we employed k-medoids as the clustering method. Since the
solution depends on an initial solution for k-medoids, our heuris-
tic algorithm output the best solution among the results by per-
forming the algorithm 15 times. That is to say, it returned a solu-
tion with the shortest total trip distance for all participants among
solutions that achieve the minimum number of vehicles. Thresh-
old parameters were given by θ = 0.9, α = F, η = 0.75.

The MILP formulations for TRSP T and TRSP P were solved
by using FICO Xpress Optimizer 27.01.02 on an HP Pavil-
ion HPE h8-1090JP with an Intel Core i7, 3.20 GHz-CPU and
12.0 GB of RAM. Both MILP formulations were solved by
adding valid inequalities in order to accelerate the computational
time. We adopted three types of valid inequalities
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Table 3 Comparing evaluation values when F = 2.

n 12 13 14 15 16 17 18 19 20 21 22 23 24 25
TRSP T k 7 7 7 8 8 9 10 10 11 11 12 12 12 13

dist T 79.66 79.51 81.24 85.30 90.17 93.60 103.61 110.75 114.07 125.07 131.17 134.58 142.35 153.31
dist P 115.23 118.11 129.05 133.11 142.02 153.80 169.33 182.77 186.09 204.48 215.87 223.38 232.46 257.93

K
as

hi
w

a

TRSP P dist T 79.69 79.51 81.24 88.72 90.17 97.02 109.47 113.18 124.21 134.11 146.79 148.12 149.97 163.74
dist P 115.07 118.11 129.05 131.38 142.02 152.07 164.52 179.69 182.58 199.32 212.00 218.16 229.85 246.45

h.a. k+ 0 0 0 0 +1 +1 0 0 0 0 0 0 +1 0
dist T 79.69 79.51 82.43 93.16 100.82 113.20 119.85 123.04 135.70 146.44 152.47 162.04 159.43 174.16
dist P 115.07 118.11 131.09 134.44 141.90 154.48 169.66 184.31 188.31 206.39 217.49 232.43 233.92 268.91

total distance by riding alone 119.90 123.12 132.33 136.39 143.20 155.62 168.53 182.01 185.34 210.24 222.92 227.75 237.33 255.99
TRSP T k 7 8 8 9 9 9 10 11 11 11 12 12 13 13

dist T 92.29 96.58 106.53 109.16 111.99 123.23 125.43 136.27 143.67 151.18 156.49 157.45 165.65 174.71
dist P 149.57 153.86 169.68 178.11 186.81 210.18 205.55 218.57 233.92 245.72 251.92 256.37 273.96 293.71

To
ts

uk
a

TRSP P dist T 99.51 103.98 113.76 116.57 119.39 132.60 133.00 143.84 151.08 157.82 163.13 164.09 180.59 184.00
dist P 149.37 151.40 169.48 175.65 184.34 204.28 202.89 215.91 231.46 244.94 251.13 255.58 272.08 289.27

h.a k+ 0 −1 0 −1 0 +1 0 0 0 +1 +1 0 +1 +1
dist T 102.84 100.55 112.30 117.42 119.34 127.82 132.78 143.62 151.02 158.71 166.52 159.25 183.28 187.63
dist P 152.84 162.26 175.59 183.37 184.93 201.20 203.67 216.69 232.04 241.53 249.35 257.29 269.59 287.72

total distance by riding alone 138.95 143.24 157.35 167.44 173.31 187.09 192.03 207.76 222.16 233.71 240.82 244.31 260.81 276.49
TRSP T k 7 8 8 8 9 9 10 10 10 11 11 12 12 13

dist T 61.56 66.31 67.81 69.00 80.77 82.87 89.85 90.77 94.65 96.06 100.35 106.40 112.41 118.16
dist P 92.21 99.24 95.52 105.66 125.04 129.23 140.19 144.31 151.32 153.19 162.24 172.17 187.73 194.47

Se
nd

ai

TRSP P dist T 62.49 74.16 74.07 75.26 87.68 83.80 97.34 98.25 101.25 105.26 112.96 117.78 119.05 129.29
dist P 85.54 90.65 92.94 103.08 115.50 122.55 136.09 140.21 148.48 148.93 157.42 162.24 173.05 181.67

h.a. k+ 0 −1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1
dist T 65.23 75.39 70.65 70.81 83.09 85.94 105.26 105.46 109.13 110.89 119.73 125.41 120.57 133.56
dist P 92.65 103.59 94.77 105.09 116.16 122.64 139.89 143.30 150.56 151.42 157.80 164.79 172.55 183.26

total distance by riding alone 81.61 87.32 89.70 99.88 112.30 116.67 131.16 134.36 141.43 143.15 149.77 157.50 167.04 177.66

