
IPSJ SIG Technical Report

Measurement of Main Memory Bandwidth and
Memory Access Latency in Intel Processors

Christian Helm1,a) Kenjiro Taura1,b)

Abstract: The performance of many HPC workloads is limited by the main memory bandwidth. Measure-
ment of the DRAM bandwidth is crucial for diagnosing such problems. Modern processors come with a
sophisticated performance monitoring unit (PMU) that can measure the DRAM bandwidth. In addition,
it is also possible to measure the memory access latency with the PMU and infer on memory bandwidth
problems. There are several ways to measure the memory bandwidth and the memory access latency. The
question arises how those methods differ. The differences between those methods are not easily understood
from the documentation. In this paper, we discuss the advantages and disadvantages of the various different
methods. We use micro-benchmarks to check the correctness of the measurements on current Intel proces-
sors. We discovered a case where the documentation is misleading and will lead to incorrect bandwidth
measurement if used naively. Overall, we give recommendations on how the main memory bandwidth should
be measured for specific use cases and inform about common pitfalls.

1. Introduction

When an HPC application shows bad performance or bad

scalability, the limited DRAM bandwidth on today’s sys-

tems is a potential bottleneck. If a developer knows their

application well, then it might be possible to directly con-

firm this hypothesis based on the source code. However, in

many cases, it is easier to use performance analysis tools to

verify whether the DRAM bandwidth is limiting an applica-

tion’s performance. Hardware-assisted measurement meth-

ods are used in many tools due to their low overhead. Cur-

rent Intel processors have a powerful performance monitor-

ing unit (PMU). It has support for instruction sampling,

trace recording and performance counters. With perfor-

mance counters hundreds of different events can be moni-

tored. Among them are different ways to measure the main

memory bandwidth. In our previous work [5] we introduced

an indirect way to diagnose main memory bandwidth limita-

tions. It is based on measuring the memory access latency

and offers some advantages compared to the direct band-

width measurement. Such as a better attribution to source

code and objects. We relied on the instruction sampling la-

tency, but there are different ways to measure the latency

using the PMU. Naturally, the question arises how those

methods differ from each other and if one of them is supe-

rior compared to the others. This question is not easy to

answer because there is little documentation. Experimental

evaluation is required to check if a certain counter actually

1 The University of Tokyo
a) christian@eidos.ic.i.u-tokyo.ac.jp
b) tau@eidos.ic.i.u-tokyo.ac.jp

reports the intended event.

There are tools and libraries to access the PMU from the

user space and to program it for performance analysis. The

user of such tools has to choose what to monitor and how to

interpret the results. For example, such tools include Linux

Perf [1], PAPI [2], Intel Performance Counter Monitor [3]

and Likwid [4]. They do not solve the above-mentioned

problems but are only a low-level interface to the PMU. In

this study, we use only Linux Perf and the event names used

in this paper follow the convention of Perf.

To address these issues we make the following contribu-

tions. We examine different ways of measuring bandwidth

and give recommendations about their usage. Our results

are based on experiments and a summary of documented

characteristics of the different methods. We also show the

best way to measure latency for our previously published

approach to identify bandwidth saturation. Our work is

limited to Intel Xeon processors with Haswell or Broadwell

architecture.

2. Hardware PMU Features

Modern PMUs offer different ways to do performance

measurements. Out of those, the following two offer ways to

measure latency and bandwidth.

2.1 Performance Counters

Performance counters count the occurrence of specific

events. In the PMU there is a small number of physical coun-

ters. There are hundreds of events that can be programmed

to be counted on a specific physical counter. Performance

counters cannot be accurately attributed to specific code

c© 2019 Information Processing Society of Japan 1

Vol.2019-HPC-170 No.32
2019/7/26

IPSJ SIG Technical Report

Fig. 1 The location of different bandwidth and latency counters
within the CPU.

locations. Performance counters can be read at certain in-

tervals, or at certain points in the program. The change in

counter value can then be attributed to that interval. But

there can be skid between the actual event occurrence and

the counter increase. For short intervals it is not known

if the counter increase was actually caused in a specific in-

terval. The counters are located in different parts of the

processor. For example, a counter can be inside each core or

in the uncore part of the processor as shown in Figure 1. De-

pending on the location, a counter can either be attributed

to a specific core or only to the whole processor.

