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Parallel-in-Space/Time Method for Explicit
Time-Marching Scheme

Yen-Chen Chen1,a) Kengo Nakajima1,b)

Abstract: Numerical PDE solvers require heavy computation power to solve and efficient parallel pro-
cessing to accelerate. The traditional methods parallelize only in the spatial dimensions but not the
time dimension. However, this limited the scalability we can do by parallel computation. Therefore,
several Parallel-in-Space/Time (PinST) methods are proposed to accelerate PDE solvers further.
One of the famous PinST methods is MGRIT method[1]. The MGRIT method takes advantages of
the multigrid method and applied it on both the space dimensions and the time dimension, which
has been proved to work well on linear problems. Another method is the Time Segment Correction
(TSC), which works more stable on highly non-linear problems. However, the number of converge
iteration for TSC grows with time dimension size, therefore requires more computation on large-scale
problems. In the present work, we propose a new PinST method targetting explicit time-marching
schemes.
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1. Introduction
Since the parareal[2] method in 2001, parallel-in-time

methods have been proposed to accelerate PDE solvers fur-
ther. One of the most popular and effective parallel-in-
time methods is the multigrid reduction in time (MGRIT)[1]
method. In the past few years, the MGRIT is broadly used
and studied[6], [7], [8], [9]. The MGRIT method is proven to
help solve several PDE applications, and the iteration num-
ber does not grow with problem size. However, the MGRIT
method does not work with explicit time-marching scheme.
Due to the restriction of the CFL condition for explicit meth-
ods, coarse grids in MGRIT are very unstable with explicit
schemes. Nevertheless, some of the physics simulation like
sonic wave still prefers explicit time-marching over implicit
time-marching methods. This research aims to develop a ex-
plicit MGRIT method that works reasonably fast but would
not get numerically unstable at coarser grids.

In the following sections, first, we will give some ba-
sic knowledge of the multigrid reduction in time (MGRIT)
method in Section 2. Then, we explain our Explicit MGRIT
method in Section 3. After that, in Section 4, we do numeri-
cal experiments on two one dimensional methods with differ-
ent explicit schemes. One of the examples is heat transfer
with the forward Euler method, and the other example is
advection with the Lax-Wendroff method. At last, we have
conclusion in Section 5 and future work in Section 6.
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2. MGRIT
The multigrid reduction in time (MGRIT) method is a

parallel-in-time method inspired by the multigrid method.
The MGRIT method, compared to the parareal method,
supports deeper hierarchy and has more algorithmic flexi-
bility.

2.1 The multigrid method
The multigrid method is an iterative solver commonly

used to solve large linear systems. The multigrid method
creates a multiple level hierarchy from fine mesh grids to
coarse mesh grids. A multigrid method is composed of four
components, relaxation, restriction, prolongation (interpo-
lation), and coarse operation.
• Relaxation: Solve on the current grid with iterative

solvers.
• Restriction: Restrict from fine grid to coarse grid.
• Coarse operation: Solve on the coarse grid.
• Prolongation: Update results on the coarse grid back to

the fine grid.
The most important feature for the multigrid is that the it-
eration number of the multigrid method does not grow with
the problem size, unlike traditional iterative solvers like the
Jacobi/Gauss-Seidel methods and ICCG solver.

2.2 The MGRIT method
The MGRIT method is first proposed in [1]. The MGRIT

method is inspired by the multigrid method. The MGRIT
method sees the time dimension like other space dimensions.
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The coarse time grids are also extracted from the original
time grid. The MGRIT method does not solve the time
steps sequentially. Instead, it solves through all time steps
at the same time and by every iteration, reduce the error on
the results of all time steps. The algorithm of the MGRIT
method is shown in Algorithm 1.

Algorithm 1: MGRIT(l)

if l is the coarsest level L, then
Solve coarse-grid system ALu

(L) = g(L)

else
Relax on Alu

(l) = g(l) using FCF-relaxation.
Compute and restrict residual using injection.
g(l+1)=R1(g(l)−Alu

(l))

Solve on the next level MGRIT(l+1)
Correct using interpolation ul ← ul + Pu(l+1)

end

The advantage of the MGRIT method is that, as it has the
structure of a multigrid method, the iteration number does
not grow with the problem size. In the previous rearch[1],
the MGRIT method is proved to work well on solving PDE
problems with implicit time-marching schemes. However, to
our best knowledge, there is not yet successful research on
the MGRIT method with explicit time-marching schemes.
In the next section, we propose an explicit MGRIT method
which solves PDE problems by the MGRIT method with
explicit time-marching schemes.