Fig. 2 Comparing dist T and dist P for F = 2.

ui − u j + Fxi j + (F − fi − f j)x ji ≤ F − fi, ∀i, j ∈ N

1 + (1 − xoi) ≤ ui, ∀i ∈ N

ui ≤ F − fi − (1 − xig) − (F − 2)xoi, ∀i ∈ N

for TRSP T, and six types of valid inequalities

vi − v j + (F + 2)xi j + Fxji ≤ F + 1, ∀i, j ∈ N

1 + (1 − xoi) ≤ vi, ∀i ∈ N

vi ≤ F − (1 − xig) − (F − 2)xoi, ∀i ∈ N

xi j ≤ yi j ≤ Fxi j, ∀i, j ∈ Ñ

yi j ≤ vi, ∀i ∈ N,∀ j ∈ Ñ

vi =
∑

j∈Ñ

yi j, ∀i ∈ N

for TRSP P.

5.2 Comparing Performance of Algorithms
We compared the performance between our heuristic and exact

algorithms by evaluating the obtained tours and computational
time for the cases with a ride capacity of F = 2 and 3. To evalu-
ate the tours obtained by each algorithm, we measured three nu-
merical values: the total distance traveled by all taxis (dist T), the

total trip distance of all participants (dist P), and the number of
taxis needed for sharing (k). Recall that our main purpose is to
minimize dist P without making the length of dist T too long.

We first show the results when F = 2. In this case, the ex-
act algorithms for TRSP T and TRSP P were implemented by
using the matching algorithm described in Section 4. For each
area, we picked the top 12 facilities from among those prepared
in advance and added facilities one by one until n = 25. There-
fore, we solved 14 instances for each area. The results are shown
in Table 3 and Fig. 2, where “h.a.” means our “heuristic algo-
rithm,” and “k+” stands for the difference in the number of vehi-
cles used in the solutions of our heuristic algorithm and TRSP P.
The total distance when all participants rode alone is also shown
in Table 3. Through comparison with this distance, we verified
the effect of ride-sharing. From this distance, dist T decreased to
61.4%, 65.3% and 77.1% on average in Kashiwa, Totsuka, and
Sendai, respectively, although dist P are decreased to 99.8% and
increased to 106.6% and 106.7% on average in each area. In a few
cases for Kashiwa, dist P was less than the total distance when all
participants rode alone. This would not occur if we made a dis-
tance matrix on the basis of the shortest path distance. However,
such an inconsistency is caused by the fact that we created the
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Table 4 Comparing evaluation values when F = 3.

n 12 13 14 15 16 12 13 14 15 16 12 13 14 15 16
TRSP T k 5 5 6 6 6 5 5 5 6 6 5 5 6 6 6

dist T 65.34 66.86 76.07 76.07 78.38 58.15 68.52 73.55 80.98 86.21 66.93 68.76 72.68 74.64 75.66
dist P 124.19 130.44 139.65 143.71 154.74 107.45 131.69 151.19 158.62 171.63 120.38 131.58 138.97 144.24 153.10

K
as

hi
w

a

TRSP P dist T 66.02 71.34 80.73 80.73 82.51* 59.28 73.82 79.41 90.49 91.71* 70.40 72.23 76.62 77.22 75.66*
dist P 123.52 128.78 134.14 138.21 148.58* 105.02 125.78 143.35 148.17 161.76* 120.27 131.47 136.61 143.34 153.10*

h.a. k+ 0 +1 0 0 +1 0 +1 +2 +1 +2 +1 0 0 +1 0
dist T 65.34 71.56 76.38 77.02 83.36 59.28 74.94 82.52 90.23 92.81 70.14 71.19 79.27 83.99 84.22
dist P 123.52 124.26 135.78 140.48 145.30 105.02 123.99 131.56 142.53 153.14 114.64 136.43 137.06 139.70 159.16

total distance by riding alone 119.90 123.12 132.33 136.39 143.20 101.38 120.04 131.49 144.40 155.19 116.96 124.49 133.71 137.77 144.59
TRSP T k 5 5 5 5 6 4 5 6 6 6 4 5 6 6 6

dist T 84.07 85.79 90.19 94.81 98.71 77.86 84.34 94.41 99.59 100.42 74.48 89.11 95.34 98.02 98.97
dist P 169.85 177.56 196.91 219.84 221.04 158.79 172.10 181.78 198.50 210.26 160.45 175.08 181.31 190.22 205.56