2.2 Instruction sampling

Instruction sampling works by marking an instruction and

observing its execution as it goes through the pipeline of

the processor. For load instructions, detailed information

can be obtained. For example, the load latency, the ac-

tual place where the data was found (L1, L2, L3, remote

or local DRAM) and the coherency protocol state at the

time of access. AMD calls this method Instruction Based

Sampling (IBS). Intel calls it Precise Event Based Sampling

(PEBS). The overhead of the sampling method is low since

there is dedicated hardware for observing the instructions.

The advantage of instruction sampling is that it is precisely

attributable to instructions and data. Each sample that is

taken contains the instruction pointer of the executed in-

struction. With debug information in the binary it can be

resolved back to the exact source code line in the program.

In addition, the accessed data address is also given in the

sample. With techniques introduced in [5] it is possible to

refer back to the object accesses by this instruction.

3. Related Work

There are some tools that provide more value than just

low-level access to the PMU. They provide help by choosing

the right events and interpreting PMU data.

DR-BW [6] is a tool which can detect remote memory

bandwidth contention in NUMA Systems. It is based on

machine learning using features extracted from the perfor-

mance monitoring unit. One of the features that are used is

memory access latency. No further details about the metrics

are explained in this paper. This approach is limited to the

remote DRAM bandwidth contention on NUMA systems.

Intel VTune Amplifier XE is a general purpose profiling

tool, but it also has some specialized memory performance

features [7]. It has predefined event types for various mea-

surement objectives. The user does not have to select spe-

cific events but is also not informed about the limitations

of the event types that are used. Main memory bandwidth

can be measured and attributed to the source code. This

tool cannot make a decision about whether there is band-

width contention or not. Which level of bandwidth usage is

regarded as too high has to be set by the user.

A tool by Weyers et. al. [8] provides a visualization, which

is based on the physical hardware. It can show the commu-

nication between different nodes in a NUMA system. It uses

Likwid as the backend for reading the hardware performance

counters. It uses counters from the memory controller and

the QPI interface. An attribution to source code locations

is not possible.

The original Intel documentation [9] lists all available

events. However, the descriptions are very short and to fully

understand what a specific event is actually counting it is

often required to have some knowledge about the individual

event counter and how it is implemented. Some previous

studies take a more detailed look at the individual counters.

Eranian [10] introduces the possibilities of PMUs for per-

formance analysis in 2008. Before that, PMUs were mainly

used for verification purposes. He introduces ways to mea-

sure bus utilization, cache hit rates, NUMA access ratios,

and latency measurement. It is based on older processors

and is more of an introduction than a detailed discussion of

different measurement methods.

Yasin [11] introduces the top-down approach for struc-

tured performance analysis. During the explanation of the

approach, one can obtain some information about the inner

workings of the counters and which counters can be useful

for diagnosing specific problems. It does not go into the

details of how to identify memory bandwidth limited appli-

cations.

A study by Molka et. al. [12] includes experimental eval-

uation of different counters. Their approach is to use micro-

benchmarks to stress certain parts of the memory hierar-

chy and find correlations with performance counters. They

report more detailed information than what is available

through official documentation. The points discussed in this

paper include the transfers between cache levels, the differ-

entiation of memory and latency bound applications. To

the best of our knowledge, this is the most comprehensive

prior work on this topic. It does not consider instruction

sampling.

4. Experiment Setup

All of the experiments were executed on machines running

Ubuntu 18.04 and compiled with gcc 7.4. All measurements

were done with Linux Perf version 4.17.8. All event names

that appear in this paper refer to the mentioned Perf version

and hardware. In other Perf versions or hardware environ-

ments, the event names can differ. For some analysis and

c© 2019 Information Processing Society of Japan 2

Vol.2019-HPC-170 No.32
2019/7/26

IPSJ SIG Technical Report

profiling steps, PerfMemPlus *1 based on the same Perf ver-

sion was used. All reported numbers are averages from 6

repeated executions.

4.1 Hardware

The details of the machines, which were used for this eval-

uation are listed in Table 1. We used numactl to limit the

execution to one of the available nodes and to its own mem-

ory. Migration of OpenMP threads has been disabled for

all experiments. The maximum number of threads used for

the experiments is equal to the number of physical cores of

a processor.