3. Explicit MGRIT scheme

In previous research for MGRIT[1], MGRIT with explicit
time-marching schemes is said to be numerically unstable
and hard to converge. In early 2019, Krzysik, O. A. et
al[10] studied the convergence of the MGRIT method on
the linear advection equation. The research concludes that
the MGRIT method has a convergence problem with advec-
tion equations since it violates the CFL limits at the coarse
grid. In this section, we will explain the reason why explicit
MGRIT fails easily, and we will propose our explicit MGRIT
algorithm. In Section 4.2, we will also test our method on
one dimension advection equation.

3.1 CFL condition
The most significant problem for explicit schemes is that

they are restricted by the Courant-Friedrichs-Lewy condi-
tion (CFL condition)[3]. The solution of an explicit scheme
is proved to be unstable if the Courant number is to be more
than 1. In order to apply explicit method successfully, one
has to choose mesh size and time step adequately such that
the Courant number is less than 1. The Courant number can
be derived from the Von Neumann stability analysis[4], [5].
For example, the Courant number for one-dimensional ad-
vection is v∆t

∆x , where ∆t is the time step, ∆x is the mesh
size, and v is the flow velocity.

3.2 Our method
As we want to use explicit time-marching scheme in

MGRIT, the most notable difference with that of implicit
scheme is that we don’t use iterative solvers like Jacobi or
Gauss-Seidel as relaxation methods. We also have to change
the way we pick up coarse grids to prevent violating the
CFL condition. For the initial condition, since we can also
use an explicit scheme to update values from the last time
step. We start by initializing all time step by the initial
condition. The four multigrid components for our explicit
MGRIT method is defined as follows:
• Relaxation: We explicitly march one step on every time

step in parallel.
• Restriction: Similar to the multigrid method, we pick

out coarse grids with a specific ratio. However, the ra-
tio for picking coarse grids on the x-grid should be the
same as that on the time grid.

• Coarse operation: For every level except the coarsest,
we solve by explicit MGRIT method on the coarse grid,
on the coarsest level, we do nothing.

• Prolongation: We update the coarse grid results on the
corresponding position on the fine grid and all the fine
grids between two coarse grids by the coarse grid at the
front.

The most important part of the method is that we restrict
the x grid and the time grid at the same time, such that the
Courant number does not change. As shown in Figure 1,
the coarse grid is chosen from both x dimension and time
dimension. In this research, we coarsen the x-grid and the
time grid with the same ratio. For example, if we look at
the Courant number of advection:

C =
v∆t

∆x

C′ =
v(r∆t)

r∆x
=
v∆t

∆x
= C

where C is the Courant number, C′ is the Courant number
on the coarse grid, v is the flow velocity, r is the fine grid /
coarse grid ratio, ∆t is the time step and ∆x is the grid size.
We can see that the Courant for every coarse layer would
not violate the CFL condition. Further detail on advection
and the numerical results can be found in Section 4.2.

For prolongation, if we only update the coarse grid as
the multigrid method. As explicit schemes still take the
results from the neighbor fine grids of the coarse grids for
relaxation, the update would be affected by the non-updated
points. The result is that the convergence will be slow down
by these fine grids. By updating on all fine grid with the
coarse grid in the front, we can speed up the convergence
for the explicit MGRIT method.

3.3 Algorithm
Algorithm 2 shows the detailed algorithm of the proposed

method. In the algorithm, function f can be replaced by
any explicit time-marching scheme. In Sections 4.1 and 4.2,
we will show results of the explicit MGRIT algorithm with
forward Euler and Lax-Wendroff, respectively.
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Fig. 1 We take coarse grid from the x grid and the time grid
such that the explicit scheme doesn’t violate the CFL
condition limit. The small black dots represents the fine
grids and the large red dots represents the coarse grid.

Algorithm 2: Explicit MGRIT(l)

if l is the coarsest level L, then
return

else
Compute next step by explicit
time-marching u(t+1) ← f(u(t)).