To
ts

uk
a

TRSP P dist T 88.35 90.84 94.24 100.13* 107.61* 77.86 89.86 99.93 107.72 108.56* 74.48 96.70 101.51 102.39 103.33*
dist P 160.12 169.40 190.69 209.31* 208.59* 158.79 171.09 180.77 196.34 208.10* 160.45 172.55 173.01 182.80 198.14*

h.a. k+ +1 +1 +2 +2 +1 +2 0 0 +1 0 +1 +1 −1 +1 +1
dist T 97.47 94.92 106.67 107.51 108.01 85.73 88.43 94.41 103.30 100.42 81.59 96.22 111.05 105.52 112.30
dist P 154.28 164.41 177.73 188.66 195.54 143.91 172.82 181.78 190.76 210.26 149.73 164.37 203.17 182.06 200.63

total distance by riding alone 138.95 143.24 157.35 167.44 173.31 134.38 148.98 163.61 175.55 185.64 133.78 148.42 154.65 161.76 176.16
TRSP T k 6 6 6 6 6 5 5 5 6 7 5 5 6 6 7

dist T 54.28 58.60 60.48 61.67 66.86 54.17 62.77 63.96 67.72 68.09 56.40 59.03 61.01 67.40 68.76
dist P 95.81 104.61 109.37 119.52 134.86 99.37 110.35 122.52 123.44 118.06 93.578 108.80 110.27 119.89 122.78

Se
nd

ai

TRSP P dist T 57.20 61.52 62.58 63.39 68.58* 57.06 64.73 65.93 73.66 69.88 56.40 59.94 66.40 71.87 75.53
dist P 88.12 96.92 101.02 111.51 126.85* 91.64 109.20 121.37 121.80 110.34 93.58 104.72 102.04 115.74 113.08

h.a. k+ −1 0 0 +2 +1 +1 +1 +1 +1 0 +1 +1 +1 +1 0
dist T 60.17 64.92 65.74 67.21 77.16 61.43 74.63 74.41 77.39 75.76 64.20 67.73 68.55 74.02 73.41
dist P 98.63 105.66 108.63 112.04 131.46 87.72 107.49 118.35 117.55 115.29 93.83 104.98 103.07 114.26 116.85

total distance by riding alone 81.61 87.32 89.70 99.88 112.30 78.99 87.94 98.12 103.79 104.63 81.43 89.16 91.54 102.16 105.75

distance matrix on the basis of real roads from the Google Map
API, which extracts the distance giving the shortest travel time.
In Fig. 2, the cold color lines represent dist P, where the opti-
mal values were obtained from TRSP P, and the warm color lines
represent dist T, where the optimal values were obtained from
TRSP T. The broken lines are for reference. There were few
gaps between the dist P obtained by our heuristic algorithm and
the exact values. In most of the cases, our heuristic algorithm im-
proved dist P in comparison with those obtained from TRSP T,
which is represented by broken lines. Sometimes, the obtained
dist P was slightly shorter than the exact value since the number
of vehicles was one or two more than the exact solution. With
respect to dist P, the relative errors, (d − d∗)/d∗ for distance d ob-
tained by our heuristic algorithm and the exact value d∗, were less
than 15% for all instances and were 2% on average. Regarding to
dist T, the gaps between distances obtained by our algorithm and
the exact values were not that small. The average of the relative
errors was about 10%. In particular, for instances in Kashiwa, the
average was about 13%. However, the gaps of distances between
our heuristic algorithm and those obtained from the solutions of
TRSP P were not that large. The relative errors between dist T
obtained by our heuristic algorithm and obtained by TRSP P were
3% on average. We also recognized that these relative errors did
not depend on n. Thus, when F = 2, our heuristic algorithm
provided good approximate solutions for TRSP P although the
number of vehicles exceeded the number for vehicles for TRSP P
sometimes.

For the case of F = 3, we found exact optimal solutions
for TRSP T and TRSP P by solving MILP formulations with a
solver. Even if we added valid inequalities as described in Sec-
tion 5.1, the computational time became drastically long when
the number of participants n was over 15. Thus, we examined
instances with a small size only, i.e., the range of n was set up

Fig. 3 Comparing dist T and dist P for F = 3 for Kashiwa.

Fig. 4 Comparing dist T and dist P for F = 3 for Totsuka.

from 12 to 16. The first set of instances was the same as that used
for the case of F = 2. In addition, we used two other sets of in-
stances that were made by choosing 12 facilities randomly from
those prepared in advance and by adding facilities one by one.