Table 1 Hardware used for the evaluation.

Name CPU DRAM

spica 4x E7-8890v4@2.2 Ghz DDR4@1600Mhz

comet 2x E5-2699v3@2.3 Ghz DDR4@1847Mhz

arcturus 2x E5-2699v4@2.2 Ghz DDR4@2400Mhz

4.2 Hardware Prefetcher Control

We want to run our experiments with and without using

the hardware prefetchers. The prefetcher of Intel processors

can be turned off and on. It can be done on a running sys-

tem by writing values into machine specific registers [13].

We use the msr-tools to write to the relevant registers using

the following commands:

• Disable prefetching: sudo wrmsr –all 0x1a4 15

• Enable prefetching: sudo wrmsr –all 0x1a4 0

• Read the current status: sudo rdmsr 0x1a4

These commands need root accesses on Linux systems

4.3 Benchmarks

In our experiments, we use two different micro-

benchmarks, which are described in the following sections.

4.3.1 Memory Read Benchmark

We use the memory read benchmark to issue read request

with a varying bandwidth and then measure the resulting

latency. The memory read benchmark sequentially reads a

large array from memory. This is repeated several times.

After issuing four memory read operations a configurable

number of NOPs is inserted. Those NOPs are used for regu-

lating the bandwidth and load on the memory system. The

array called A consists of records, each with a size of 64

Bytes. Only the first element in a record is accessed. This

means that each cache line is only accessed once. The array

A is defined as volatile to force a read memory access. The

code is shown in Figure 2. When the hardware prefetchers

are turned off, this benchmark allows fine regulation of the

memory bandwidth as shown in Figure 3. Because there

is a steep change in bandwidth between 50 and 55 delay

cycles additional data points were added there. When the

hardware prefetchers are turned on, no such fine control is

*1 Available at github.com/helchr/perfMemPlus

possible. Changing the number of threads still allows for

a course regulation of memory bandwidth as shown in Fig-

ure 4.

#pragma omp parallel

for (long s = 0; s < 200; s++) {

for (long t = 0; t < 10000000; t++) {

for (int c = 0; c < 4; c++) {

A[c][t].next;

}

for(unsigned long i = 0; i < delayCount;

i++) {

asm volatile("nop");

}

}

}

Fig. 2 Code of the main loop of the memory read benchmark.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100

B
a
n
d

w
id

th
 (

M
iB

y
te

/s
)

Delay Cycles

Memory Bandwith on arcturus with Hardware Prefether Off

1 Threads
2 Threads
4 Threads
8 Threads

12 Threads
16 Threads
22 Threads

Fig. 3 Main memory bandwidth regulation of the memory read
benchmark using threads and delay cycles with hardware
prefetchers off.

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 0 20 40 60 80 100

B
a
n
d

w
id

th
 (

M
iB

y
te

s/
s)

Delay Cycles

Memory Bandwith on arcturus with Hardware Prefether On

1 Threads
2 Threads
4 Threads
8 Threads

12 Threads
16 Threads
22 Threads

Fig. 4 Main memory bandwidth regulation of the memory read
benchmark using threads and delay cycles with hardware
prefetchers on.

4.3.2 Stream Triad

We use Stream triad [14] because we can calculate the

amount of transferred data. Then we compare it with the

measured amount of data transfer to verify the accuracy.

Stream triad reads two arrays. Multiplies the value from

the first array with a constant scalar and adds another value

from the other array. Then it writes the result of this cal-

culation to a third array as shown in Figure 5.

c© 2019 Information Processing Society of Japan 3

Vol.2019-HPC-170 No.32
2019/7/26

IPSJ SIG Technical Report

#pragma omp parallel

for(long i = 0; i < n; i++) {

c[i] = b[i] + s * a[i]

}

Fig. 5 Code of the main loop of Stream Triad.

All arrays have the same size. The total transferred data

volume can be calculated. The array a and b are read. The

array c is written. The current Intel architectures use the

write allocate scheme, which means that the array c is also

read into the caches before it can be written to main mem-

ory. We do not use non-temporal stores. Thus, the total

read amount of data is three times the array size. It needs

to be multiplied by 11 because the benchmark is executed

10 times and for initialization, all arrays are written once.