Restricted on coarse space/time grids
Solve on the next level
Explicit MGRIT(l+1)

Correct on coarse grids.
Compute next step by explicit
time-marching u(t+1) ← f(u(t)).

end

3.4 Theoretical computational time
The MGRIT method is known that when one can par-

allelize the algorithm efficiently if one has enough comput-
ing resource. Consider the situation that we want to com-
pute the result after N time steps, and assume that the
computation time of one explicit time-marching is X. We
want to compare the theoretical computation time of the
explicit MGRIT method to the sequential method. Figure 2
shows the computation time comparison between the time-
stepping method and the MGRIT method on 1D nonlinear
heat transfer by FDM. Since the explicit MGRIT method
is highly parallelizable, we can reduce computational time
by adding more processors. We can see that one iteration
of an explicit MGRIT method would be faster than the se-
quential method if we have enough processors. If we have
enough processors, the explicit MGRIT would be faster than
the sequential method.

4. Numerical Results
In the present work, two examples are used to examine the

performance of the explicit MGRIT algorithm. One is a one-
dimensional heat transfer example with forward Euler as an
explicit scheme. The other is one-dimensional advection of
a sine wave with Lax-Wendroff as an explicit scheme. The

numerical results show that both examples with different ex-
plicit time-marching schemes can be successfully deployed to
the explicit MGRIT method and converge to a similar result
as the sequential explicit methods.

4.1 Heat transfer
A general one-dimensional heat transfer (assuming no

convection, mass transfer, or radiation), can be described
in the following form.

ρc
∂T

∂t
=

∂

∂x
(λ
∂T

∂x
) +Q

where T is temperature, t is time, x is position, ρ is density,
c is heat capacity, λ is thermal conductivity, and Q is the
heat source. This equation is derived from the first law of
thermodynamics (conservation of energy).

In order to simplify the problem, we assume that ρ, c, λ
are all 1. We can then write the following:

∂T

∂t
=
∂2T

∂x2
+Q

Also, for implementation, we assume the initial condition:

T (x, t = 0) = 0 ∀x

Furthermore, boundary conditions (Dirichlet at the start,
Neumann at the end):

T (x = 0, t) = 0 ∀t

∂

∂x
T (x = xend, t) = 0

Finally, we set the number of uniform heat source Q = 1.

Q(x, t) = 1 ∀x, t

Then, we get an easy 1D heat transfer example.

∂T
∂t

=
∂2T
∂x2

+ Q,T(0, t) = 0

∂
∂xT(xend, t) = 0

∀t, & Q =


1
...
1


Initial condition:

Fig. 2 Comparison of MGRIT and Time-Stepping on Parallel
Computing 1D Nonlinear Heat Trasfer by FDM. Refer
from Takafumi Fujita, MS Thesis, Graduate School of
Information Science and Technology, The University of
Tokyo, 2017
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T = T(x, 0) =


0
...
0



On a closed line [0, 10], we take uniform x-grids with mesh
size ∂x = 0.1. We set time step ∂t = 0.001. We compare
the results of sequential forward Euler method and explicit
MGRIT at the 60th time step. The explicit MGRIT method
we applied here has two layers, one fine grid, and one coarse
grid. Figure 3 shows the update progress and the result of
the explicit MGRIT method on this example. The results
of sequential forward Euler is also shown in Figure 3. We
can see that after 11 iterations, the result of the MGRIT
method converged to the line overlapping with the sequen-
tial method.

We have shown that explicit MGRIT works on the sim-
plest example, the one-dimensional heat transfer, in the next
section, we want to try the explicit MGRIT method on ad-
vection.

Fig. 3 MGRIT with forward Euler on heat transfer example.
From button to top shows the update path of the ex-
plicit MGRIT iteration in each iteration. The explicit
MGRIT method converged after 11 iterations. one se-
quential forward Euler result on the fine grid and one on
the coarse grid are also drawn on the graph.

4.2 Advection of sine wave
A one-dimensional advection can be described in the fol-

lowing form.
∂u

∂t
= −v ∂u

∂x

where u is a scalar field u(x, t), t is time, x is position, and
v is the velocity of the flow. For this example, we want to
observe the advection of a sine wave. Also, for simplifica-
tion, we set the velocity v = 1. We thus get the following
problem statement.