Table 4 and Fig. 3, Fig. 4, and Fig. 5 indicate the results. Here,
the computational time was limited by 3,600 seconds. In Table 4,
the mark “*” indicates the best value among feasible solutions
provided before the solver stopped due to a time limit, and it
does not certify optimality. The tendency of the results was not
that different from the case of F = 2. With respect to dist P,
the relative errors were less than 18% for all instances, and the
average relative errors for Kashiwa, Totsuka, and Sendai were
about −1.4%, −2.1% and 1.9%, respectively. When our heuristic
algorithm used vehicles more than TRSP P, dist P obtained by
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Fig. 5 Comparing dist T and dist P for F = 3 for Sendai.

Table 5 Results when the number of vehicles was increased.

n = 15 n = 16
TRSP P dist T 100.13* 107.61*

dist P 209.31* 208.59*
TRSP P with k = 7 dist T 109.17 113.97*

dist P 184.77 193.11*
h.a. dist T 107.51 108.01

dist P 188.66 195.54

the algorithm was sometimes shorter than that for TRSP P. In
this situation, the relative errors were less than zero. In the in-
stances for Totsuka shown on the left of Fig. 4, dist P obtained by
our heuristic algorithm was comparatively shorter than the val-
ues for TRSP P, especially when n = 15 and 16. This was not
only caused by the number of vehicles but also because the dist P
of TRSP P were not optimal solutions. For the instances with
n = 15 and 16, we resolved TRSP P for k = 7, which was the
number obtained by the heuristic algorithm. The result is shown
in Table 5. The dist P of the heuristic algorithm and that of
TRSP P were almost the same. From this, our heuristic algo-
rithm could find a good approximate solution even when k was
the same as that of TRSP P’s. In comparison, in the right graph
for Totsuka when n = 14, the gap of dist P was large, where the
relative error was about 17%. This is because the heuristic algo-
rithm used less vehicles than TRSP P. We now turn to comparing
dist T. Although the average relative error was 9.5%, the relative
errors between our heuristic algorithm and obtained from solu-
tions for TRSP P were about −.5% on average. Hence, we can
see that our heuristic algorithm finds solutions close to the opti-
mal solution to TRSP P. From the results for all of the areas, the
same as the results of F = 2, we recognized that the relative errors
did not depend on n. To summarize the results of the experiments
for both cases of F = 2 and 3, we conclude that our heuristic
algorithm can find good approximate solutions for TRSP P and
can be applied to instances with a larger n.

We next discuss the computational time. Table 6 shows the
computational time of TRSP P and the heuristic algorithm for
the instances of F = 3. Note that the computational time of the
heuristic algorithm means the time that was taken to perform Al-
gorithm 2 for each problem 15 times. As we mentioned before,
TRSP P needed to take a lot time to solve the problem when n

was over 15. TRSP P could not obtain optimal solutions within
the time limit of 3,600 seconds in most cases when n = 16. We
recognize that whether TRSP P can be solved within a reason-
able amount of time depends on the number of participants n and
their location. However, the heuristic algorithm could solve the
problems within about 10 seconds even when n = 16 for all of
the areas. Although the heuristic algorithm took more time as

Fig. 6 Solutions obtained with Algorithm 1 employing k-medoids and k-
means methods.

n increased, the rate of increase rate was not that much. From
these results, we conclude that our heuristic algorithm should be
applied to instances with a larger n in a reasonable amount of
computational time.

We finally discuss the appropriateness of the k-medoids
method that is employed in Algorithm 1. It is said that this
method is more robust to outliers because it uses a dissimilarity
matrix and not the Euclidean distance of data. The partition, how-
ever, depends on the initial medoids used instead of the centroids
that are used in the k-means method. Figure 6 shows the results
obtained from 30 different initial medoids for an instance with
n = 25 and F = 3 for each area, where the horizontal and vertical
axes stand for dist P and dist T, respectively, and the color of each
plot denotes the necessary number of vehicles in the correspond-
ing solution. In Fig. 6, we also display the results that were ob-
tained by using Algorithm 2, which adopts the k-means method,
where we performed a principal component analysis in order to
reduce the dimensions of the similarity matrix S, before the k-
means method was applied. For Kashiwa, the results obtained
with the k-medoids method overlapped with those obtained with
the k-means method. Since we can see that the k-medoids method
depends on the initial medoids, our experimental results show
that the best solution among the obtained solutions was achieved
by performing the algorithm 15 times. By performing the algo-
rithm several times, we expect to obtain a desirable solution bal-
anced between dist P and dist T that is strongly associated with
the number of vehicles.