Additionally, the size of the binary is added. We use an ar-

ray size of of 610.4 MB which results in a total transferred

size of 21.974 GB.

5. Direct Bandwidth Measurement

Direct measurement of the memory bandwidth using the

PMU is possible. Both methods that we introduce in this

section are based on performance counters and have the at-

tribution problem mentioned in Section 2.

5.1 Memory Controller Counters

There are performance counters inside of the memory con-

troller. They are called uncore imc * /cas count read and

uncore imc */cas count write respectively. They count the

number of cache lines transferred by the memory controller.

There are multiple memory controllers on one chip. In the

event name, instead of the asterisk, the number of the mem-

ory controller can be used. When using the asterisk the val-

ues of all memory controllers are added. To get the number

of bytes transferred this value has to be multiplied by 64.

Recent versions of Perf already do this for the user and print

the data in MiByte. The limitation of these counters is that

they can only count in global mode. It is activated in Perf

with the –all-cpus flag. That means that they count ev-

erything, including memory traffic caused by other applica-

tions and the operating system. This introduces additional

sources of noise to the measurement. Because those coun-

ters measure the whole system, which could allow gather-

ing information about other running applications, extended

privileges are required. Either the perf event paranoid flag

must be set to -3 or root access is required. This may hinder

usage on shared systems. Because all cores of a processor

share the same memory controllers they also count for one

whole socket. This makes attribution to code and data even

more difficult because the traffic cannot be attributed to a

specific core.

To measure the traffic to remote memories the counters

of the QPI interface can be used. This counter is called

qpi data bandwidth tx. Similar to the memory controller

counters they count all the data that goes in and out of the

QPI interface.

The –per-socket flag can be used to gather statistics for

every socket individually. For example, the memory band-

width usage of each socket can be used to diagnose unbal-

anced usage of the memory in NUMA systems.

5.2 Offcore Response Counters

Another method for bandwidth detection are the offcore

counters. Those counters are located at the edge between

the core and uncore part of the processor as shown in Fig-

ure 1. This means that they can be attributed to specific

cores, but still have the attribution problem that is com-

mon for all performance counters as explained in Section 2.

Because the offcore counters are core local and can be re-

stricted to the profiled application it is possible to use them

even on systems with restricted access. Only the bandwidth

of the profiled application will be counted. It leads to lower

noise in the measurements.

There are different sub-events for the offcore response

events. Their format is always like offocre response.<access

type>.<llc hit or miss>.<response type>. The access type

can be further split up in two parts. The first part select

either demand of prefetched accesses. The second part se-

lect reads, writes, code reads or all accesses. The LLC (Last

Level Cache) hit or miss section specifies whether LLC hits

or dram hits should be included. The response type can be

local DRAM, remote DRAM or various cache coherence de-

pendent options as well as an option to include all responses.

Overall, those offcore events allow a very fine selection of

specific events. The event we used for the experiments is

offcore response.all reads.llc miss.local dram. According to

the documentation, it counts all read accesses (including

code reads and reads required for later writes) to the local

dram no matter if they are demand or prefetch.

5.3 Bandwidth Experiment Results

To verify whether the bandwidth measurement is accurate

we use the Stream benchmark. Figure 6 shows the results.

First, we can see that the results are similar in all three

systems.

The IMC counters accurately measure the amount of

transferred data. The calculated data volume is a little lower

because only the part of the main loop in Stream Triad and

the initialization add to the total amount of transferred data.

The IMC counter counts every memory transfer that hap-

pens while the benchmark is running. The IMC counter has

higher noise because it not only counts the applications data

transfers but all data transfers that occur while the program

is running. This includes data transfers due to the operating

system and other applications running at the same time.

The offcore counter is limited to the program under test

but still counts other memory accesses that occur in the

program and thus show a transferred data volume that is

slightly higher than the calculated one. The documentation

says that prefetched accesses are included [9, Vol 3B p. 18-

41] when using this counter. However, our experiments show

that the data transferred because of prefetching is not in-

c© 2019 Information Processing Society of Japan 4

Vol.2019-HPC-170 No.32
2019/7/26

IPSJ SIG Technical Report

cluded. When prefetching is turned off the data is the same

as with the other counters or the calculated data amount. In

contrast, when prefetching is turned on the offcore counters

do not report the correct data volume.