∂u

∂t
= −∂u

∂x
Initial condition:

u(x, 0) =

0 0 ≤ x ≤ 50, 110 ≤ x ≤ 300

100[sin(π x−50
60 )] 50 ≤ x ≤ 110

Figure 4 shows the initial condition of the sine wave. The
sine wave will move towards the right with velocity v = 1.
For the advection example, we use the Lax-Wendroff as the
explicit time-marching scheme.

Fig. 4 The initial condition of the target sine wave of the ad-
vection example

On a closed line [0, 300], we take uniform x-grids with
mesh size ∂x = 1.25. We set time step ∂t = 1. Under this
condition, the Courant number

C =
v∆t

∆x
=

1× 1

1.25
< 1

Thus, the explicit scheme on the fine grids would be stable.
Since we pick up coarse grids in x-dimension and time di-
mension by the same ratio, the explicit scheme on the coarse
grids would also be stable. We try to solve the result of the
60th time step. Figure 5 shows the result of explicit MGRIT
after 11 iterations compare to sequential Lax-Wendroff on
the fine grid and the coarsest grid. We can see that three
lines overlap on the hump. This result shows that explicit
MGRIT with Lax-Wendroff can derive the result success-
fully. We can also see that three lines differ at the small
tilde before the hump and the line of the explicit MGRIT
method is between the line of the fine grid sequential and the
coarsest grid sequential result. We can say that the result
of the explicit MGRIT is bounded by the sequential results
on the fine grid and that of the coarsest grid.

Figure 6 shows the same experiment and the same result
of Figure 5, however, the results after every explicit MGRIT
iterations are recorded and drawn on the figure. We can see
that the wave is updated from left to right, while the peak
of the hump drops for each iteration. This amplitude drop
is because we update every step by the results of a coarser
x-grid. The fine grids, which are not fully updated, has
a slightly smaller value than it should be as every explicit
time-marching step takes this slightly wrong value to update
the next step. However, the correct still can be propagated
from the front and fixed after the previous coarse time grid
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Fig. 5 Explicit MGRIT result compare to sequential Lax-
Wendroff method. The blue line represents the result
of the explicit MGRIT method with Lax-Wendroff as
explicit scheme. The red dashed line represents the re-
sult by sequential Lax-Wendroff method on the fine grid
(both x grid and time grid). The yellow line with crosses
represents the result by sequential Lax-Wendroff method
on the coarsest grid (both x grid and time grid).

has reached its convergence point. As shown in Figure 6,
the amplitude is corrected after the 11th iteration.

Fig. 6 MGRIT with Lax-Wendroff on advection example. From
left to right shows the update path of the explicit
MGRIT iteration in each iteration. The explicit MGRIT
method converged after 11 iterations. one sequential
Lax-Wnedroff result on the fine grid and one on the
coarse grid are also drawn on the graph.

Figure 7 shows the result of the advection example with
two coarser layers. We can see that compare to Figure 6, it
converges faster. The three-layer explicit MGRIT method
converged after seven iterations.

Fig. 7 3 level MGRIT with Lax-Wendroff on advection exam-
ple. From left to right shows the update path of the
explicit MGRIT iteration in each iteration. The explicit
MGRIT method converged after 7 iterations. one se-
quential Lax-Wnedroff result on the fine grid and one on
the coarse grid are also drawn on the graph.

5. Conclusion
In this research, we proposed an explicit MGRIT method

to solve a PDE equation by a parallel-in-time method with
explicit schemes. We also tested the proposed method on
one-dimensional heat transfer example and one-dimensional
advection example. We show that the explicit MGRIT
method works on both examples.

6. Future Work
Although the explicit MGRIT produces correct results

and does not encounter the CFL condition trouble, since
we do not apply direct solve at the coarsest layer, the itera-
tion number grows with the problem size. This result does
not necessarily mean that the speed is slow. The iteration
number is still small, and we do not relax on the coarsest
layer. How the speed performance is compared to the origi-
nal MGRIT (with implicit schemes) is to be studied.

In this research, we have only tested the explicit MGRIT
method on one dimensional PDE problems. For future work,
we also hope to test the explicit MGRIT method on two or
even three-dimensional examples. Only in this way can we
fully explore the potential of this method.
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