5.3 Validity of Tours Minimizing Total Trip Distance of Par-
ticipants

We now examine the validity of the tours obtained by TRSP P
and the heuristic algorithm by observing cases of F = 3. The
three maps in Fig. 7 display the tours determined by TRSP T,
TRSP P, and our heuristic algorithm, respectively, for the in-
stance with n = 14 in the first dataset for Kashiwa. On these
maps, we indicated the locations on Google Maps but did not
draw the routes along real roads. Figure 8 and Fig. 9 also show
tours for Totsuka and Sendai, respectively. In all of the areas, al-
most all of the tours determined by TRSP P and by the heuristic
algorithm were better than that determined by TRSP T in terms
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Table 6 Comparing computational time when F = 3.

n 12 13 14 15 16 12 13 14 15 16 12 13 14 15 16
Kashiwa TRSP P 2.34 15.60 86.83 261.75 3,600.00 2.48 6.82 82.67 246.65 3,600.00 1.69 2.622 50.385 401.879 3,600.00

h.a. 4.53 5.29 6.24 6.74 6.97 5.10 5.80 7.37 7.50 8.51 5.12 5.02 6.27 6.84 7.25
Totsuka TRSP P 7.72 90.62 1,682.02 3,600.00 3,600.00 4.34 6.04 74.84 1,998.96 3,600.00 28.06 19.56 132.31 877.83 3,600.00

h.a. 8.23 8.16 8.09 8.97 10.19 5.95 6.04 7.32 7.57 7.33 5.91 7.86 9.70 9.66 9.37
Sendai TRSP P 1.96 20.39 53.43 634.11 3,600.00 1.46 13.57 125.71 99.46 34.21 2.84 17.63 58.25 406.37 232.37

h.a. 6.81 8.41 8.67 10.18 9.66 6.12 6.73 6.91 7.48 9.16 9.52 8.75 8.93 10.06 10.17

Fig. 7 Tours sketched out for Kashiwa.

Fig. 8 Tours sketched out for Totsuka.

Fig. 9 Tours sketched out for Sendai.

of the tours going straight to the destination without much de-
touring. However, for Kashiwa, route p2-p11-p10-pg, which was
determined by TRSP P was not good for passenger 2. This was
because k might not be suitable for solving TRSP P. As the num-
ber of k affects solutions, it is important to decide the appropriate
k.

It is unfavorable that the fare of each participant increases when
other participants join ride sharing. Therefore, we determined
how the fares change. On the basis of the tours obtained by our
heuristic algorithm, we checked how the fares change by increas-
ing n in a range from 12 to 25 for the first 12 participants in the
3 datasets that were used for the experiments with F = 3. The
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Fig. 10 Shift in paid fares for first 12 participants in Kashiwa.

Fig. 11 Shift in paid fares for first 12 participants in Totsuka.

Fig. 12 Shift in paid fares for first 12 participants in Sendai.

fares of participants were determined by using two methods for
distributing fares; one was a proportional distribution method that
distributes fares for each participant on the basis of the ratio of the
fares that they pay when they ride alone, and the other is a DEA
game [21]. Because the tendency in the fare distribution of each
method was almost the same, we show the results for the propor-
tional distribution method. The results are shown in heat maps
in Fig. 10, Fig. 11, and Fig. 12, where each row corresponds to
a participant included in the first dataset with n = 12 and each
column stands for n. They display the increase in the ratio of the
fare of each participant by normalizing the value of each paid fare
to 1 when n = 12. The range of the indicator was set from 0.5
to 1.5 because almost all of the increasing ratios were contained
in this range. The fare of each participant seemed to be reduced
or changed little when n increased. Thus, in terms of fares, the
obtained tours seem to be reasonable. However, the fares of some
of the participants increased greatly. Such a participant would be
changed to riding alone from sharing with someones after a new
participant joined ride-sharing. If the participants are dissatisfied
with a large increase in fare due to there being additional mem-
bers joining in on ride-sharing, another way to distribute fare is
needed.

6. Conclusion

We dealt with the taxi ride-sharing problem for event trips and
introduced an objective function that minimizes the total trip dis-
tance of all passengers for the problem. We formulated this prob-
lem by MILP. However, the computational time was long when
the number of passengers was large. Thus, we proposed exact al-

gorithms for the problem under the restriction that the ride capac-
ity was 2 and developed a heuristic algorithm that could find good
approximate solutions for TRSP P. We verified that our heuristic
algorithm found appropriate solutions for the ride-sharing prob-
lem in numerical experiments. In addition, we also discussed so-
lutions obtained by using our heuristic algorithm in terms of tours
and fare distribution.

As we described in Sections 5.2 and 5.3, the number of vehi-
cles k affects the solutions of TRSP P. Thus, it is an important
future work to determine the appropriate k. It seems to be also
valuable to incorporate fares into the model of TRSP P.
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