 0

 5000

 10000

 15000

 20000

 25000

 30000

Off On

Tr
a
n
sf

e
rr

e
d

 D
a
ta

 (
M

iB
y
te

)

Hardware Prefetcher Setting

Bandwidth Counters on spica

IMC Counter Offcore Counter Calculated

 0

 5000

 10000

 15000

 20000

 25000

Off On

Tr
a
n
sf

e
rr

e
d

 D
a
ta

 (
M

iB
y
te

)

Hardware Prefetcher Setting

Bandwidth Counters on comet

IMC Counter Offcore Counter Calculated

 0

 5000

 10000

 15000

 20000

 25000

Off On

Tr
a
n
sf

e
rr

e
d

 D
a
ta

 (
M

iB
y
te

)

Hardware Prefetcher Setting

Bandwidth Counters on arcturus

IMC Counter Offcore Counter Calculated

Fig. 6 Transferred data volume in the Stream Triad benchmark
measured with offcore and IMC counters compared to the
theoretical transferred data. The green bar shows that
the offcore counter does not include all of the transferred
data when the prefetchers are turned on.

6. Latency Measurement

In our previous publication [5] we introduce a method for

detection of main memory bandwidth limitation through la-

tency. We use the latency of load instructions that hit the

local DRAM as an indicator for memory bandwidth satura-

tion. The basic idea is that loading data from a memory can

be done with a fixed latency. If other issues, like bandwidth

saturation, occur the load request is delayed and the total

latency to complete the load instruction increases. We ob-

served that the latency stays low with only a small increase

until the bandwidth gets close to the hardware limit. At

this point, when the system reaches its throughput limit,

there is a sharp increase in latency. This relationship is

well known in queuing theory. When the arrival rate (band-

width requirement of the application) is higher than what

the system can process in a certain time (maximum hard-

ware memory bandwidth) the time required for queuing and

processing (latency) of the requests will increase.

There are different methods to measure the latency. Pre-

viously we relied on the instruction sampling latency. In

this paper, we also consider a performance counter based

measurement.

6.1 Instruction Sampling

The memory access latency is one of the attributes of a

sample. This latency is the time from the start of the execu-

tion of an instruction until it reaches the globally observable

state [9, Vol. 3B p. 18-22]. For the calculation of the latency,

only those samples which hit in the DRAM and that hit in

the TLB are included. Out of all the those filtered sam-

ples, the average latency is used. The instruction sampling

latency has the most precise attribution to code and data.

Only data from the profiled application is collected and no

special privileges are required to use this profiling method.

We use PerfMemPlus to do the profiling and extract the

data. It is pre-configured to use instruction sampling.

6.2 Performance Counters

Another way to measure the latency is to use performance

counters. The counter cpu/l1d pend miss.pending counts

the time spent for loading data into the L1 cache. It sums

up the time for parallel accesses. In other words, this counter

is increased by the number of currently outstanding L1 data

cache misses in every cycle.

In addition the counters cpu/mem load uops retired.l1 miss

and cpu/mem load uops retired.hit lfb are required. The

first one counts the number of load instructions that miss

the L1 cache. The second one counts the number of load

instructions that hit the line fill buffer (LFB).

Fig. 7 A sequence of memory access requests within the same
cache line and their cache hit status. Red = Miss, Yellow
= TLB Hit, Green = Hit.

The Intel PMU differentiates between an L1 miss and an

LFB Hit. An LFB Hit is an L1 miss, where the requested

data is already in the progress of being loaded into the L1

cache. This can either be because the data shares the same

c© 2019 Information Processing Society of Japan 5

Vol.2019-HPC-170 No.32
2019/7/26

IPSJ SIG Technical Report

cache line or due to prefetching. An example is illustrated

in Figure 7. The first load instruction, drawn as a red box,

to the address 0x00 accesses the first element of a cache line.

Because it is accessed for the first time, it causes an L1 miss.

The L1 cache will then start to load a complete cache line

of 64 bytes into the L1 cache (gray box). While this load is

in progress another load (yellow box) to the address 0x10 is

issued by the application. Because the load for the required

data is already in progress, this access will be categorized

as LFB hit. After the load of a complete cache line into the

L1 cache is completed at t3 another load (green box) to a

different element in the same cache line is issued. It will be

an L1 cache hit because the complete cache line is already

in the L1 cache.

All required counters are part of the core and L1 cache.

They can be attributed to specific cores and data recording

can be limited to the profiled application. For abbreviation

of the long event names the following Greek letters will be

used in the metric definition:

α = cpu/l1d pend miss.pending

β = cpu/mem load uops retired.l1 miss

γ = cpu/mem load uops retired.hit lfb

Based on those counters two latency metrics are defined

as follows:

L1 miss latency =
α

β

load miss real latency =
α

β + γ

The l1 miss latency expresses the average time it takes to

fulfill a load request that missed the l1 cache. It does not

include LFB hits. The load miss real latency is the average

time it takes to fulfill a load request that missed the l1 cache

or hit in LFB.

6.3 Latency Experiment Results

The results of the experiments with disabled hardware

prefetcher are shown in Figure 8. It shows that in some sit-

uations the sampling latency can rise high even though the

bandwidth is far from the maximum of the system. Just

relying on this latency value as an indicator for bandwidth

saturation will lead to false positive errors. In contrast, the

L1 miss latency and load miss real latency only increase

when there is an actual bandwidth limitation. The l1 miss

latency and load miss real latency are almost the same in

this configuration. This is expected because there will be

very few LFB Hits because there is no prefetching and only

one element per cache line is accessed. On comet, the sys-

tem with Haswell architecture, the absolute value of the l1

miss latency and load miss real latency is much higher than

on arcturus and spica, which are Broadwell systems.

When the hardware prefetcher is turned on the load miss

real latency depends on the number of delay cycles which is

visible in Figure 9. Even though the bandwidth is almost

the same when the number of delay cycles is low, the la-

tency is higher. This is an advantageous property of the

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 35000 40000 45000 50000 55000 60000

La
te

n
cy

 (
cy

cl
e
s)

Bandwidth (MiByte/s)

MemRead on arcturus (one node) with Hardware Prefetcher Off

8 threads l1MissLatency_avg
8 threads samplingLatencyTlbHit_avg

8 threads loadMissRealLatency
18 threads l1MissLatency_avg

18 threads samplingLatencyTlbHit_avg
18 threads loadMissRealLatency

22 threads l1MissLatency_avg
22 threads samplingLatencyTlbHit_avg

22 threads loadMissRealLatency

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 10000 15000 20000 25000 30000 35000

La
te

n
cy

 (
cy

cl
e
s)

Bandwidth (MiByte/s)

MemRead on spica (one node) with Hardware Prefetcher Off

8 threads l1MissLatency_avg
8 threads samplingLatencyTlbHit_avg

8 threads loadMissRealLatency
18 threads l1MissLatency_avg

18 threads samplingLatencyTlbHit_avg
18 threads loadMissRealLatency

22 threads l1MissLatency_avg
22 threads samplingLatencyTlbHit_avg

22 threads loadMissRealLatency

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

La
te

n
cy

 (
cy

cl
e
s)

Bandwidth (MiByte/s)

MemRead on comet (one node) with Hardware Prefetcher Off

8 threads l1MissLatency_avg
8 threads samplingLatencyTlbHit_avg

8 threads loadMissRealLatency
18 threads l1MissLatency_avg

18 threads samplingLatencyTlbHit_avg
18 threads loadMissRealLatency

Fig. 8 Latency development of different measurement meth-
ods with increasing DRAM bandwidth when hardware
prefetchers are disabled. A selection of threads was picked
for this diagram to indicate low and high bandwidth sit-
uations.

latency measurement, compared to the bandwidth measure-

ment. Because of the prefetcher, the main memory band-

width is the same no matter how many delay cycles are

inserted. However, in cases with a low number of delay cy-

cles, the data is needed quickly. In these situations, the

limited main memory bandwidth is worse for performance.

Compared to situations with a high number of delay cycles,

where the prefetcher has enough time to load the required

data.

When the prefetcher is turned on there will be many hits

in the LFB and only very few real L1 cache misses. As

shown in Figure 10, the l1 miss latency is much higher than

the load miss real latency. A high number of delay cycles

results in a high l1 miss latency. This is because with a high

number of delay cycles the amount of real L1 cache misses

will decrease, and thus increase the l1 miss latency.

c© 2019 Information Processing Society of Japan 6

Vol.2019-HPC-170 No.32
2019/7/26

IPSJ SIG Technical Report

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 38000 40000 42000 44000 46000 48000 50000 52000 54000 56000 58000

La
te

n
cy

 (
cy

cl
e
s)

Bandwidth (MiByte/s)

MemRead on arcturus with Prefetcher On, loadMissRealLatency

0 delayCycles
10 delayCycles
20 delayCycles
30 delayCycles

100 delayCycles

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 18000 20000 22000 24000 26000 28000 30000 32000 34000

La
te

n
cy

 (
cy

cl
e
s)

Bandwidth (MiByte/s)

MemRead on spica with Prefetcher On, loadMissRealLatency

0 delayCycles
10 delayCycles
20 delayCycles
30 delayCycles

100 delayCycles

 0

 100

 200

 300

 400

 500

 600

 700

 18000 18500 19000 19500 20000 20500 21000

La
te

n
cy

 (
cy

cl
e
s)

Bandwidth (MiByte/s)

MemRead on comet with Prefetcher On, loadMissRealLatency

0 delayCycles
10 delayCycles
20 delayCycles
30 delayCycles

100 delayCycles

Fig. 9 Load miss real latency development with increasing
DRAM bandwidth when hardware prefetchers are dis-
abled. The number of delay cycles has an influence on the
measured latency even when the bandwidth is the same.

 0

 500

 1000

 1500

 2000

 2500

 3000

 38000 40000 42000 44000 46000 48000 50000 52000 54000 56000 58000
La

te
n
cy

 (
cy

cl
e
s)

Bandwidth (MiByte/s)

MemRead on arcturus with Prefetcher On, l1MissLatency_avg

0 delayCycles
10 delayCycles
20 delayCycles
30 delayCycles

100 delayCycles

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 18000 20000 22000 24000 26000 28000 30000 32000 34000

La
te

n
cy

 (
cy

cl
e
s)

Bandwidth (MiByte/s)

MemRead on spica with Prefetcher On, l1MissLatency_avg

0 delayCycles
10 delayCycles
20 delayCycles
30 delayCycles

100 delayCycles

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 18000 18500 19000 19500 20000 20500 21000

La
te

n
cy

 (
cy

cl
e
s)

Bandwidth (MiByte/s)

MemRead on comet with Prefetcher On, l1MissLatency_avg

0 delayCycles
10 delayCycles
20 delayCycles
30 delayCycles

100 delayCycles

Fig. 10 L1 miss latency development with increasing DRAM
bandwidth when hardware prefetchers are disabled. The
number of delay cycles has an influence on the measured
latency even when the bandwidth is the same.

c© 2019 Information Processing Society of Japan 7

Vol.2019-HPC-170 No.32
2019/7/26

IPSJ SIG Technical Report

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 33

Pe
rc

e
n
t

o
f

E
x
p

e
ri

m
e
n
ts

Coefficient of Variation (Percent)

Histogram of Coefficient of Variation

 loadMissRealLatency
 samplingLatencyTlbHit_avg

Fig. 11 Histogram showing the coefficient of variance of all ex-
periments.

The error of the load miss real latency measurement is low.

In all of the 374 different configurations the maximum coef-

ficient of variation is at most 6.62% and on average 0.68%.

The sampling latency measurement shows a higher coeffi-

cient of variation. The average is 4.88% and the maximum

is 33.17% The distribution is shown in Figure 11. There is

no correlation of the measurement accuracy to any of the

benchmark parameters. Such as, number of threads, delay

cycles, prefetcher settings or hardware system.

7. Conclusion and Future Work

In this paper, we show that depending on conditions, such

as access privileges to the system and purpose of the mea-

surement different measurement methods should be used for

main memory bandwidth analysis.

If the exact value of bandwidth is of interest the direct

bandwidth measurement method should be applied. If priv-

ileged access is available and other parts of the system are

also under control for the time of the profiling we recommend

to use the IMC counters. Otherwise, the offcore counters can

be used. But one must be aware of the excluded prefetcher

accesses.

For diagnosing bandwidth problems we recommend the la-

tency based methods. Because they allow better attribution

of high bandwidth situation to code and data. Additionally,

they can distinguish performance degrading high bandwidth

situations from harmless high bandwidth situations, that the

prefetcher can easily produce.

To improve the latency based detection, that we have

proposed in our previous work, we propose the following

hybrid instruction sampling and performance counter ap-

proach. The load miss real latency is calculated for short

intervals of the execution. If the load miss real latency is

above a threshold in that interval it is flagged as bandwidth

bound. Within this interval, all samples with high latency

are selected. Those samples identify the code and data that

suffer from the bandwidth limitation. This approach com-

bines the reliability of the load miss real latency with the

accuracy of the instruction sampling. We want to implement

this approach in an automated detection tool.

References

[1] Linux: Perf, https://perf.wiki.kernel.org/index.php/
Main Page.

[2] Terpstra, D., Jagode, H., You, H. and Dongarra, J.: Collect-
ing Performance Data with PAPI-C, Tools for High Perfor-
mance Computing (2010).

[3] Intel Corporation: Performance Counter Monitor, http:
//www.intel.com/software/pcm (2016).

[4] Treibig, J., Hager, G. and Wellein, G.: LIKWID: A
lightweight performance-oriented tool suite for x86 multi-
core environments, Proceedings of the International Confer-
ence on Parallel Processing Workshops, pp. 207–216 (on-
line), DOI: 10.1109/ICPPW.2010.38 (2010).

[5] Helm, C. and Taura, K.: PerfMemPlus : A Tool for Au-
tomatic Discovery of Memory Performance Problems, 34th
International Conference, ISC High Performance (2019).

[6] Xu, H., Wen, S., Gimenez, A., Gamblin, T. and Liu, X.: DR-
BW: Identifying Bandwidth Contention in NUMA Architec-
tures with Supervised Learning, IEEE International Parallel
and Distributed Processing Symposium, IPDPS (2017).

[7] Intel Corporation: Finding your memory access perfor-
mance bottlenecks, https://software.intel.com/en-us/
articles/finding-your-memory-access-performance-
bottlenecks (2016).

[8] Weyers, B., Terboven, C., Schmidl, D., Herber, J., Kuhlen,
T. W., Müller, M. S., Hentshel, B., Muller, M. S., Hentschel,
B., Müller, M. S. and Hentshel, B.: Visualization of Mem-
ory Access Behavior on Hierarchical NUMA Architectures,
Proceedings of VPA 2014: 1st Workshop on Visual Perfor-
mance Analysis - held in conjunction with SC 2014: The
International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 42–49 (online), DOI:
10.1109/VPA.2014.12 (2015).

[9] Intel Croporation: Intel 64 and IA-32 Architectures
Software Developer ’ s Manual, Vol. 3 (online), DOI:
10.1109/MAHC.2010.22.

[10] Eranian, S.: What can performance counters do for mem-
ory subsystem analysis?, Proceedings of the 2008 ACM
SIGPLAN workshop on Memory systems performance and
correctness: held in conjunction with the Thirteenth In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS’08),
No. March, p. 26 (online), DOI: 10.1145/1353522.1353531
(2008).

[11] Yasin, A.: A Top-Down Method for Performance Analy-
sis and Counters Architecture, IEEE International Sympo-
sium on Performance Analysis of Systems and Software (IS-
PASS), pp. 35–44 (2014).

[12] Molka, D., Schöne, R., Hackenberg, D. and Nagel, W. E.: De-
tecting Memory-Boundedness with Hardware Performance
Counters, Proceedings of the 8th ACM/SPEC on Interna-
tional Conference on Performance Engineering - ICPE ’17,
pp. 27–38 (online), DOI: 10.1145/3030207.3030223 (2017).

[13] Intel Corporation: Disclosure of H/W prefetcher control on
some Intel processors, https://software.intel.com/en-
us/articles/disclosure-of-hw-prefetcher-control-on-
some-intel-processors (2014).

[14] McCalpin, John D: STREAM benchmark, http://www.cs.
virginia.edu/stream/ (1995).

c© 2019 Information Processing Society of Japan 8

Vol.2019-HPC-170 No.32
2019/7/26

